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a b s t r a c t

Mathematical models of in-host viral dynamics and immune response are a vital
tool for patient-specific estimation of the initial viral load, prediction of the
course of an infection, etc. The COVID-19 pandemics has given impetus to
the development of models with an ever-increasing degree of complexity. We
show that one of the most popular models—the Target Cell Limited model—
fails the identifiability test, i.e., its parameters cannot be uniquely inferred from
readily available data such as viral load measurements. We present a model
that is both identifiable and parsimonious according to information criteria. Our
model’s predictions match both reported observations of COVID-19 patients and
predictions of its more complex counterparts.

© 2023 Elsevier Ltd. All rights reserved.

1. Introduction

Like any mathematical conceptualization, models of the in-host SARS-CoV-2 virus dynamics and immune
response involve system parameters. More often than not, these are not directly measurable and have to be
inferred from observations of the system states; the ability to do so distinguishes identifiable models from
unidentifiable ones [1]. While there are many such models developed at the epidemiological level [2–6], in-
host models of the SARS-CoV-2 virus dynamics and immune response to infection in humans are relatively
scarce [7–9]. This is partly due to several challenges in collecting and analyzing the observational data.
To begin with, very few patients have long enough serial data points for a complete period including virus
invasion and immune response. Observational studies [10,11] show that the peak viral load occurs in the early
phase of illness, which is difficulty to capture because it is close to the time of symptom onset. The time to
viral clearance also varies from weeks to months [12,13]. Moreover, the viral load dynamics exhibit various
patterns depending on the disease severity [14,15] and patient’s characteristics [16–18] such as gender, age,
obesity, chronic diseases, mortality, etc.

∗ Corresponding author.
E-mail address: tartakovsky@stanford.edu (D.M. Tartakovsky).
ttps://doi.org/10.1016/j.aml.2023.108781
893-9659/© 2023 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.aml.2023.108781
https://www.elsevier.com/locate/aml
http://www.elsevier.com/locate/aml
http://crossmark.crossref.org/dialog/?doi=10.1016/j.aml.2023.108781&domain=pdf
mailto:tartakovsky@stanford.edu
https://doi.org/10.1016/j.aml.2023.108781


H. Lu, F. Giannino and D.M. Tartakovsky Applied Mathematics Letters 145 (2023) 108781

o
b
(

T
s
r
t
i
s
k
i

2

a
m

I
c
v
t
t
v

2. Mathematical models

We start by describing in Section 2.1 a model of in-host viral dynamics and immune response, which was
recently promulgated in connection with the COVID-19 epidemics [7–9]. Our model, proposed in Section 2.2,
is inspired by Marchuk’s model [19].

2.1. Target cell limited (TCL) model with immune response

In addition to target cells (T ), infected cells (I) and free virus (V ), this model accounts for interferon
r IFN (with concentration F ) and uninfected cells (with concentration R) that are refractory to infections
ecause of IFN-induced antiviral effect. This gives rise to a system of five ordinary differential equations
ODEs), ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dT

dt
= −βV T − ϕFT + ρR

dI

dt
= βV T − δI − κIF

dR

dt
= ϕFT − ρR

dV

dt
= pI − cV

dF

dt
= qI − dF.

(1)

he rate at which the uninfected cells become refractory to infection is ϕFT , while the cells in the refractory
tate revert to the susceptible state at rate ρ. Prior to the emergence of the virus-specific adaptive immune
esponse, the death rate of the infected cells is constant, δ0. After the adaptive immune response emerges,
he death rate increases with time as described by the time-dependent coefficient δ(t) = δ0eσ(t−µ); here, µ

s the time at which the adaptive immune response emerges, and σ determines how fast it saturates. To be
pecific, δ0 is assumed to be 1. The mass action term κIF represents the clearance of infected cells by natural
iller cells, which are activated by IFN and are proportional to the level of IFN. Finally, IFN is secreted by
nfected cells at rate q and decays at rate d.

.2. Proposed model

Driven by the principle of parsimony, we formulate a relatively simple mathematical model that is as
ccurate in representing the in-host dynamics of SARS-CoV-2 infection as its recent counterparts. Our
odel, a modification of the venerable Marchuk model for infectious disease [19], consists of three ODEs,⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dV

dt
= βV − γAV,

dC

dt
= αAV − µC(C − C∗),

dA

dt
= ρC − ηγAV − µAA.

(2)

t describes the temporal evolution of viral load V (t), plasma cell concentration C(t), and antibody
oncentration A(t). The dynamics is controlled by the virus multiplication coefficient β; the probability for a
irus to be neutralized after encountering the antibodies, expressed by the coefficient γ; the plasma cell life
ime, 1/µC ; the decay time of antibodies, 1/µA; the normal level of plasma cells in a healthy organism, C∗;
he rate of antibodies production by one plasma cell, ρ; the number antibodies required to neutralize one
irus, η; and the probability of virus-antibody collision reflected in the coefficient α(t) = α exp(σ t2 + σ t).
0 0 1
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Our model employs the simplest hypothesis on the formation of cascade populations of plasma cells [19, Sec.
2.1], such that the plasma cell growth is proportional to AV . The time-dependence of α mimics the delayed
unction due to plasma cell formation lag in the original Marchuk model. The last ODE in (2) represents

balance of the number of antibodies reacting with virus, such that the terms ηγAV and µAA represent
he consumption of antibodies in virus elimination and the drop in the antibodies population due to their
ging, respectively.

. Experimental data

We analyze data from eight patients who were part of a larger cohort of epidemiologically linked cases
i.e., infected from a known close contact to an index case), which occurred after January 23, 2020 in
unich [20]. All the patients were treated in a single hospital after initial diagnostic testing and all virological

ests were repeated daily after admission by the same standards for PCR with reverse transcription (RT-
CR). The clinical characteristics of the patients—all of whom were young-to-middle-aged professionals
ithout notable underlying diseases—showed comparatively mild symptoms. The viral load measured in
NA copies per ml from the specimens of sputum in the dataset [20] provides more informative virus kinetics

han the specimens of throat swab and stool during the observation period—with higher detection rates, a
elayed peak, and slower decline.

These clinical observations show that the sputum viral loads present a late second peak around 10 days
fter the first peak in several patients who exhibited some signs of lung infection, indicating one important
eature of the viral dynamics [20]. Therefore, the viral RNA concentrations in sputum are used for parameter
tting in all the mathematical models considered.

. Model comparison

A major challenge in virus dynamics modeling, and the one that eludes the TCL model, is to capture
he bimodal viral load peaks, which appear in most COVID-19 patients in the dataset [20] and in other
nfectious diseases [21–24]. The model in (1), which adds the effect of IFN and the refractory cells to the
CL model, can generate a viral plateau/second peak. Consequently, it satisfactorily fits the experimental
ata from ponies infected with H3N8 in [21]. Thus, we compare our model (2) with the reference model (1)
n the same dataset [20] from the following two perspectives.

.1. Parameter identification

We estimate the model parameters in (2) and the initial viral load V (0) by fitting the model prediction
o the viral load data from [20]. Our model deals with the combined population of immunocompetent and
ntibody-producing cells, whose concentration is C(t). If an organism had no information about a given
ntigen and therefore had no immunocompetent cells to fight it, then C(0) = 0. In that case, a more evolved
athematical model would be needed to initiate the cascade of reactions, which involve immunocompetent

ells with specific receptors capable of provoking an immune response to the antigen. For simplicity, we
mit the starting mechanism and assume that an organism has a nonzero normal level of plasma cells
(0) = C∗ > 0 and nonzero antibody A(0) = 0.1 at the beginning of the infection. Moreover, for fitting
urposes, we replace C(t) in (2) with its scaled counterpart C̃(t) = C(t)/C∗ for which C̃∗ = 1. Following [19]
nd others, we set ρ = 4µA, i.e., assume the ratio of production rate and natural death rate of the antibodies
o be fixed. Similar assumptions are often used to analyze the characteristics of the immune response

e.g., [25]); experimental measurements can be designed to estimate this ratio (e.g., [26–28]).

3
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(

The eight model parameters (plus one initial condition) in our model (2), and the ten parameters (plus
one initial condition) in the competing model (1), are obtained via a maximum likelihood estimator, i.e., by
minimizing the root mean square error, RMS = [N−1 ∑N

i=1(ln vi − ln Vi)2]1/2, between the measurements
vi) and model predictions (Vi) of the viral load in an individual patient, The subscript i refers to the ith

day after the patient’s admission, with N denoting the total number of observations/days. This nonlinear
minimization problem admits multiple minima; it is solved with the Matlab nonlinear least-squares solver
lsqnonlin.

The issue of identifiability is an important factor in model selection. A mathematical model is identifiable
if its parameters can be uniquely determined from the measurable output data; otherwise, the system
is unidentifiable [1]. Identifiability guarantees a unique and precise interpretation of the parameters and
unmeasured variables. Therefore, an identifiable model is superior to its unidentifiable counterpart, even if
the former contains more parameters than the latter. We conduct the identifiability analysis for our model (2)
and the competing model (1) in the following Theorem 1 and Theorem 2, respectively.

Theorem 1. With the assumptions ρ = 4µA and the regularity of V (t), all the model parameters in (2)
are identifiable from measurements of the viral load V (t) only, provided the minimum of 9 observations are
available.

Proof. The following proof employs the implicit function method [1] to investigate the identifiability of (2).
Using the prime to indicate the derivative, we recast the third ODE in (2) as

C = 1
ρ

(A′ + µAA + ηγAV ) and C ′ = 1
ρ

(A′′ + µAA′ + ηγ(AV )′). (3)

Substitution of (3) into the second ODE in (2) yields

A′′ = −µAA′ − ηγ(AV )′ + αρAV − µCA′ − µCµAA − µCηγAV + µCρ. (4)

The first ODE in (2) gives rise to

A = β

γ
− 1

γ

V ′

V
, A′ = − 1

γ

(
V ′

V

)′

, A′′ = − 1
γ

(
V ′

V

)′′

. (5)

Substituting (5) into (4), we obtain(
V ′

V

)′′

+ (µA + µC)
(

V ′

V

)′

+ µCµA

(
V ′

V

)′

+ ηγV ′′

+ (µCηγ − βηγ − αρ)V ′ + (αρβ − µCηγβ)V + (µCγρ − µCµAβ) = 0.

(6)

Let us denote Θ = (θ1, . . . , θ6)⊤, where θ1 = µA + µC , θ2 = µAµC , θ3 = ηγ, θ4 = µCηγ − βηγ − αρ,
θ5 = αρβ − µCηγβ, and θ6 = µCγρ − µCµAβ. Then, the higher-order (i ≥ 3) derivatives from (6) are(

V ′

V

)(i)
+ θ1

(
V ′

V

)(i−1)
+ θ2

(
V ′

V

)(i−2)
+ θ3V (i) + θ4V (i−1) + θ5V (i−2) + θ6 = 0. (7)

The parameters Θ are computed from any persistently exciting trajectory V (t) such that

rank =

⎡⎢⎢⎢⎢⎣
(V ′/V )(1)

V ′/V V (2) V (1) V 1
(V ′/V )(2) (V ′/V )(1)

V (3) V (2) V (1) 0
...

...
...

...
...

...
′ (6) ′ (5) (7) (6) (5)

⎤⎥⎥⎥⎥⎦ = 6. (8)
(V /V ) (V /V ) V V V 0
4
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Therefore, µC and µA are computed from θ1 and θ2 directly and β is solved using θ3, θ4 and θ5 afterwards.
hen, the parameters γ, η, α, ρ are identified in terms of the measurements and one remaining parameter.
ith the assumption ρ = 4µA, all parameters are identified. The minimum number of required measurements

of V is 9 since up to the 8th derivative of V is involved. □

Theorem 2. All model parameters in (1) are not identifiable from measurements of the viral load V (t),
egardless of how many observations are available.

roof. Denote the parameter set of the reference model (1) by Θ . According to the implicit function
ethod [1], one cannot find a function Φ such that Φ(Θ , V, V (1), . . . , V (k)) = 0 for any integer k. An example

is presented in Fig. 1: for Θ ̸= Θ̃ , the solutions share the same trajectories of V (t). □

Remark 1. Following the same implicit function method, we show that all parameters in the reference
model (1) are identifiable if both viral load and IFN measurements are available. At least 4 measurements
of V and 5 measurements of F are required. This verifies that parameter identification for the reference
model can provide a meaningful interpretation if both V and F can be measured, as in [21].

4.2. Model selection criteria

We compare the performance of the two alternative models of immune response in terms of the modified
Akaike information criterion (AIC) [29], AIC = 2M + N ln(RMS)2 + 2M(M + 1)/(N − M − 1). Here, M

is the number of fitting parameters in a given model, and RMS is the residual calculated during the fitting
process. The principle of parsimony implies that the model with a lower AIC value fits the data better
from a statistical viewpoint. Comparison between the models in (1) and (2) is performed individually for all
patients, resulting in the AIC values reported in Table 1. A simpler model, i.e., a model with fewer variables
and parameters, has a lower AIC and is preferable to a more complex model, provided their RMS errors are
comparable.

5. Results

Our model (2) outperforms the reference model (1) in its ability to reproduce the viral load data for
all patients. First, it has much lower AIC values, although the reference model has slightly smaller RMS
errors in most cases (reported in Table 1). Second and more important, our model is identifiable while the
reference model is not. We prove in Theorem 1 that all parameters in our model are identifiable from 9 or
more measurements of the viral load. On the contrary, the reference model is unidentifiable regardless of
how many viral load measurements are available (see Theorem 2). It can only be identified from other data
types, e.g., from at least 4 measurements of the viral load and 5 measurements of the IFN or from prior
information about a portion of the parameter set. While one can estimate the parameters in the reference
model by minimizing the RMS, the results are nonunique and highly sensitive to the initial guess. This
lack of identifiability means that two different sets of parameters give the same model predictions (Fig. 1).
This introduces significant uncertainty in some parameters and unmeasured variables, and undermines the
predictive power of the reference model. As a result, the reference model, though fitting data accurately in
the sense of RMS errors, cannot provide meaningful interpretations of the patient-specific immune response.

6. Conclusion and discussion

We propose a three-equation model, which captures the observed viral load dynamics, including a plateau

and a second peak, the two features found in many COVID-19 patients. Its predictions of antibody curves

5
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Fig. 1. Model predictions of virus load (V ), target cells (T ), infected cells (I), refractory cells (R) and IFN (F ) from the best fit of
the reference model, Eq. (1), for patient #1. The solid line is the simulation with the parameters in Table 2 and the dashed line is
the simulation with the same parameters except for ϕ̃ = 0.1ϕ, κ̃ = 0.1κ, q̃ = 10q and F̃0 = 10F0.

Table 1
Quantitative measures of the predictive performance of our model (2) and the
reference model (1).

Patient Data points RMS AIC

Model (2) Model (1) Model (2) Model (1)

1 19 0.5057 0.4579 12.0884 30.0336
2 18 0.7011 0.6335 27.7151 49.5688
3 18 0.5658 0.5341 19.9977 43.4200
4 9 0.8010 0.8231 −165.9948 −69.5044
7 20 0.9741 0.9622 34.9507 53.4579
8 14 0.8540 0.7951 58.5824 147.5803
10 16 1.2957 1.2946 61.7724 117.7463
14 8 0.5437 0.6493 −81.7488 −50.9109

are also consistent with observations. Our model is provably identifiable, while its commonly used alternative
(dubbed as the reference model and given by (1)) is not. We also show that our model has a superior
performance in terms of the AIC and, hence, is preferable to its competitors based on the principle of
parsimony. The model can be used for more detailed studies of the within-host dynamics of viruses, cells,
and antibodies. These may provide valuable information for future research on virus infection, treatment,
and vaccination.

Since the dataset used to inform our model consists of relatively mild cases of COVID-19, we do not
account for possible organ damage by assuming the immune system’s efficiency to be independent of the
severity of the disease. The organ damage can be incorporated into our model, as is done by Marchuk [19],
providing a mathematical representation of “long Covid”. Other limitations of our model can be ameliorated
6
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by increasing its complexity. For example, our model represents the complexity caused by formation time of
plasma cells via the time-dependent coefficient α(t), whose parameterization is valid for a certain infection
period. Consequently, our model’s predictions are less accurate before onset of symptoms and after virus
clearance. The more complex Marchuk model describes these stages by employing ODEs with delay to
represent the plasma cell formation lag. Identifiability (parameter identification) for delayed ODEs remains
a challenge.

Data availability

Data will be made available on request.

Acknowledgments

This work was supported in part by Air Force Office of Scientific Research, United States under
award number FA9550-21-1-038, by Office of Advanced Scientific Computing Research (ASCR) within the
Department of Energy Office of Science under award number DE-SC0023163, and by National Science
Foundation, United States under award 2100927.

Appendix A. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.aml.2023.
108781.

References

[1] X. Xia, C.H. Moog, Identifiability of nonlinear systems with application to HIV/AIDS models, IEEE Trans. Automat.
Control 48 (2) (2003) 330–336.

[2] A. Vespignani, H. Tian, C. Dye, J.O. Lloyd-Smith, R.M. Eggo, M. Shrestha, S.V. Scarpino, B. Gutierrez, M.U. Kraemer,
J. Wu, et al., Modelling covid-19, Nature Rev. Phys. 2 (6) (2020) 279–281.

[3] A.J. Kucharski, T.W. Russell, C. Diamond, Y. Liu, J. Edmunds, S. Funk, R.M. Eggo, F. Sun, M. Jit, J.D. Munday, et
al., Early dynamics of transmission and control of COVID-19: a mathematical modelling study, Lancet Infect. Dis. 20
(5) (2020) 553–558.

[4] G. Giordano, F. Blanchini, R. Bruno, P. Colaneri, A. Di Filippo, A. Di Matteo, M. Colaneri, Modelling the COVID-19
epidemic and implementation of population-wide interventions in Italy, Nature Med. 26 (6) (2020) 855–860.

[5] S. Moore, E.M. Hill, M.J. Tildesley, L. Dyson, M.J. Keeling, Vaccination and non-pharmaceutical interventions for
COVID-19: a mathematical modelling study, Lancet Infect. Dis. 21 (6) (2021) 793–802.

[6] A.J. Kucharski, P. Klepac, A.J. Conlan, S.M. Kissler, M.L. Tang, H. Fry, J.R. Gog, W.J. Edmunds, J.C. Emery, G.
Medley, et al., Effectiveness of isolation, testing, contact tracing, and physical distancing on reducing transmission of
SARS-CoV-2 in different settings: a mathematical modelling study, Lancet Infect. Dis. 20 (10) (2020) 1151–1160.

[7] E.A. Hernandez-Vargas, J.X. Velasco-Hernandez, In-host mathematical modelling of COVID-19 in humans, Annu. Rev.
Control 50 (2020) 448–456.

[8] S. Wang, Y. Pan, Q. Wang, H. Miao, A.N. Brown, L. Rong, Modeling the viral dynamics of SARS-CoV-2 infection,
Math. Biosci. 328 (2020) 108438.
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