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Abstract
Neuronal dynamics is driven by externally imposed or internally generated random excitations/noise, and is often described

by systems of random or stochastic ordinary differential equations. Such systems admit a distribution of solutions, which is

(partially) characterized by the single-time joint probability density function (PDF) of system states. It can be used to

calculate such information-theoretic quantities as the mutual information between the stochastic stimulus and various

internal states of the neuron (e.g., membrane potential), as well as various spiking statistics. When random excitations are

modeled as Gaussian white noise, the joint PDF of neuron states satisfies exactly a Fokker-Planck equation. However, most

biologically plausible noise sources are correlated (colored). In this case, the resulting PDF equations require a closure

approximation. We propose two methods for closing such equations: a modified nonlocal large-eddy-diffusivity closure

and a data-driven closure relying on sparse regression to learn relevant features. The closures are tested for the stochastic

non-spiking leaky integrate-and-fire and FitzHugh-Nagumo (FHN) neurons driven by sine-Wiener noise. Mutual infor-

mation and total correlation between the random stimulus and the internal states of the neuron are calculated for the FHN

neuron.
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Introduction

Computational neuroscience often employs the theory of

nonlinear dynamical systems to quantitatively understand

complex neuronal processes (Izhikevich 2007). A key

aspect of the dynamical systems approach is the ability to

discover relevant properties of brain function without

accounting for every detail. It comprises coupled ordinary

differential equations (ODEs), with the number of ODEs

determining the dimensionality of a dynamical system.

Examples of such neuron representations are the one-di-

mensional leaky integrate-and-fire (LIF) model (Gerstner

and Kistler 2002), two-dimensional FitzHugh-Nagumo

(FHN) (FitzHugh 1961) and Morris-Lecar Morris and

Lecar (1981) models, and four-dimensional Hodgkin-

Huxley model (Hodgkin and Huxley 1952). To account for

apparent randomness of neuron behavior (e.g., due to

synaptic, internal, and/or channel noise), such models

include a stochastic noise/source term. To account for

parametric uncertainty, the coefficients in such models

might be treated as random variables. In both cases, such

models admit distributions of solutions that are (partially)

characterized by single-time joint probability density

functions (PDFs) of system states. These PDFs can be

either used directly to characterize the ensemble behavior

of large populations of neurons (Gerstner et al. 2014) or

post-processed to compute interspike-interval (ISI) distri-

butions (Greenwood and Ward 2016; Iolov et al. 2014),

first exit time (FET) distributions (Alzubaidi and Shardlow

2014; Tuckwell and Wan 2005), and the mutual
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information between different system states, or between a

system state and a stochastic input (Rieke 1997).

Synaptic noise reflects randomness in the release of

neurotransmitters by synapses and random inputs from

other neurons. Internal noise originates from the operations

of ionic channels, and channel noise stems from the ran-

dom switching of such channels.1 Regardless of its genesis,

a random source in ODEs (e.g., ionic current in the LIF and

FHN models) is frequently treated as Gaussian white noise

(Greenwood and Ward 2016). While mathematically and

computationally convenient, Gaussian white noise is bio-

logically implausible since it is unbounded and uncorre-

lated. For that reason, sine-Wiener (SW) channel noise—a

bounded and correlated (colored) non-Gaussian process—

has been used to model signal transmission (Kang et al.

2013), resonance (Liang et al. 2010), and detection (Liang

et al. 2010) in nervous systems; to induce spike death in

excitable systems (Guo et al. 2012); and to detect a weak

periodic signal in the FHN neuron (Yao and Ma 2018).

While our experiments focus solely on SW noise, the

general methodology presented in ‘‘Method of Distribu-

tions’’ and ‘‘Numerics’’ Sections is equally applicable to

arbitrary colored noise processes that have Lebesgue

measurable and almost surely bounded paths. Another

common choice, among many others, is the Ornstein-Uh-

lenbeck process, as seen in Kang et al. (2020); Guo (2011).

One of the attractive features of Gaussian white noise is

that the resulting ODE-based neuron model can be viewed

not only as a Langevin system, but also as a formal

stochastic differential equation (SDE) whose solution has a

joint PDF that satisfies exactly the Fokker-Planck equation

(Risken and Frank 1996; Øksendal 2003). This determin-

istic advection-diffusion partial differential equation

(PDE), whose dimensionality is determined by the number

of state variables/ODEs in the underlying stochastic model,

is no longer exact in the presence of colored noise. A joint

PDF of neuron states—or other quantities such as ISI or

FET—can be estimated via (multilevel) Monte Carlo

simulations (Haskell et al. 2001; Rosenbaum 2001; Alzu-

baidi and Shardlow 2014; Giles 2008), but this procedure

requires significant computational resources and sheds lit-

tle light on the probabilistic dynamics of the neuron. More

efficient methods of stochastic computation, e.g., polyno-

mial chaos expansions and stochastic finite elements, do

not provide a computational speed-up in this setting

because colored noise is characterized by a short correla-

tion length, leading to the so-called curse of dimensionality

(see, e.g., the references in Wang et al. (2013)). The

method of distributions (Tartakovsky and Gremaud 2015)

can be used to derive a PDF equation for the stochastic

solution of an ODE driven by colored noise (Wang et al.

2013; Maltba et al. 2018). In the limit of the vanishing

correlation length, i.e., when colored noise reduces to white

noise, such a PDF equation becomes exact, reducing to the

corresponding Fokker-Planck equation. Otherwise, it

requires a closure approximation to be computable.

We propose two alternative approaches to construct

such closures: theory-based nonlocal large-eddy-diffusivity

(LED) closures (Kraichnan 1987; Wang et al. 2013; Mal-

tba et al. 2018) and a data-driven closure relying on sta-

tistical inference, i.e., dictionary learning of relevant

derivative features in PDF equations (Bakarji and Tar-

takovsky 2021). To the best of our knowledge, both the

method of distributions and statistical learning of PDF

equations from a few Monte Carlo runs have not been used

in computational neuroscience before. We investigate the

relative performance of these strategies on two stochastic

neuron models with varying degrees of complexity, the

stochastic non-spiking leaky integrate-and-fire (NS-LIF)

and FHN models. While standard LIF models are by far the

simplest biologically plausible neuron models, which are

advantageous for simulating large coupled networks, they

are limited in their ability to capture the basic topology of a

neuron’s excitability. The FHN model overcomes this

limitation and captures key features of the Hodgkin-Huxley

model. Our stochastic analogues of the NS-LIF and FHN

models account for SW channel noise.

In ‘‘Method of distributions’’ Section, we present the

method of distributions in the context of Langevin-type

systems driven by colored noise, and describe alternative

approaches to the construction of closures for resulting

PDF equations. Our numerical strategies for solving these

equations are discussed in ‘‘Numerics’’ Section. The

method’s performance and errors associated with the pro-

posed closures are investigated for the stochastic NS-LIF

and FHN models in ‘‘Numerical experiments’’ Section.

This section also contains our strategy for computing

mutual information between channel noise (or stochastic

input current) and a neuron’s membrane potential. Main

conclusions derived from this study are summarized in

‘‘Conclusion’’ Section.

Method of distributions

Consider a system of random ordinary differential equa-

tions (RODEs),

d xðt;xÞ
d t

¼ vðxðt;xÞ; t; nðt;xÞÞ; xð0;xÞ ¼ x0ðxÞ;

ð1Þ

1 Due to the large number of these channels, channel noise is often

ignored by arguing that fluctuations average out (Yamakou et al.

2019). However, channel noise in and of itself can change the

behavior of neurons (White et al. 2000; Zhou et al. 2020), hence, it is

important to study its effects on a neuron’s dynamics.
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that is to be solved on a time interval ð0; Tf � and holds for

almost every x 2 X in an appropriate probability space

ðX;F;PÞ. The solution xðt;xÞ ¼
½x1ðt;xÞ; . . .; xNðt;xÞ�> : ð0; Tf � � X ! RN is an RN-val-

ued stochastic process, and the initial state x0 is an N-

dimensional random vector with the joint probability den-

sity function (PDF) fx0ðX0Þ : RN ! Rþ. The given deter-

ministic function v ¼ ½v1; . . .; vN �> : RN ! RN ,

parameterized with a set of Npar random coefficients

nðt;xÞ ¼ ½n1ðt;xÞ; . . .; nNparðt;xÞ�>, satisfies conditions

guaranteeing the existence of a unique path-wise solution

xðt;xÞ (see for instance Strand 1970; Neckel and Rupp

2013; Asai and Kloeden 2016). The zero-mean random

processes nðt;xÞ are characterized by a prescribed single-

point joint PDF fnðN; tÞ and a two-point covariance matrix

Cn with elements Cij � E½niðt1;xÞnjðt2;xÞ�, where i; j ¼
1; . . .;Npar and t1; t2 2 ð0; Tf �. Here and below we use E½��
and h�i interchangeably to denote the ensemble mean.

Let X ¼ ½X1; . . .;XN �> 2 RN be a variable in the sys-

tem’s phase space. At any given time t, the state of the

system is (partially) characterized by the joint probability

FxðX; tÞ,P½xðt;xÞ�X�. If this single-point joint cumula-

tive distribution function FxðX; tÞ is differentiable with

respect to all Xi, then the system is described by the cor-

responding single-point joint PDF fxðX; tÞ. Our goal is to

derive a deterministic equation for the PDF fxðX; tÞ of the
random solution xðt;xÞ to (1).

The RODE solution xðt;xÞ has paths that are continu-

ously differentiable with derivatives that are at most Hölder

continuous. Hence, paths of the driving sample processes

(e.g., n) of (1) are at most Hölder continuous and need only

be Lebesgue measurable and almost surely bounded so

that (1) can be interpreted in the sense of Carathéodory.

Therefore, the random coefficients niðt;xÞ are correlated in
time, i.e., Cij 6 � dðt1 � t2Þ where dð�Þ is the Dirac delta

function. If the coefficients niðt;xÞ are uncorrelated in time

(i.e., white noise), then (1) should be rewritten as a formal

SDE (Øksendal 2003) for which fxðX; tÞ satisfies exactly a

Fokker-Plank (advection-diffusion) equation.

Systems of RODEs can always be rewritten as a formal

multidimensional SDE by treating the coefficients niðt;xÞ
as states and adding their governing SDEs to the system of

equations (Neckel and Rupp 2013). Doing so would give a

(possibly much) higher-dimensional Fokker-Planck equa-

tion for the joint density of ½x1; . . .; xN ; n1; . . .; nNpar
�, sig-

nificantly increasing computational cost when compared to

the method of distributions, which seeks only a governing

equation for fxðX; tÞ. Such an equation is henceforth

referred to as a PDF equation; it is not unique and its

derivation requires a closure approximation (e.g., Wang

et al. 2013 and the references therein).

In general, correlated inputs render PDF equations

nonlocal in both phase space and time [ibid]. We focus on

two interconnected challenges: numerical treatment of

nonlocal PDF equations and statistical inference (i.e.,

learning) of the relevant closure terms in such equations

from a few Monte Carlo realizations of (1).

We use the implementation of the method of distribution

that treats random noise nðtÞ exactly. This is in contrast to

the implementations based on truncated expansions of

random inputs, e.g., in a Karhunen-Loéve series (Venturi

et al. 2012, 2013). Such expansions are often not appro-

priate for colored noise nðtÞ due to the presence of short

correlation lengths. Derivation of a PDF equation starts by

defining an auxiliary functional (Tartakovsky and Gremaud

2015)

PðX; t;xÞ,dðxðt;xÞ � XÞ ¼
YN

i¼1

dðxiðt;xÞ � XiÞ: ð2Þ

At any time t, its ensemble mean over all realizations of x

is the PDF fxðX; tÞ:

E½P�,
Z

RN
dðY� XÞfxðY; tÞ d Y ¼ fxðX; tÞ:

We show in ‘‘Appendix 1’’ that PðX; t;xÞ obeys, in the

sense of distributions, the linear conservation law

oP
ot

þrX � ½vðX; t;xÞP� ¼ 0; PðX; 0Þ ¼ dðx0ðxÞ � XÞ:

ð3Þ

This equation describes, e.g., advection, in the phase space

X, of a passive scalar (with concentration P) in the random

velocity field v. In that context, its stochastic averaging/

homogenization has been the subject of multiple investi-

gations (Kraichnan 1987).

A typical homogenization procedure employs the Rey-

nolds decomposition to represent the random inputs and

outputs as the sums of their means and zero-mean fluctu-

ations around these means. For example, v ¼ hvi þ v0

where

hviðX; tÞ,
Z

RNpar
vðX; t;NÞfnðNÞ d N and hv0i ¼ 0:

Likewise, the Reynolds decomposition of P is

P ¼ fx þP0. Substituting these decompositions into (3)

and taking the ensemble mean yields an unclosed PDF

equation

ofx
ot

þrX � ðhvifxÞ þ rX � hv0P0i ¼ 0; fxðX; 0Þ ¼ fx0ðXÞ;

ð4Þ

with vanishing free-space boundary conditions (though

others may be considered). This equation is unclosed
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because it contains the unknown flux term hv0P0i. Fol-
lowing (Maltba et al. 2018; Barajas-Solano and Tar-

takovsky 2016), we consider three alternative versions of

the LED closure: local, semi-local, and nonlocal. In all

three formulations, the terminal problem (‘‘Appendix 1.2’’)

d v

d s
¼ hvðv; sÞi; vðtÞ ¼ X; ð5Þ

and its associated flow vðsÞ � Uðs;X; tÞ play an essential

role. Whenever possible, we omit x for notational

convenience.

Local LED closure

The local closure is constructed by a direct application of

the classical LED approach in fluid dynamics (Kraichnan

1987). Under that approach, the cross covariance

hv0P0iðX; tÞ is split into advection and diffusion

components,

hv0P0i 	 VðX; tÞfxðX; tÞ �DðX; tÞrX fxðX; tÞ; ð6Þ

where the LED drift velocity V and the LED diffusion

tensor D are given in (56) and (57), respectively. Under-

pinning this closure is the assumption that the density fx
and its spatial derivatives vary slowly over a correlation-

length interval ðt � s; tÞ. Therefore, this closure is expected
to be valid for systems with short correlation lengths.

Nonlocal LED closure

The nonlocal closure does not rely on the short-correlation

assumption to the extent of the local closure and is second-

order accurate in rs, i.e., in the product of the noise

intensity and correlation length (see van Kampen 1976 and

‘‘Appendix 1.2’’). Under the nonlocal closure, the cross-

covariance term is approximated by

hv0P0i 	 �
Z t

0

Jðs;X; tÞrU

�
�
hv0ðX; tÞv0>ðUðs;X; tÞ; sÞifxðUðs;X; tÞ; sÞ

�
d s;

ð7aÞ

where

Jðs;X; tÞ ¼ exp �
Z t

s

rv � hvðvðrÞ; rÞi d r

� �
: ð7bÞ

For a given dimension N, the computational complexity

of the nonlocal PDF method is dominated by the work of

solving the terminal problem (5) and evaluating the Jaco-

bian determinant (7b). The latter is dramatically simplified

if the flow divergence rv � hvi is linear in v, which occurs

in such classical test problems as the nonlinear pendulum

and the Duffing oscillator; analyses of such problems, e.g.,

Cho et al. (2013), are likely to give an overly optimistic

assessment of PDF methods. The computational experi-

ments reported in ‘‘Numerical experiments’’ Section are

chosen to have nonlinear flow divergence rv � hvi.

Semi-local LED closure

The semi-local LED closures (Maltba et al. 2018; Barajas-

Solano and Tartakovsky 2016) aim to combine the sim-

plicity and speed of the local closure with (most of) the

accuracy of the nonlocal one. One such closure is derived

in ‘‘Appendix 1.3’’,

hv0P0i 	 �
Z t

0

Jðs;X; tÞ expððt � sÞJðX; tÞÞ>rX

�
�
hv0ðX; tÞv0>ðUðs;X; tÞ; sÞiJ�1ðs;X; tÞfxðX; tÞ

�
d s;

ð8Þ

where J is the Jacobian of the mean-field velocity,

JðX; tÞ,ohvðX; tÞi=oX. Numerical evaluation of Uðs; X; tÞ
in J is often computationally expensive. To alleviate this

cost, we approximate it by its terminal condition,

Uðs; X; tÞ 	 X, resulting in the approximate Jacobian

determinant ~J.

Remark 2.1 As an alternative, one can approximate

Uðs; X; tÞ via a higher-order Taylor expansion around the

terminal condition ðX; tÞ. Our numerical experiments in

‘‘Numerical experiments’’ Section reveal that this approx-

imation gives no significant improvement in accuracy,

while simultaneously presenting more numerical chal-

lenges than the terminal approximation.

Evaluation of the inverse approximate Jacobian deter-

minant ~J
�1

introduces additional challenges that would

otherwise be absent if J�1 were known exactly, including,

but not limited to, singularities and/or negative values of

hv0P0iðX; tÞ. Many of these issues may be resolved by

approximating ~J
�1

with a nonnegative spline. Another

option, which entirely circumvents such issues, is to use a

simpler but slightly less accurate semi-local closure,

hv0P0i 	 �
Z t

0

~Jðs;X; tÞ expððt � sÞJðX; tÞÞ>rX

�
�
hv0ðX; tÞv0>ðUðs;X; tÞ; sÞifxðX; tÞ

�
d s:

ð9Þ

It is obtained by approximating fxðUðs; X; tÞ; sÞ 	 fxðX; tÞ
in (7), and amounts to assuming the PDF fx to be approx-

imately constant over the interval ðt � s; tÞ.
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Data-driven closures

Depending on the model, the integrals in (56), (57), (8),

and (9) may or not be analytically computable. If they

cannot be solved analytically, their numerical evaluation

can be computationally expensive, and prohibitively so in

high dimensions. As an alternative to the LED closures

presented above, we explore empirical (data-informed)

closures of (4). The latter are constructed by representing

the unknown term hv0P0iðX; tÞ as a differential operator

hv0P0i 	 b0ðX; tÞfxðX; tÞ þ DðX; tÞrXfxðX; tÞ
þ higher-order derivatives;

ð10Þ

where D is a second-order semi-positive definite tensor

with elements Dij (i; j ¼ 1. . .;N). The M real-valued

coefficients b ¼ fb0;D11; . . .;DNN ; . . .g are learned from

post-processed Monte Carlo realizations of (1) by solving

the following optimization problem.

For simplicity, we consider a square spatial domain D 

RN and discretize it with a uniform square mesh Xk

n ¼
X0
n þ kDX for k 2 f1;Kg in each spatial dimension n. For

the temporal domain ð0; Tf �, we also take the uniform grid

tl ¼ lDt for l 2 f1; Lg. Let f̂ x 2 RK�:::�K�L with entries

f̂
k1:::kN l

x � f̂ xðXk1
1 ; :::;X

kN
N ; tlÞ denote a joint PDF computed

via post-processing of Monte Carlo realizations of (1) with

a kernel density estimator. We emphasize that f̂ x is not the

converged Monte Carlo solution, fMC, of (1). Instead, f̂ x is

computed using only a small fraction of the number of

trials needed to compute the converged solution fMC with

a prescribed accuracy. Furthermore, we denote by L̂ a

suitable numerical discretization (e.g., finite difference,

finite volume, total variation regularized differentiation,

etc.) of the differential operator L � rX � ðhvifx þ hv0P0iÞ
in (4), with hv0P0i given by (10). Finally, we introduce the

discretized residual

Rk1:::kN lðbÞ,
of̂

k1:::kNl

x

ot
þ L̂ðf̂ k1:::kN lx ; bÞ;

an example of its construction is discussed in detail in

‘‘Numerics Section’’. The optimal variable coefficient

vector b is one that satisfies

b̂ðX; tÞ ¼ argmin bðX;tÞ
1

KNL

XK

k1¼1

(

. . .
XK

kN¼1

XL

l¼1

jjRk1:::kN lðbÞjj
2
2 þ kjjbjj21

)
;

ð11Þ

where jj � jj2 is the L2 norm, jj � jj1 is the L1 norm penalty

ensuring sparsification of features, and k is a hyper-pa-

rameter iteratively chosen through a geometric sequence

(Brunton et al. 2016; Schaeffer 2017; Bakarji and Tar-

takovsky 2021).

In order to generalize the optimization problem in (11),

one must balance a bias-variance tradeoff when designing a

hypothesis class, i.e., choosing the order of the derivatives

in (10). A large hypothesis class, represented above by M

variable coefficients b, minimizes bias at the cost of high

variance. Such a class is more likely to fit an appropriate

operator to the data in f̂ x; however, at the cost of possibly

making the equations too difficult to manipulate analyti-

cally. Choosing too simple of a hypothesis class may pre-

vent generalization by automatically removing hypotheses

with high variance, i.e., filtering out noise and outliers in

the data. By choosing to include both variable coefficients

(as opposed to constants) and the L1 penalty in (11), we

aim to balance the bias-variance tradeoff by respectively

increasing the power of the model, and by introducing

sparsification, which leads to more interpretable equations.

The hypothesis class is further constrained by the fact

that (4) is an equation for the PDF of (1), which means that

it must take the form of a master equation. As a conse-

quence of Pawula’s theorem (Risken and Frank 1996; van

Kampen 1976), the (finite) Kramers-Moyal (KM) expan-

sion of the PDF master equation does not contain any

partial derivatives of order higher than two; otherwise, it

could yield a PDF that either is negative or may not inte-

grate to one. Hence, the order of derivatives in (10) is

restricted to one.

Numerics

For any of the above closures, we solve (4) through oper-

ator splitting by successively considering the two equations

ofx
ot

þrX � hvifx ¼ 0; ð12Þ

ofx
ot

þrX � hv0P0i ¼ 0: ð13Þ

The conservative advection equation (12) is solved through

the Clawpack package (Clawpack Development Team

2019) using a Lax-Wendroff discretization and MC limiter.

In the N ¼ 1 dimensional setting, (13) is solved via a

Crank-Nicolson time discretization. For dimensions higher

than one, the modified Craig-Sneyd scheme, presented in ’t

Hout and Mishra (2013), is used with h ¼ 1=2. This

stable alternating direction implicit scheme treats mixed

derivatives explicitly while maintaining second-order

temporal accuracy. In all cases, (13) is spatially discretized

with second-order central differencing. Clawpack pro-

vides two options for operator splitting, namely Godunov

or Strang splitting. However, Strang splitting is not
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currently available for adaptive mesh refinement. For the

experiment in ‘‘Stochastic NS-LIF model’’ Section, the

classic version (uniform spatial mesh) of Clawpack is

used with Strang splitting since adaptive mesh refinement

is not necessary. For the experiment in ‘‘Stochastic FHN

model’’ Section, we use the adaptive version of Claw-

pack (AMRClaw) with Godunov splitting, which signifi-

cantly reduces computational costs. Although Godunov

splitting is only formally first-order accurate, a conver-

gence study revealed that near second-order temporal

accuracy is maintained, i.e., its temporal truncation errors

range between OðDt1:9Þ and OðDt2Þ.
The computational domain is taken as ½�L; L�N where

L[ 0 is the smallest number large enough to ensure that

the domain truncation with homogeneous boundary con-

ditions generates only negligible errors, by which we mean

that if the size of each dimension of the domain is

increased 10 fold, the error improves only by 0.01 percent.2

For a fixed time t, the error is defined in terms of the

Kullback-Leibler (KL) divergence (Mackay 2003),

DKLðfMCjjfxÞðtÞ,
Z

RN
fMCðX; tÞ ln

fMCðX; tÞ
fxðX; tÞ

� �
d X:

It quantifies the amount of information lost when fx is used

to approximate the high-resolution Monte Carlo solution

fMC, which is treated as a yardstick.

Each Monte Carlo realization is achieved by solving (1)

with an adaptive fourth-order Runge-Kutta (RK4) scheme,

treating the discretized stochastic fluctuation v0 as a vari-

able coefficient. It is well known that standard Runge-Kutta

schemes can be implemented for RODEs; however, they

typically do not maintain their traditional orders of accu-

racy (see for instance Neckel and Rupp 2013; Asai and

Kloeden 2016 and the references therein). A convergence

study revealed that the standard RK4 scheme maintained

third-order accuracy for the experiments in ‘‘Numerical

experiments’’ Section. For each time step in the domain, a

large number of Monte Carlo realizations are then post-

processed with a Gaussian kernel density estimator to

obtain the yardstick PDF fMC on the discretized spatial

domain. The exact number of realizations used to compute

the yardstick solution is problem dependent. It is deter-

mined by a convergence study and is explicitly given for

each experiment in ‘‘Numerical experiments’’ Section. The

bandwidth of the kernel density estimator is chosen by

Silverman’s rule. In addition to fMC, we also compute the

data array f̂ x first defined in ‘‘Data-driven closures’’

Section. The number of realizations used to compute f̂ x
typically ranges from 5% to 20% of those used for fMC.

Remark 3.1 Other natural choices for measuring error of

PDF solutions are the Wasserstein and total variation dis-

tances. Relative Lp norms are typically poor choices for

measuring error of PDFs. They often underrepresent the

accuracy of closures, sometimes increasing the error by one

order of magnitude even if many statistical measures such

as mean, variance, skewness, kurtosis, and modality match.

Remark 3.2 Asymptotic ‘‘plug-in’’ estimators of band-

width, such as Scott’s or Silverman’s rule, are computa-

tionally inexpensive. Yet, if the underlying distribution is

heavy-tailed or multimodal, computing the yardstick PDF

fMC and the data array f̂ x may require an unusually large

number of realizations. More robust approaches to band-

width selection include various forms of cross-validation

(CV) (e.g., k-fold CV Hastie et al. 2009, one-sided CV

Savchuk and Hart 2017, [47], etc.) and total variation

regularization [48]. The latter allows for variable band-

widths, but has to solve a bandwidth optimization problem

at each time step.

LED closures

The local and semi-local formulations of the LED closures

have the same computational complexity, while the non-

local formulation is considerably more expensive (Maltba

et al. 2018). Evaluation of the cross-covariance term (7) in

the latter involves a numerical approximation of the inte-

gral, which requires the history of the solution up to the

current time step. In the results presented below, the pro-

posed local and semi-local approaches are four orders of

magnitude faster than the standard Monte Carlo approach.

Data-driven closures

Numerical solutions of (12) and (13) with semi-local or

nonlocal LED closures (7)–(9) may become highly non-

trivial, e.g., when N[ 3 and v0 is spatially dependent. Our

numerical experiments reported in ‘‘Numerical Experi-

ments’’ Section reveal the total computational costs of the

data-driven closures to be higher than that of the local and

semi-local LED closures. Yet, the data-driven closures are

still considerably cheaper than the standard Monte Carlo

approach and, in contrast to the LED closures, are rela-

tively easy to implement numerically. This makes the data-

driven closures an attractive alternative. Moreover, if the

optimization problem (11) is properly constrained and not

naively implemented, the bulk computational costs of the

data-driven approach lies in generating the (relatively few)

2 In ‘‘Stochastic NS-LIF model’’ Section , the solution to (1) is

positive, so the domain is reduced to (0, L] with a homogeneous

boundary condition at X ¼ L and a reflective (i.e., zero-flux) boundary

condition at X ¼ 0.
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Monte Carlo realizations needed to assemble f̂ x. The

remainder of this section is devoted to solving (11).

Remark 3.3 A naive strategy for solving the optimization

problem (11), which involves the discretized variable

coefficients bðXk1
1 ; :::;X

kN
N ; tlÞ at each spatiotemporal grid

point ðXk1
1 ; :::;X

kN
N ; tlÞ, is prohibitively expensive without

proper computational resources, particularly memory

allocation. The experiment in ‘‘Stochastic FHN model’’

Section, which has a relatively low-dimensional (N ¼ 2)

phase space, illustrates the high-dimensional nature of this

optimization problem. An accurate solution of (12) would

require a spatial grid size of at most DX1 ¼ DX2 ¼ 0:01 at

the highest level of mesh refinement. Although this is

handled with an adaptive mesh when solving (12)

and (13), a uniform mesh is used for the optimization

problem (11). For a square domain, a uniform mesh of size

DX1 ¼ DX2 ¼ 0:01 consisting of 1000 elements in each

direction would result in 106 spatial grid cells. Given that

the time step Dt must satisfy the hyperbolic CFL condition,

the total number of spatiotemporal grid points is on the

order of 109 for each of the M coefficients b. The resulting

dimension of the optimization problem is

OðMKNLÞ ¼ M109, well beyond the limitations of a per-

sonal computer.

To reduce the dimensionality of the optimization prob-

lem (11), we use a polynomial basis expansion to represent

the decision variables bðX; tÞ. In this setting, it is natural to

directly reference the elements of bðX; tÞ in terms of b0 and
D from (10). For a polynomial (e.g., Chebyshev, Legendre,

etc.) basis Pqð�Þ,
b0ðX; tÞ

,

XQ1

q1¼1

. . .
XQN

qN¼1

XR

r¼1

aq1...qNr0 Pq1ðX1Þ. . .PqN ðXNÞPrðtÞ;

ð14aÞ

DijðX; tÞ

,

XQ1

q1¼1

. . .
XQN

qN¼1

XR

r¼1

aq1...qNrij Pq1ðX1Þ. . .PqN ðXNÞPrðtÞ:

ð14bÞ

The optimization problem (11) is now solved over the

expansion coefficients aq1...qNr0 and aq1...qNrij 2 R for

i; j 2 f1;Ng. This step reduces the optimization dimension

from OðMKNLÞ to OðMQ1. . .QNRÞ, where each

Q1; :::;QN ;R\10. For the experiments in ‘‘Numerical

experiments’’ Section, the optimization dimension is

reduced from M109 to approximately M101.

To formulate the regression problem, we take the

divergence of (10). Ignoring higher-order derivatives

yields

r � hv0P0i 	
XN

i¼1

oXi
ðb0fxÞ þ

XN

i;j¼1

oXi
DijðoXj

fxÞ
� �

: ð15Þ

We let Pk1...kN l
q1...qNr

,Pq1ðXk1
1 Þ. . .PqN ðXkN

N ÞPrðtlÞ denote the dis-

cretized polynomial bases. We also build a target vector

V 2 RKNL in (12) that contains the advection terms for

each spatiotemporal grid point approximated with a Lax-

Wendroff discretization and MC limiter. Its elements,

denoted by the mulit-index k1. . .kNl, are given by

Vk1...kN l, ot f̂ x þrX � hvif̂ x
� 	

ðXk1
1 ; . . .;X

kN
N ; tlÞ:

After substituting the discretized version of (14) into (15)

and changing the order of summations, for a fixed spa-

tiotemporal grid node with index k1. . .kNl, the discretized

residual takes the form

Rk1:::kN l,Vk1:::kN l

þ
X

q1...qNr

X

i

oXi
Pk1...kN l

q1...qNr
f̂
k1...kN l

x

h i
aq1...qNr0

þ
X

i;j

X

q1...qNr

oXi
Pk1...kN l

q1...qNr
oXj

f̂
k1...kN l

x

� �h i
aq1...qNrij :

ð16Þ

Rewriting in matrix/vector form gives

R ¼ Vþ F0a0 þ
X

i;j

Fijaij; ð17Þ

where the elements of each matrix are given by

F0ðk1. . .kNl; q1. . .qNrÞ,
X

i

oXi
Pk1...kNl

q1...qNr
f̂
k1...kN l

x

h i
; ð18Þ

Fijðk1. . .kNl; q1. . .qNrÞ,oXi
Pk1...kN l

q1...qNr
oXj

f̂
k1...kN l

x

� �h i
; ð19Þ

for all i, j 2 f1;Ng. Here, the rows of F0 and each Fij have

the multi-index k1. . .kNl and the columns q1. . .qNr. We

compute all numerical derivatives in (18) and (19) via

central finite differencing.

Since the diffusion tensor D is symmetric, for a fixed

index q1. . .qNr, aq1...qNrij ¼ aq1...qNrji for all i, j 2 f1;Ng.
Hence, the residual in (17) is written as

R ¼ Vþ F0a0 þ
X

i

Fiiaii þ
X

i\j

ðFij þ FjiÞaij: ð20Þ

Then the optimization problem over all polynomial coef-

ficients takes the form
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Â,½â0; â11; . . .; âNN ; â12; . . .; â1N ; â23; . . .; âðN�1ÞN �>

¼ argmin AjjRðAÞjj22 þ kjjAjj21;
ð21aÞ

where

RðAÞ,Vþ ½F0;F11; . . .;FNN ;F12 þ F21; . . .;F1N

þ FN1;F23 þ F32; . . .;FðN�1ÞN þ FNðN�1Þ�A:
ð21bÞ

We solve (21) by utilizing the lasso function of

MATLAB with a 10-fold CV set on each iteration. We use

a mean squared error loss function and a relative tolerance

of 10�4, i.e., the algorithm terminates when the L2 norm of

successive estimates of the coefficient vector differ by less

than 10�4. The extrapolation power of our model is tested

by fitting the data for the first half of the time horizon,

0; Tf =2
� �

, and analyzing the model performance on the

remaining half, Tf =2; Tf
� �

.

Remark 3.4 It may be of interest to consider different

variations of CV algorithms that are not considered in this

study, including least-angle regression and Lasso imple-

mented with Bayes information criterion. Such algorithms

may give different results depending on the choice of the

hypothesis class.

Numerical Experiments

We consider two applications of the method of distribu-

tions and its associated closures to neuron models, namely,

the NS-LIF and FHN models, both driven by SW channel

noise. The first model has one state variable (N ¼ 1), and

the second has two (N ¼ 2). SW noise is commonly used in

neuroscience, e.g., to model signal transmission (Kang

et al. 2013), resonance (Liang et al. 2010), and detection

(Liang et al. 2010) in nervous systems; to induce spike

death in excitable systems (Guo et al. 2012); and for weak

periodic signal detection in the FHN neuron (Yao and Ma

2018).

SW noise nðtÞ is a bounded and correlated zero-mean

non-Gaussian process that is defined by

nðtÞ,r sin

ffiffiffi
2

s

r
Wt

 !
; ð22Þ

where r[ 0 is the finite noise amplitude/strength, s[ 0 is

the correlation length, and Wt is a standard Wiener process.

It has mean hnðtÞi ¼ 0 for any fixed time t, and covariance

function (Ning and Liu 2016; Yang and Ning 2017; van

Kampen 1976; Risken and Frank 1996)

Cnðt; sÞ,hnðtÞnðsÞi

¼ r2

2
exp � t � s

s

� �
1� exp � 4s

s

� �� �
; s� t:

ð23Þ

For the experiments in ‘‘Stochastic NS-LIF model’’ Sec-

tion, the RODE (1) and all of its corresponding PDF

equations are solved up to time Tf ¼ 50, while in

‘‘Stochastic FSH model’’ Section, they are solved up to

Tf ¼ 100.

Stochastic NS-LIF model

LIF neuron models are often used in place of their higher-

dimensional counterparts, i.e., models with large N, espe-

cially when considering large coupled networks. They

describe the basic neuron behavior of slowly charging in

the presence of current, spiking after reaching a voltage

threshold, and then slowly discharging (Gerstner and Kis-

tler 2002). In order to present an example where all of the

proposed closures are in agreement, the LIF model under

consideration is not a spiking model, i.e., it lacks a voltage

threshold and resetting mechanism for the membrane

potential. We do study spiking dynamics in ‘‘Stochastic

FSH model’’ Section for which there is a discrepancy

between the different closures.

In particular, we consider a (one-dimensional) LIF

model that is embedded in the (two-dimensional) stochastic

FHN model in the excitable regime.3 The derivation of the

embedding is presented in ‘‘Numerical experiments’’ Sec-

tion of Yamakou et al. (2019). We use their Eq. 4.3, albeit

driven by SW noise rather than Gaussian white noise and

without a threshold and resetting mechanism, to describe

the membrane voltage xðtÞ[ 0,

d x

d t
¼ r2

2x
� lxþ nðtÞ; ð24Þ

with a given initial condition xð0Þ ¼
x0 � jNð0:1; 0:01252Þj (i.e., a folded Gaussian random

variable). In the simulations below, we set l ¼ 0:0312496

and consider noise amplitudes r ¼ 0:0444, 0.0666, 0.0888,

and 0.1333, as in Yamakou et al. (2019). These amplitudes

have been appropriately scaled from r ¼ 0:005, 0.0075,

0.01, and 0.015 in the FHN model. The correlation lengths

vary between s ¼ 0:05, 0.10, 0.15, and 0.20.

The RODE (24) is a one-dimensional version of (1)

with vðxðtÞ; t; nðtÞÞ � r2=ð2xÞ � lxþ n. In phase space,

vðX; t; nðtÞÞ � r2=ð2XÞ � lX þ n is linear in the additive

3 A FHN neuron is considered to be in the excitable regime when

starting in the basin of attraction of a unique stable fixed point, a large

excursion, or spike, occurs in phase space and then permanently

returns to the fixed point (Izhikevich 2007).
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SW noise nðtÞ. Hence, hvi � r2=ð2XÞ � lX and v0 � n.
The terminal problem (5) takes the form

d v
d s

¼ r2

2v
� lv; vðtÞ ¼ X; ð25Þ

and admits an analytical solution, yielding a closed-form

expression for the associated flow vðsÞ ¼ Uðs;X; tÞ.

Local LED closure

For the problem under consideration, equations (56)

and (57), which define the drift velocity V and the diffu-

sion coefficient D in the local LED closure (6), reduce to

VðX; tÞ � 0 and DðX; tÞ ¼
Z t

0

Jðs;X; tÞCnðt; sÞ d s;

ð26Þ

where

Jðs;X; tÞ ¼ exp �
Z t

s

o

ov
hvðvðrÞ; rÞi d r

� �

¼ exp

Z t

s

r2

2U2ðr;X; tÞ
þ l

� �
d r

� �
:

ð27Þ

The integral in J can be evaluated analytically, but this is

generally not the case. To be consistent with the approxi-

mations that are usually needed, we approximate Uðs;X; tÞ
in J by its terminal condition X, resulting in the approx-

imate Jacobian

~Jðs;X; tÞ ¼ exp

Z t

s

r2

2X2
þ l

� �
d r

� �

¼ exp ðt � sÞ r2

2X2
þ l

� �� �
:

ð28Þ

With this local LED closure, the single-point PDF fxðX; tÞ
of the random membrane voltage x(t) satisfies the PDF

equation

ofx
ot

þ o

oX

r2

2X
� lX

� �
fx

� �
¼ o

oX
~DðX; tÞ ofx

oX

� �
; ð29Þ

where the diffusion coefficient ~D is computed upon

replacing J with ~J in (26) and analytically evaluating the

resulting integral.

Remark 4.1 As mentioned in Remark 2.1, a higher-order

Taylor expansion around the terminal condition (X, t) may

be used as an alternative approximation for Uðs;X; tÞ
in (27). Our numerical experiments with this approxima-

tion showed no improvement in accuracy, but simultane-

ously induced additional numerical challenges: the

resulting linear approximation of the Jacobian determinant

J behaves like exp½ðt � sÞOðX�2Þ�, as does ~J in (28), but

has singularities at points other than X ¼ 0.

Semi-local LED closure

For the problem under consideration, the semi-local clo-

sure (9) reduces to

hv0P0iðX; tÞ 	 �D2ðtÞ
ofx
oX

; ð30Þ

where the diffusion coefficient D2ðtÞ is computed

analytically,

D2ðtÞ ¼
Z t

0

~Jðs;X; tÞ exp ðt � sÞ d hvðX; tÞi
d X

� �
Cnðt; sÞ d s

¼
Z t

0

Cnðt; sÞ d s:

ð31Þ

The resulting PDF equation for fxðX; tÞ is identical to (29),

except that now D2ðtÞ is used in place of ~DðX; tÞ.4 A

solution to this equation, fxðX; tÞ, is shown in Fig. 1a for

several combinations of the meta-parameters r and s
characterizing the strength and correlation length of the

colored noise nðtÞ, respectively. For the stochastic NS-LIF

model (24), the PDFs of membrane voltage, fxðX; tÞ,
computed via the PDF equation with the nonlocal and local

closures are visually indistinguishable from the PDF with

the semi-local closure shown in Fig. 1a. Figure 1b gives a

direct comparison of the PDF computed with the semi-

local closure and the yardstick PDF, fMCðX; tÞ, estimated

via high-resolution Monte Carlo simulations. The latter

required NMC 	 1:5� 105 realizations to converge. The

results in Fig. 1b are displayed for the worst case scenario,

which occurs for the largest choices of r and s and at early

times, as seen by the error plot in Fig. 2.

Figure 2 provides a quantitative assessment of the

accuracy of the semi-local closure. It displays the temporal

evolution of the KL divergence DKLðfMCjjfxÞ between

fxðX; tÞ and fMCðX; tÞ for the noise strength r ¼ 0:044 and

0.133. (The errors associated with the intermediate values

of r ¼ 0:066 and 0.088 follow the same pattern and, hence,

are omitted from Fig. 2). The KL divergence increases

with r and s, as to be expected from the theoretic con-

siderations, since the LED-based closures can be thought of

as leading-order terms in perturbation expansions in the

powers of r and s. Regardless of the choice of the meta-

parameter values, DKLðfMCjjfxÞ generally decreases with

time t. That is because the membrane voltage PDF

4 We found the semi-local closure (8) to provide only minor

improvements in accuracy relative to the closure (9), while being

significantly more involved computationally. Consequently, only the

numerical results for the semi-local closure (9) are presented therein.
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approaches its nearly Gaussian steady state, wherein the

PDF and its derivatives with respect to X are almost con-

stant over the correlation-length intervals ðt � s; tÞ, an

approximation that underpins both the local and semi-local

closures. For all choices of r and s and for all time t, the

nonlocal, semi-local, and local closures yield PDFs fxðX; tÞ
within a KL divergence of 1:6� 10�4 of one another, with

the largest error occurring for the largest values of r and s.5

The local and semi-local approaches are four orders of

magnitude faster than the Monte Carlo approach.

Data-driven closure

Since the diffusion coefficient for the semi-local closure,

D2, depends only on time, see (31), we consider spatially

independent variable coefficients b � bðtÞ in the data-dri-

ven closure (14), significantly reducing the dimensionality

of the optimization problem (11)6. Furthermore, since

D2ðtÞ is a monotonically increasing function that quickly

reaches an asymptote (Fig. 3), we also investigate a data-

driven closure with constant coefficients b, eliminating the

need for a polynomial expansion and further simplifying

the optimization problem. In both cases, the one-dimen-

sional version of (10) gives rise to the hypothesis

Fig. 1 (a) PDF fxðX; tÞ of the membrane voltage x(t) in (24),

computed via the PDF equation with the semi-local closure, for

several combinations of the strength (r) and correlation length (s) of

colored noise nðtÞ. (b) Direct comparison of the PDF fxðX; tÞ
computed with the semi-local closure and the yardstick PDF

fMCðX; tÞ for r ¼ 0:133 and s ¼ 0:20 at times t ¼ 1 and 3

Fig. 2 Temporal evolution of

the KL divergence,

DKLðfMCjjfxÞ, between the

membrane voltage PDF

computed with the semi-local

closure, fxðX; tÞ, and its Monte

Carlo counterpart, fMCðX; tÞ,
for several combinations of the

strength (r) and correlation

length (s) of colored noise nðtÞ:

5 Although the accuracy of the local and semi-local closures is nearly

identical for the stochastic NS-LIF model (24), this is generally not

the case, as seen in ‘‘Stochastic FSH model’’ Section.

6 To be concrete, we represented biðtÞ (i ¼ 1; 2) with the first ten

Legendre polynomials.
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ohv0P0i
oX

	 b1
ofx
oX

þ b2
o2fx
oX2

; ð32Þ

and either constant or time-dependent coefficients b ¼
ðb1; b2Þ> are found by sparse regression (11) in which the

hyper-parameter k is chosen to minimize the mean squared

error.

Regardless of whether the coefficients b are treated as

constant or time-dependent, the sparse regression yields

b1 � 0, so that b2 becomes an approximation of the dif-

fusion coefficient D2ðtÞ; the optimal estimates of both

constant and time-varying b2, denoted by �̂, are compared

with D2ðtÞ in Fig. 3. For small values of r and s (Fig. 3a),
D2ðtÞ quickly approaches its asymptote, rendering its

approximation with the constant b̂2 accurate. Meanwhile,

the time-dependent approximation b̂2ðtÞ suffers from

oscillations around the asymptote, with a noticeable over-

shoot near t ¼ 1. This discrepancy becomes less pro-

nounced as the number of polynomial bases is increased.

As r and s increase (Fig. 3b), the rate at which D2ðtÞ
reaches its asymptote decreases. This causes the constant

approximation b̂2 to slightly underestimate D2ðtÞ because it
has to ‘‘average out’’ low levels of diffusion at early times.

However, this slower transition benefits the time-dependent

approximation b̂2ðtÞ, allowing for fewer polynomial bases

and less pronounced oscillations and overshoot.

Figure 4 reveals that, while the semi-local closure out-

performs the data-driven closure (it is visually indistin-

guishable from fMC), the data-driven closures perform

remarkably well. For large values of r and s, allowing b̂2 to
vary in time improves the accuracy of the data-driven

closure at early times, but gives only minor improvements

at later times. To a certain extent, the under-estimation

of D2ðtÞ by the constant b̂2 at later times is balanced by

over-estimation of D2ðtÞ at early times. However, the dis-

crepancy does increase at later extrapolated times, as the

constant b̂2 leads to the data-driven PDF fxðX; tÞ being

under-diffused. This comparison is provided for the largest

values of r and s considered in our study (r ¼ 0:133 and

s ¼ 0:20).

Figure 5 elaborates upon this visual observation by

presenting the temporal evolution of the KL divergence

DKLðfMCjjfxÞ between the ‘‘exact’’ solution fMCðX; tÞ
and its approximations fxðX; tÞ obtained with the data-dri-

ven closure. We illustrate the performance of the least

Fig. 3 Diffusion coefficients associated with the semi-local closure,

D2ðtÞ, the data-driven closure with constant coefficients, b̂2, and the

data-driven closure with a temporal Legendre basis expansion, b̂2ðtÞ.
We present the cases for which the KL divergence DKLðfMCkfxÞ of

the data-driven closure with constant b̂ is highest. In all cases, the

data-driven coefficients approximated with a Legendre basis expan-

sion agree well with the other closures

Fig. 4 Temporal snapshots (at

times t ¼ 0:5, 5, 12.5, and 25;

for r ¼ 0:133 and s ¼ 0:20) of
the membrane voltage PDFs

fxðX; tÞ alternatively computed

with the semi-local closure

(SL), the data-driven closure

with constant coefficients

(DDC), and the data-driven

closure with a temporal

Legendre basis expansion

(DDP)
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computationally expensive data-driven closure, i.e., the one

that relies on the constant coefficients b̂ 2 R2. As r and s
decrease, the discrepancy between the semi-local closure

and the data-driven closure increases, with the largest

difference in their KL divergences occurring for r ¼ 0:044

and s ¼ 0:05 at later times. At first glance, this may seem

contradictory to Figure 3, but one must consider that the

diffusion coefficients decrease with r and s, and that r also

influences advection as it is included in the drift term

in (24). When r and s are small, the resulting PDF fxðX; tÞ
advects and diffuses at a slow rate (see Fig. 1), resulting in

a spikier PDF. Hence, in terms of relative entropy, i.e., the

KL divergence, fxðX; tÞ is more sensitive to small changes

in the diffusion coefficient. Unlike in the LED theory, the

data-driven closure does not guarantee that fxðX; tÞ should
improve as r and s decrease. Regardless of these obser-

vations, the data-driven closure remains accurate when

compared to the semi-local closure.

The residual R in the optimization problem (11) uses

the data array f̂x computed from NtrMC Monte Carlo real-

izations. Hence, the optimal values of b and, thus, the PDF

fxðX; tÞ computed with (12), (13) and (32) are affected by

the choice of NtrMC. Figure 6 sheds light on this

dependence by exhibiting the KL divergence

DKLðfMCjjfxÞ, averaged over all temporal grid nodes, as

function of NtrMC. For all choices of r and s considered, the

optimal solution b̂ to (11) needs NtrMC 	 3� 104 Monte

Carlo trials to stabilize, and the accuracy of the data-driven

closure does not improve for NtrMC[ 3� 104. This is less

than 20% of the number of realizations, NMC, needed to

compute fMC. The data-driven results presented in Figs. 3,

4, and 5 are obtained with NtrMC ¼ 3� 104 Monte Carlo

trials.

Stochastic FHN model

The FHN neuron is controlled by two state variables, the

membrane potential x1ðtÞ and the recovery variable x2ðtÞ
that restores a neuron’s resting state. In the

excitable regime, its dynamics is described by

_x1

_x2

� �
¼ x1 � x31=3� x2 þ I

�ðx1 þ a� bx2Þ þ n

� �
ð33Þ

where SW channel noise nðtÞ is defined by (22); I is the

external input current; � is a small timescale parameter that

Fig. 5 Temporal evolution of the KL divergence, DKLðfMCjjfxÞ,
between the membrane voltage PDF computed with the data-driven

closure, fxðX; tÞ, and its Monte Carlo counterpart, fMCðX; tÞ, for

selected combinations of the strength (r) and correlation length (s) of

colored noise nðtÞ. The data array f̂ x used in the data-driven closure is

computed with NtrMC ¼ 3� 104 Monte Carlo realizations

Fig. 6 Dependence of the KL

divergence DKLðfMCkfxÞ,
averaged over all temporal grid

nodes, on the number of Monte

Carlo runs used in the sparse

regression, NtrMC:
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ensures that the dynamics of x1 is much faster than x2; and

a and b are model parameters. In the simulations reported

below, we set I ¼ 0:265, � ¼ 0:08, a ¼ 0:7 and b ¼ 0:75,

in accordance with (Yamakou et al. 2019). With these

parameter values, the deterministic version of (33), i.e., in

the absence of the noise n, is in the excitable regime7 and

has a unique stable fixed point at ðx1; x2Þ ¼ ð�1:00125;

�0:401665Þ. In the stochastic setting, the channel noise

nðtÞ may perturb the trajectory away from the fixed point,

causing repeated firing. The frequency of this repeated

firing increases with the noise amplitude r (Yamakou et al.

2019). In our simulations we consider noise amplitudes of

r ¼ 0:01, 0.05, and 0.2, and correlation lengths s ¼ 0:01,

0.1, and 5.0. The initial state xð0Þ ¼ x0 is an uncorrelated

joint Gaussian whose mean is perturbed from the

stable fixed point:

x0 �N
�1:00125

�0:411665

� �
;

0:01 0

0 0:01

� �� �
:

The approximate Jacobian determinant ~J associated with

the FHN model (33) needed for both the local and semi-

local LED closures is given by

~Jðs;X; tÞ ¼ expð�ðt � sÞð1� �b� X2
1ÞÞ:

Local LED closure

For the problem under consideration, equations (56)

and (57) with J 	 ~J yield analytical expressions for the

drift velocity V and diffusion coefficient D,

VðX; tÞ �
0

0

� �
; ð34aÞ

DðX; tÞ,
Z t

0

~Jðs;X; tÞhv0ðX; tÞv0>ðUðs;X; tÞ; sÞi d s

¼ D3ðX1; tÞ
0 0

0 1

� �
;

ð34bÞ

where

D3ðX1; tÞ ¼
Z t

0

~Jðs;X; tÞCnðt; sÞ d s: ð34cÞ

The integral in (34c) is computed analytically. The PDF

equation (58) for the joint density fxðX; tÞ simplifies to

ofx
ot

þrX � X1 � X3
1=3� X2 þ I

�ðX1 þ a� bX2Þ

� �
fx

� �
¼ D3

o2fx
oX2

2

: ð35Þ

Semi-local LED closure

The semi-local closure (9) takes the form

hv0P0iðX; tÞ ¼ �
Z t

0

~Jðs;X; tÞCnðt; sÞ expððt

� sÞJðX; tÞÞ>
0 0

0 1

� �
rX fxðX; tÞ d s:

ð36Þ

The integrals in (36) are computed exactly with a symbolic

computation software Mathematica, giving rise to the

PDF equation

ofx
ot

þrX � X1 � X3
1=3� X2 þ I

�ðX1 þ a� bX2Þ

� �
fx

� �

¼ o

oX1

D4

ofx
oX2

� �
þ D5

o2fx
oX2

2

;

ð37Þ

where D4ðX1; tÞ and D5ðX1; tÞ are known functions whose

explicit expressions are omitted for brevity, and whose

graphical representation is provided in Fig. 7. (The X1-

dependence of these coefficients is insignificant, and

D4ð�; tÞ and D5ð�; tÞ are plotted for X1 ¼ 0.) Fig. 8 shows

Fig. 7 The coefficients of the

semi-local closure, D4 and D5,

and the data-driven closure, b̂3
and b̂4. For r ¼ 0:05 and

s ¼ 0:1, the optimization

algorithm sets b̂3 ¼ 0 while

D4 ¼ Oð10�7Þ, which is near

zero when compared with b̂4
and D5:

7 A neuron is considered to be in the excitable regime when starting

in the basin of attraction of a unique stable fixed point, a large

excursion, or spike, occurs in the phase space and then permanently

returns to the fixed point (Izhikevich 2007).
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temporal snapshots of the joint PDF fxðX; �Þ computed

with (37). The shape of this PDF reveals that the ensemble

mean hxðtÞi in and of itself does not accurately capture the

dynamics of (33).

Figure 9 depicts the temporal evolution of the KL

divergence DKLðfMCkfxÞ. It serves to ascertain the accu-

racy of the semi-local closure that underpins the PDF

equation (37). As expected, the accuracy increases as the

correlation length s decreases. As the noise amplitude r
decreases, the different choices for s become less impactful

as the errors are more tightly clustered. Although not

shown here, we found that, for all choices of r, the local

closure agrees with the semi-local closure within a KL

divergence of 10�4 for s ¼ 0:01. For s ¼ 0:1, the KL

divergence of the local closure is between 0.1 and 0.5 more

than that of the semi-local closure; and for s ¼ 5:0, it is up

to a full order of magnitude more than that of the semi-

local closure.

Data-driven closure

Guided by the results reported in ‘‘Data-driven closure’’

Section, we focus on constant coefficients b so that the

data-driven closure (10) gives rise to a hypothesis

rX � hv0P0i ¼ b1
ofx
oX1

þ ofx
oX2

� �
þ b2

o2fx
oX2

1

þ b3
o2fx

oX1oX2

þ b4
o2fx
oX2

2

:

ð38Þ

The sparse regression optimization (11) identifies

b̂1 ¼ b̂2 ¼ 0, so that the resulting PDF equation (4) mat-

ches the PDF equation (37) obtained with the semi-local

closure, with the constants b̂3 and b̂4 serving as empirical

representations of D4ðX1; tÞ and D5ðX1; tÞ, respectively.

The values of b̂3 and b̂4 are shown in Fig. 7 for two

combinations of r and s. These values slightly underesti-

mate the asymptotes of the semi-local diffusion coefficients

Fig. 8 Temporal snapshots of the joint PDF fxðX; tÞ of the random state variables x1ðtÞ and x2ðtÞ in the FHN model (33). The dynamics of fxðX; tÞ
is governed by the PDF equation (37), for r ¼ 0:2 and s ¼ 0:1:
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D4ð�; tÞ and D5ð�; tÞ due to ‘‘averaging out’’ of low levels of

diffusion at early times.

This discrepancy gives rise to the relatively small dif-

ference in predictions of fxðX; tÞ, as quantified by the KL

divergence DKLðfMCkfxÞ in Fig. 9. The semi-local closure

outperforms the data-driven closure, but just barely. The

close agreement between the PDF predictions based on

these two closures is remarkably robust, holding for all

choices of r and s considered. Although not shown here,

both closures are considerably more accurate than the local

closure for larger s, as discussed in ‘‘Semi-local LED

closure’’ Section.

The close agreement between predictions of the joint

PDF fxðX; tÞ based on the semi-local and data-driven

closures translates into the close agreement between pre-

dictions of the corresponding marginal PDFs fx1ðX1; tÞ and
fx2ðX2; tÞ (Fig. 10). The semi-local and data-driven closures

accurately capture all features of the Monte Carlo solution.

While capturing the coarse dynamics of the Monte Carlo

solution, the local closure is too diffusive to accurately

capture the dynamics with sharp peaks. Since the PDFs

associated with the semi-local and data-driven closures are

visually indistinguishable, we include them as the same

line-plot.

Finally, we note that an optimal solution b̂ðNtrMCÞ to the

sparse regression problem (11) needs NtrMC Monte Carlo

trials to stabilize for all choices of r and s. The accuracy of

Fig. 9 Temporal evolution of the KL divergence DKLðfMCkfxÞ between the yardstick Monte Carlo solution fMCðX; tÞ of (33) and the PDF

fxðX; tÞ computed, alternatively, via (37) and (4) with the data-driven closure (38)

Fig. 10 Snapshots (at times t ¼
20 and 65) of the marginal PDFs

fx1 ðX1; tÞ (left column) and

fx2 ðX2; tÞ (right column)

alternatively computed with the

local (L), semi-local (SL) and

data-driven (DD) closures and

with Monte Carlo simulations

(MC), for the stochastic FHN

neuron with r ¼ 0:05 and

s ¼ 0:1:
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the data-driven closure does not improve for

NtrMC[ 4� 104; hence, NtrMC ¼ 4� 104 was used in the

simulation results reported in Figs. 7, 8, 9, and 10. This

number is approximately 20% of the number of trials

needed to compute the Monte Carlo solution fMC (i.e.,

NMC 	 2� 105).

Mutual Information

Information transmission from a spiking neuron occurs via

spike trains, i.e., a sequence of action potentials. Observing

a spike train can be thought of as gaining information about

the sensory stimulus. Neuroscience regularly employs

information theory to formalize this notion on an absolute

scale so that quantifiable statements can be made about

information transmission rates of neurons (Rieke 1997).

Mutual information (MI) between two continuous random

variables xi and xj is given in terms of the KL divergence of

their joint PDF, fxixjðXi;XjÞ, and the product of their mar-

ginals, fxiðXiÞ and fxjðXjÞ:

Iðxi; xjÞ,
Z Z

fxixjðXi;Xj; tÞ ln
fxixjðXi;Xj; tÞ

fxiðXi; tÞfxjðXj; tÞ

� �
d Xi d Xj

¼ DKLðfxixj jjfxi � fxjÞ;

it is symmetric and nonnegative (Mackay 2003). While

either of the semi-local and data-driven PDF solutions from

‘‘Semi-local LED closure’’ and ‘‘Data-driven closure’’

Sections can be used to calculate MI between the mem-

brane potential x1 and the recovery variable x2 in the FHN

neuron, the dynamical system (33) must be modified in

order to calculate MI between x1 and the noise source n.

Letting fðtÞ ¼ r cos
ffiffiffiffiffiffiffiffi
2=s

p
Wt

� �
, it follows via Itô’s for-

mula (Øksendal 2003, Theorem 4.1.2) that n and f satisfy

the Itô SDEs

d nt ¼� 1

s
nt d t þ

ffiffiffi
2

s

r
ft d Wt; nð0Þ ¼ 0;

d ft ¼� 1

s
ft d t �

ffiffiffi
2

s

r
nt d Wt; fð0Þ ¼ 0:

ð39Þ

Adding these two SDEs to (33) yields an exact four-di-

mensional Fokker-Planck equation. For any fixed time t, its

solution is a joint PDF fx1x2nfðX1;X2;N; Z; tÞ for the random
processes x1ðtÞ, x2ðtÞ, nðtÞ, and fðtÞ. Then, the instanta-

neous (point-wise in time) MI between the noise source

and the membrane potential is found by calculating (via

numerical quadrature) the joint PDF fx1nðX1;N; tÞ and the

marginal PDFs fx1ðX1; tÞ and fnðN; tÞ. This process involves
solving a high-dimensional PDE and then numerically

integrating out phase variables, which can be computa-

tionally expensive. In the spirit of the data-driven PDF

method, a better approach is to directly learn reduced-order

equations for the PDF(s) of interest (e.g., fx1nðX1;N; tÞ)
from data. Such an approach is presented in Brennan and

Venturi (2018) for ODEs with random initial conditions,

but can easily be generalized for SDEs driven by standard

Wiener processes.

Figure 12 displays the temporal evolution of MI

between the various FHN states (including noise) for r ¼
0:05 and s ¼ 0:1. The MI initially increases in all cases:

when the system begins to evolve, a portion of the joint

PDF enters into a pseudo period due to the probability of a

spike, and more information is gained about the coupling

of states. However, there is a stark contrast in the evolution

of Iðx1; x2Þ when compared to Iðx1; nÞ and Iðx2; nÞ. The MI

Iðx1; x2Þ oscillates according to the pseudo-periodic

behavior of the joint PDF (Fig. 8), i.e., the neuron’s spikes.

The MI between the membrane potential x1ðtÞ and the

recovery variable (inhibitory response) x2ðtÞ is gained as

the neuron spikes, but decreases as the neuron returns to the

vicinity of its resting state, as one would expect (Rieke

1997). Unlike Iðx1; x2Þ, both Iðx1; nÞ and Iðx2; nÞ are nearly
constant in time after a slight initial increase. Hence, apart

Fig. 11 Dependence of the KL divergence DKLðfMCkfxÞ, averaged over all temporal grid nodes, on the number of Monte Carlo runs used in the

sparse regression, NtrMC:
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from the first spike, observing the membrane potential/re-

covery variable for a fixed time does not provide any more

or less information about the noise source than any of the

other temporal observations. The converse is also true since

MI is symmetric. This behavior is attributed to the fact that

the SDE for nðtÞ is independent from the states x1ðtÞ and

x2ðtÞ. The noise n can change the dynamics of x1 and x2 by

perturbing the neuron from rest and causing it to fire;

however, x1 and x2 have no effect on how the noise is

generated.

While MI is limited to measuring information transfer

between two states/variables, its many generalizations

allow one to do the same for N-many variables x1; . . .; xN .

One such generalization is total correlation (Vejnarová

1999; Watanbe 1960). Like MI, it is defined in terms of the

KL divergence of the variables’ joint PDF, fx1...xn , and the

product of their marginals. Their total correlation is defined

as

Cðx1; . . .; xNÞ ¼ DKLðfx1...xN jjfx1 � . . .� fxN Þ:

Figure 12 shows the total correlation between x1, x2, and n
for the FHN neuron as an example of another information-

theoretic quantity that can be calculated via the PDF

method.

Remark 4.2 The PDF method in ‘‘Method of distribu-

tions’’ Section can be generalized to derive an equation for

a joint PDF of system states at multiple times. This enables

the calculation of information transfer rates between states

at different times, as opposed to the instantaneous infor-

mation transmission. For example, instead of calculating

total correlation between the FHN states x1 and x2 and the

noise source n at any time t, one can compute the total

correlation between these states at any two times t1 and t2.

This would lead to the doubling of the number of dimen-

sions in the PDF equation from three to six, and require

deployment of numerical strategies for solutions of high-

dimensional PDEs such as tensor-train methods (Boelens

et al. 2018).

Remark 4.3 Apart from computing information-theoretic

metrics, the PDF method can be used to calculate PDFs for

first exit/spike times and interspike-intervals. For example,

the FHN neuron spikes (almost surely) when its path

crosses the line X1 ¼ 0 (Yamakou et al. 2019). Defining

the first exit/spike time to be s1 ¼ inffs[ 0 : x1ðsÞ ¼ 0g,
its distribution can be calculated in terms of the cumulative

distribution function (CDF) FxðX1;X2; tÞ. When studying

first spiking times, it is common to consider deterministic

initial conditions in (1). This setting corresponds to the

initial condition for the PDF equation (4) being the Dirac

delta function, which introduces significant numerical

challenges [56]. This can be circumvented by deploying the

CDF method (see Tartakovsky and Gremaud 2015 and the

references therein). It would result in a PDE for the CDF of

system states, for which the deterministic initial condition

in (1) translates into the Heaviside function as the initial

CDF.

Conclusions

Nonlinear dynamical systems provide a rich framework for

understanding complex neuronal processes. Their stochas-

tic analogues allow one to study the effects of externally

imposed and/or internally generated noise on neuronal

dynamics. They can also be used to quantify parametric

uncertainty in underlying models. Noise sources in ODE-

based neuron models are often treated as Gaussian white

noise due to its convenient mathematical properties, one

being that the joint PDF of system states satisfies exactly

the Fokker-Planck equation. However, Gaussian white

noise is not a biologically plausible noise source for many

neuronal systems, for which colored noise characterized by

a short correlation length is a more realistic representation.

Monte Carlo methods are often employed to calculate

PDF solutions of stochastic and random ODEs, as well as

information-theoretic quantities and distributions of vari-

ous spiking statistics. They are easily implementable, yet

computationally demanding. Efficient methods for general

Langevin-type systems with colored noise have been

studied extensively; however, most are not appropriate for

neuron models. Methods utilizing only the first few

moments of system states typically underperform because

low-order moments can spend considerable time in a low

probability state, as illustrated in Fig. 8 by the ensemble

mean. Additionally, many methods that do characterize a

full PDF solution, such as polynomial chaos expansions

and stochastic finite elements, suffer from the curse of

dimensionality when applied to systems with short

Fig. 12 Temporal evolution of MI, I, between the different FHN

neuron states and of the total correlation, C, between all three states.

The PDF equation (4) is closed with the data-driven closure, and the

parameter values are set to r ¼ 0:05 and s ¼ 0:01:
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correlation lengths. The method of distributions, comprised

of PDF and CDF methods, is the exception; this study

utilizes the former to discover Fokker-Planck-type equa-

tions for stochastic neuron models. Such equations describe

PDF dynamics of neuronal states, and in general, the states

of general Langevin-type systems. While the PDF equa-

tions resulting from the method of distributions are exact

for ODEs driven by white noise (i.e., SDEs), they are

generally unclosed and require approximations in the

presence of colored noise. We proposed two approaches for

constructing such closures: nonlocal large eddy diffusivity

(LED) closures and a data-driven closure relying on sta-

tistical inference; we apply each to study the stochastic NS-

LIF and FHN neurons.

Fully nonlocal LED closures result in derived integro-

partial differential PDF equations that are difficult to dis-

cretize numerically and computationally demanding to

solve unless the underlying RODEs exhibit weak nonlin-

earities and are low-dimensional, e.g., the NS-LIF model.

For more complicated models, e.g., the FHN neuron,

localization approximations are needed to render the PDF

equation numerically computable. Full localization yields

‘‘easy-to-solve’’ linear partial-differential PDF equations,

but introduces significant approximation error unless the

noise intensity and correlation length are small. Partial

(semi-) localization provides an attractive trade-off

between accuracy and computational complexity; however,

this is likely to be problem dependent. Regardless, LED

closures reduce the computational cost by several orders of

magnitude when compared to the standard Monte Carlo

approach, with the local and semi-local LED closures being

more efficient than the nonlocal one.

Unlike LED closures, the proposed data-driven closure

needs only a few Monte Carlo trials and kernel density

estimation to learn terms in the PDF equation from a dic-

tionary of possible differentiable operators. The relevant

derivative features and their coefficients are found by for-

mulating an optimization problem via sparse regression,

i.e., Lasso. If the number of equations in a neuron model is

greater than one, the dimensionality of the regression

problem is inherently high when considering arbitrary

variable coefficients. It can be significantly reduced by

approximating the coefficients with a polynomial basis

expansion, which is sufficiently accurate for the models

considered in this study. While more computationally

expensive than the local and semi-local LED closures, the

data-driven closure is easier to implement and still less

expensive than the standard Monte Carlo approach. Its

accuracy is comparable to the semi-local LED closure.

The method of distributions is a computationally effi-

cient approach for finding PDF solutions to stochastic

neuron models driven by colored noise. Post-processing of

these solutions yields distributions of spiking statistics or

information-theoretic quantities such as mutual informa-

tion. For simple models, e.g., the NS-LIF neuron, all of the

proposed closures yield consistent results and remain

accurate over a wide range of noise intensities and corre-

lation lengths. For models with more complicated

dynamics, e.g., the FHN model and other two- or three-

dimensional models such as Morris-Lecar, the semi-local

LED and data-driven closures are likely to be in agreement

and maintain good accuracy as long as rs, the product of

the noise intensity and correlation length, is not very large

relative to the system’s scale. For high-dimensional mod-

els, such as Hodgkin-Huxley (HH), the numerical dis-

cretization of PDF equations resulting from LED closures

may be difficult, and the data-driven closure is likely to

give better results.

In a follow-up study, we will investigate both the HH

neuron as well systems of coupled neurons, all driven by

colored noise. In the latter case, we aim to use the method

of distributions to determine how model complexity (i.e.,

using LIF versus FHN versus HH neurons, etc.) affects

information content and transmission in networks of neu-

rons. Such a study will require deployment of numerical

strategies for solutions of high-dimensional PDEs such as

tensor-train methods (Boelens et al. 2018; Dektor et al.

2021; Rodgers et al. 2021).

Appendix 1. Derivation of PDF Equations

Appendix 1.1. Regularization Argument

Let us define P�ðX; tÞ, a regularized version of PðX; tÞ
in (2), as

P�ðX; tÞ,ðg�HPÞðX; tÞ,
Z

RN
g�ðX� YÞPðY; tÞ d Y

¼ g�ðX� xÞ;
ð40Þ

where the last equality holds by the definition of PðY; tÞ
and the sifting property of the Dirac distribution. The

standard positive mollifier g� 2 C1
0 ðRNÞ satisfies the con-

ditions of symmetry, g�ðX� xÞ ¼ g�ðx� XÞ, and scaling

g�ðYÞ,
��N

R
g d Y

g
Y

�

� �
; where gðYÞ

,
exp

1

jYj2 � 1

 !
if jYj\1

0 if jYj � 1:

8
><

>:

ð41Þ

Following the arguments from Evans (2010), one can show

that P� is a smooth approximation of P. Let

/ðX; tÞ 2 C1
cðRN � ½0;1ÞÞ. It follows from (40) that
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I,
Z 1

0

Z

RN
P�ðX; tÞ

o/
ot

ðX; tÞ d X d t

¼
Z 1

0

Z

RN
g�ðX� xÞ o/

ot
ðX; tÞ d X d t:

ð42Þ

Integrating by parts in t and applying the sifting property

gives

I ¼
Z 1

0

Z

RN

_g�ðX� xÞvðx; t;xÞ/ðX; tÞ d X d t

�
Z

RN
g�ðX� x0Þ/ðX; 0Þ d X;

¼
Z 1

0

Z

RN

Z

RN

_g�ðX� YÞvðY; t;xÞPðY; tÞ/ðX; tÞ

d Y d X d t

�
Z

RN
P�ðX; 0Þ/ðX; 0Þ d X;

where _g�ð�Þ is the derivative of g�ð�Þ. According to the

Gauss-Ostrogradsky theorem in X,

I ¼ �
Z 1

0

Z

RN
ðg�HvPÞðX; tÞrX/ðX; tÞ d X d t

�
Z

RN
P�ðX; 0Þ/ðX; 0Þ d X:

ð43Þ

It follows from (43) and (42) that, for any

/ 2 C1
cðRN � ½0;1ÞÞ,

Z 1

0

Z

RN
P�

o/
ot

d X d t þ
Z 1

0

Z

RN
ðg�HvPÞrX/ d X d t

þ
Z

RN
P�ðX; 0Þ/ðX; 0Þ d X ¼ 0:

By standard arguments, taking the limit � ! 0 gives
Z 1

0

Z

RN
P
o/
ot

d X d t þ
Z 1

0

Z

RN
ðvPÞrX/ d X d t

þ
Z

RN
PðX; 0Þ/ðX; 0Þ d X d t ¼ 0;

ð44Þ

Hence, P is the distributional solution to (3).

Appendix 1.2. LED closure derivation

Let L denote the linear operator

LP,
oP
ot

þrX � ðhviPÞ

together with the initial and boundary conditions

PðX; 0Þ ¼ dðx0 � XÞ and lim
jXj!1

PðX; tÞ ¼ 0: ð45Þ

Let L̂ denote the adjoint of L, i.e.,

L̂W,� oW
os

� hvi � rYW

with vanishing boundary condition at infinity and vanishing

terminal condition WðY; tÞ ¼ 0. Finally, let G �
GðX; t;Y; sÞ be the Green’s function of L̂; it is defined as a

solution of

L̂G ¼ dðX� YÞdðt � sÞ; ð46Þ

with vanishing boundary condition at infinity and terminal

condition GðX; t;Y; tÞ ¼ 0. We use the method of charac-

teristics to compute this Green’s function. The character-

istics of (46), u � uðrÞ with s� r� t, satisfy

d u

d r
¼ hvðu; rÞi; r 2 ðs; tÞ; ð47Þ

subject to the initial condition

uðsÞ ¼ Y: ð48Þ

It induces the associated flow U as uðrÞ � Uðr;Y; sÞ.
Along these characteristics, (46) reduces to

d

d r
GðX; t;u; rÞ ¼ �dðt � rÞdðX� uÞ; r 2 ðs; tÞ;

with GðX; t;Uðt;Y; sÞ; tÞ ¼ 0. Its solution gives the

Green’s function,

GðX; t;Y; sÞ ¼ Hðt � sÞ dðX�Uðt;Y; sÞÞ; ð49Þ

where H is the Heaviside function.

Elementary manipulations lead to the equation for P0,

LP0 ¼ �rX � ðv0P� hv0P0iÞ; ð50Þ

with homogeneous initial conditions and vanishing

boundary conditions. Rewriting (50) in terms of Y and s,

multiplying by GðX; t;Y; sÞ, and integrating by parts, we

obtain
Z t

0

Z

RN
GLP0 d Y d s ¼ �

Z

RN
GðX; t;Y; 0ÞP0ðY; 0Þ d Y

þ
Z t

0

Z

RN
P0L̂G d Y d s;

where the additional boundary terms cancel because of the

terminal condition on G and the vanishing boundary con-

dition (45) at infinity. Accounting for (46) and (50),
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P0ðX; tÞ ¼
Z

RN
GðX; t;Y; 0ÞP0ðY; 0Þ d Y

þ
Z t

0

Z

RN
GðX; t;Y; sÞrY

�
�
hv0ðY; sÞP0ðY; sÞi � v0ðY; sÞPðY; sÞ

�
d Y d s:

The first integral vanishes if the initial condition on x0 is

deterministic. An exact, albeit unclosed, equation for the

stochastic flux hv0P0i is obtained by multiplying the pre-

vious relation with v0ðX; tÞ and taking the ensemble mean,

hv0P0iðX; tÞ ¼
Z

RN
GðX; t;Y; 0Þhv0ðX; tÞP0ðY; 0Þi d Y

�
Z t

0

Z

RN
GðX; t;Y; sÞrY

� hv0ðX; tÞv0>ðY; sÞPðY; sÞi d Y d s:

The LED closure is constructed by setting the first integral

to zero, resulting in a second-order (in rs)
computable relationship

hv0P0iðX; tÞ 	 �
Z t

0

Z

RN
GðX; t;Y; sÞrY

�
�
hv0ðX; tÞv0>ðY; sÞifyðY; sÞ

�
d Y d s:

ð51Þ

Substituting G from (49) and setting

qðX;Y; t; sÞ,rY �
�
hv0ðX; tÞv0>ðY; sÞifyðY; sÞ

�
;

we obtain

hv0P0iðX; tÞ

	 �
Z t

0

Z

RN
dðX�Uðt;Y; sÞÞ qðX;Y; t; sÞ d Y d s

	 �
Z t

0

Z

RN
dðX� uÞ qðX;Uðs;u; tÞ; t; sÞ oUðs;u; tÞ

ou



 d u d s:

The Jacobian determinant in this expression is made

explicit by invoking the Liouville-Ostrogradsky lemma. It

is reproduced and proved below because we were not able

to find an appropriate reference.

Lemma 1 (Liouville-Ostrogradsky). Consider an initial

value problem

d v

d s
¼ gðv; sÞ; vðtÞ ¼ n; ð52Þ

where g : RN � R ! RN is a given deterministic function,

and n is a possibly random initial condition. Both g and n

are such that, for any realization of n, the above system

admits a unique solution for the range of time under

consideration. Then, if U is the corresponding flow, i.e.,

vðsÞ � Uðs; n; tÞ, we have

oUðs; n; tÞ
on



 ¼ exp �
Z t

s

rv � gðvðrÞ; rÞ d r

� �
:

Proof Following the arguments of ‘‘Method of distribu-

tions’’ Section, we show that f, the PDF of v, satisfies

of

ot
þrv � ðgf Þ ¼ 0:

By construction, the restriction of f on characteristic

curves, PðsÞ ¼ f ðvðsÞ; sÞ, satisfies
d P
d s

¼ �Prv � g:

Hence,

PðsÞ ¼ PðtÞ exp �
Z s

t

rv � gðvðrÞ; rÞ d r

� �
:

On the other hand, treating the flow U as a one-to-one

change of variables,

PðsÞ ¼ oU�1

ov



PðtÞ:

Combining these two expressions, and taking the inverse

completes the proof. h

We apply the Liouville-Ostrogradsky lemma to v and U
defined, respectively, as the solution of and the flow cor-

responding to (52) with gðv; sÞ ¼ hvðv; sÞi and n ¼ X. This

yields

hv0P0iðX; tÞ 	 �
Z t

0

Jðs;X; tÞrU

�
�
hv0ðX; tÞv0>ðUðs;X; tÞ; sÞifxðUðs;X; tÞ; sÞ

�
d s;

ð53Þ

where

Jðs;X; tÞ ¼ exp �
Z t

s

rv � hvðvðrÞ; rÞi d r

� �
: ð54Þ

Substituting (53) into (4) gives an integro-differential

equation for fx. Its numerical solution poses significant

challenges as the resulting problem is local neither in time

nor in space.

The localization inherent in the classical LED theory

(Kraichnan 1987) assumes that fx and its spatial derivatives

are approximately constant over the correlation-length

interval ðt � s; tÞ. This gives rise to approximations

fxðUðs;X; tÞ; sÞ 	 fxðX; tÞ and rUfxðUðs;X; tÞ; sÞ 	
rXfxðX; tÞ, so that
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hv0P0iðX; tÞ 	 VðX; tÞfxðX; tÞ �DðX; tÞrX fxðX; tÞ;
ð55Þ

where V and D are the LED drift velocity vector and

diffusion tensor,

VðX; tÞ,�
Z t

0

Jðs;X; tÞhv0ðX; tÞrU � v0>ðUðs;X; tÞ; sÞi d s;

ð56Þ

DðX; tÞ,
Z t

0

Jðs;X; tÞhv0ðX; tÞv0>ðUðs;X; tÞ; sÞi d s:

ð57Þ

Substituting (55)–(57) into (4) results in the classical LED

equation for the joint PDF fx:

ofx
ot

þrX �
�
ðhvi þVÞfx

�
¼ rX � ðDrX fxÞ: ð58Þ

The shortcomings of the above LED closure—most

importantly, its limited validity to short correlation

lengths—are investigated in Barajas-Solano and Tar-

takovsky (2016); Maltba et al. (2018); Ye et al. (2004),

among many other studies.

Appendix 1.3 Semi-local LED closure

This closure is based on the mean-field advection problem

ofx
os

þrX � ð\v[ fxÞ ¼ 0; s\t ð59Þ

and is equivalent to

fxðUðs;X; tÞ; sÞ ¼ J�1ðs;X; tÞfxðX; tÞ: ð60Þ

Equation (60) gives a local approximation for fx; substi-

tuting it into (53) yields the semi-local closure

hv0P0iðX; tÞ 	 �
Z t

0

Jðs;X; tÞrU

�
�
hv0ðX; tÞv0>ðUðs;X; tÞ; sÞiJ�1ðs;X; tÞfxðX; tÞ

�
d s:

ð61Þ

The PDF fx in (61) has been localized from ðUðs;X; tÞ; sÞ
to ðX; tÞ, but the operator rU� has not. We now approxi-

mate rU in terms of rX,

rX ¼ W>rU with Wij,
oUi

oXj
ðs;X; tÞ: ð62Þ

Elementary calculus shows that the transpose of the sen-

sitivity matrix of the flow, Wðs;X; tÞ, satisfies
d W
d s

¼ JW; Wðt;X; tÞ ¼ I;

where JðY; sÞ,ohvðY; sÞi=oY is the Jacobian of the mean-

field velocity, and I is the N � N identity matrix. Conse-

quently, W can be expressed as

Wðs;X; tÞ ¼ OE½J�ðsÞ

,Iþ
Z s

t

JðUðs1;X; tÞ; s1Þ d s1

þ
Z s

t

Z s1

t

JðUðs1;X; tÞ; s1ÞJðUðs2;X; tÞ; s2Þ d s1 d s2 þ . . .;

where OE is the ordered exponential. Using the approxi-

mation JðUðs;X; tÞ; sÞ 	 JðX; tÞ, the ordered exponential

simplifies to the matrix exponential. Hence, we obtain

W 	 expððs� tÞJðX; tÞÞ;

and, accounting for (62),

rU 	 expððt � sÞJðX; tÞÞ>rX: ð63Þ

Substituting (63) into (61), we obtain the approximate

semi-local closure (8).
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