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Abstract
Many chemical and biological systems involve reacting species with vastly different
numbers of molecules/agents. Hybrid simulations model such phenomena by com-
bining discrete (e.g., agent-based) and continuous (e.g., partial differential equation-
or PDE-based) descriptors of the dynamics of reactants with small and large num-
bers of molecules/agents, respectively. We present a stochastic hybrid algorithm to
model a stage of the immune response to inflammation, during which leukocytes
reach a pathogen via chemotaxis. While large numbers of chemoattractant molecules
justify the use of a PDE-based model to describe the spatiotemporal evolution of its
concentration, relatively small numbers of leukocytes and bacteria involved in the
process undermine the veracity of their continuum treatment by masking the effects of
stochasticity and have to be treated discretely.Motility and interactions between leuko-
cytes and bacteria are modeled via randomwalk and a stochastic simulation algorithm,
respectively. Since the latter assumes the reacting species to bewell mixed, the discrete
component of our hybrid algorithm deploys stochastic operator splitting, in which the
sequence of the diffusion and reaction operations is determined autonomously during
each simulation step. We conduct a series of numerical experiments to ascertain the
accuracy and computational efficiency of our hybrid simulations and, then, to demon-
strate the importance of randomness for predicting leukocytemigration and fate during
the immune response to inflammation.
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1 Introduction

Two mathematical frameworks, discrete and continuous, are routinely used to model
kinetics of complex (bio)chemical systems. The discrete framework is based on the
chemicalmaster equation (Munsky andKhammash 2006;Gillespie 1992); it is invoked
when the number of molecules of reacting species is relatively small, so that stochas-
tic fluctuations in local concentrations become pronounced. This randomness is a key
feature of many biological processes, e.g., gene expression (Bravi and Longo 2015),
development of neural networks (Changeux and Danchin 1976), and Darwinian selec-
tion (Darwin 1859). The continuous framework consists of differential equations
describing temporal evolution of species concentrations; it predicts average behaviors
of large numbers of molecules. Both frameworks can handle spatial variability, e.g., by
adopting operator splitting techniques for discrete reaction–diffusion processes (Choi
et al. 2012) or partial-differential equations (PDEs) for their continuous counterparts.

Many systems involve reacting species with vastly different numbers of
molecules/agents, thus necessitating the simultaneous use of discrete and continuous
descriptors, i.e., call for the use of hybrid simulations. This occurs when a PDE-based
model for one or more species fails to accurately capture salient features of a bio-
logical system either locally, in a (small) part of a computational domain (Bakarji
and Tartakovsky 2017; Taverniers and Tartakovsky 2017), or globally, over the whole
simulation domain (Choi et al. 2010). These two types of hybrid simulations differ in
the way they couple their discrete and continuous components. We focus on the latter
class of phenomena, of which leukocyte migration towards a pathogen is a pertinent
example. It is worth to mention that simulations to represent the collective behaviors
of chemotaxis are well studied in different scales (Di Costanzo et al. 2019; Guo et al.
2008; Othmer and Hillen 2002). Moreover, hybrid models are widely used to connect
different scales inmany other biological processes, e.g., (Anderson andChaplain 1998;
Choi et al. 2012; Dallon and Othmer 1997, 2004; Deisboeck et al. 2011; Lowengrub
et al. 2009; Ruiz-Martinez et al. 2019).

Leukocytes, or white blood cells, are instrumental in a body’s immune response
to invading pathogens, such as bacteria, viruses, or parasites. A pathogen-induced
inflammation activates leukocytes in the bloodstream, causing their transmigration
from blood vessels to the surrounding tissue. Within the affected tissue, leukocytes
move towards a contaminated site, exhibiting undirected (diffusion-like) and directed
(chemotaxis) forms of motion as well as interacting with a pathogen. Continuum-level
representations of the latter stage of leukocyte migration rely on systems of coupled
PDEs of various degrees of complexity, ranging from the celebrated Keller-Segel
chemotaxis model (Keller and Segel 1971) to its more evolved counterparts (Hillen
and Painter 2009). Such models track concentrations of relevant species—the con-
centrations of leukocytes, L(x, t), and chemoattractant, A(x, t), in the Keller-Segel
model (Keller and Segel 1971)—in space, x, and time, t . While large numbers of
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chemoattractant molecules justify the use of a PDE-based model to describe the spa-
tiotemporal evolution of A(x, t), relatively small numbers of leukocytes and bacteria
involved in the process render such continuum treatments problematic. Taken in iso-
lation, the motion of individual leukocytes has been described by, e.g., biased random
walk (Alt 1980; Tranquillo and Lauffenburger 1990).

We present a hybrid algorithm that combines a continuum description of chemoat-
tractants with discrete representations of leukocytes and bacteria. Section 2 provides
a mathematical model of leukocyte migration towards an inflammation site, including
its continuum (PDE-based) formulation. Our hybridmethod and its algorithmic imple-
mentation are presented in Sect. 3. They are used in Sect. 4 to solve three problems
of increasing complexity. The first, a one-dimensional advection-diffusion equation,
serves to verify our algorithm by comparing its predictions with an analytical solu-
tion and to analyze the effect of a finite number of particles on the adequacy of the
continuum model. The second, unidirectional leukocyte migration in the presence of
chemoattractant and bacteria, accomplishes the same goals by comparing our pre-
dictions with those provided by solving numerically a system of one-dimensional
chemotaxis–motility–reaction PDEs. The third problem deals with a more realistic
two-dimensional setting,which represents leukocytemigration towards awound.Main
conclusions drawn from our study are summarized in Sect. 5.

2 Model of leukocytemigration

We consider a model that involves leukocytes (L), bacteria (B), and chemoattractant
(A). Its continuum representation relies on their respective concentrations L(x, t),
B(x, t) andA(x, t). The speed with which these three species diffuse through a tissue
is characterized by a diffusion coefficient of the chemoattractant, D, and motility
coefficients of leukocytes, μL, and bacteria, μB. Leukocytes are also advected with a
chemotactic velocity Vch = (V1, V2)�, which depends on both the chemoattractant
concentration A and its gradient ∇A. The i th component of this velocity vector is
given by Zigmond (1977, 1981)

Vi = vi
ui

1 + ui
sign

(
∂A
∂xi

)
, ui = χ0

∂Nbr

∂A
∣∣∣∣∂A∂xi

∣∣∣∣ ; (1)

where vi with i = 1, 2 are the maximum velocities of a leukocyte in the i th direction;
χ0 is chemotactic sensitivity; and Nbr is the number of bound receptors on the cell
membrane. The latter is related to the concentration of chemoattractant A by the
Michaelis-Menten relationship

Nbr = NtotA
Kd + A , (2)

where Ntot is the total number of cell receptors on the cell membrane, and Kd is the
receptor dissociation constant. The term φ = ui/(1+ ui ) is referred to as orientation
bias.
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Finally, the three species involved undergo biological transformations. Chemoat-
tractant A is released from the bacteria B at the wound site with production rate kp,

A + B
kp−→ 2A + B; (3a)

Bacteria B are reproduced with growth rate kg ,

B
kg−→ 2B; (3b)

leukocytes L die with natural death rate g0,

L
g0−→ ∅; (3c)

and, upon encountering each other, a leukocyte and a bacterium die at the same rate
g1,

B + L
g1−→ ∅. (3d)

The latter reaction needs no activation energy; it is reaction-dominated and takes place
when a leukocyte of effective radius rL and a bacterium of effective radius rB touch,
with reaction rate constant g1 determined by their motility rates,

kd = 4π(rB + rL)(μB + μL) · NAv · 10−3[M−1 · s−1], (4)

where NAv is the Avogadro number.
The overall chemotaxis–motility–reaction system is described by a system of PDEs

∂A
∂t

= D∇2A + kpB, (5a)

∂L
∂t

= −∇ · Jc − (g0 + g1B)L, (5b)

∂B
∂t

= μB∇2B + (kg − kdL)B, (5c)

with Jc = −μL∇L+Vch(A,ΔA)L. Biological processes represented by this model
of immune response are depicted in Fig. 1.

Numerical solution of this system, obtained with the second-order TVD scheme
(LeVeque 2002) for chemotaxis and Newton-Raphson iterations for reactions, serves
as a continuum-level model.

3 Materials andmethods

Standard numerical methods for solving (5), e.g., finite elements and finite volume
schemes, often falter when deployed to model chemotaxis and diffusion phenom-
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Fig. 1 The stages of immune response to inflammation represented in our model. Left: The initial stage of
inflammation. Middle: Reproduction of bacteria and release of chemoattractants by bacteria, which triggers
leukocytes migration. Right: Leukocytes die either naturally or upon encountering bacteria

ena over long simulation time (Tyson et al. 2000; Ward et al. 2011; Bosma et al.
1988). The vastly different time scales between the biochemical reactions and the
transport processes render the system of PDEs (5) rather stiff, further complicating
its numerical treatment. Methods for dealing with stiffness include operator splitting
(Strang 1968), which uses an explicit scheme to handle chemotaxis and motility, and
an implicit method to deal with the (stiff) reactions. The computationally intensive
Newton-Raphson method is usually employed to treat the reactions between the bac-
teria (B) and leukocytes (L) implicitly. These numerical strategies do not address the
foundational limitation of deterministic PDE-based models of leukocyte migration,
such as (5): relatively small numbers of leukocytes and bacteria undermine the validity
of their continuum-level descriptions.

Our hybrid model comprises continuum and discrete modules, which explicitly
account for the vast disparity in the number of chemoattractant molecules on one hand
and the number of leukocytes and bacteria on the other. In a chemotaxis–motility–
reaction system, chemoattractant is adequately represented by its concentration A,
and its diffusion and production are captured by (5a). Relatively small populations of
bacteria and leukocytes are described by discrete stochastic analogues of (5b) and (5c).
These processes, and their descriptors, are coupled because, in each element of a
numericalmesh, the concentration of chemoattractantA is affected by the local number
of bacteria NB, and the chemotactic drift velocity of leukocytes Vch is determined by
the local value of A (and its gradient). Random positions of individual bacteria and
leukocytes are determined by their motility and, in the case of leukocytes, by the
chemotactic velocity Vch. Bacteria and leukocytes annihilate each other when they
come into close contact.

3.1 Continuummodule: chemoattractant

Chemoattractant A is produced by bacteria B and is spread by diffusion. In the early
stage of inflammation, the chemoattractant concentrationA(x, t) is much higher than
the concentrations (local numbers) of bacteria and leukocytes. For this reason, we
use (5a) to describe its spatiotemporal evolution. Using two-dimensional simulations
as an example, a computational domain is discretized by a uniform mesh, which
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consists of Nx × Ny elements with uniform mesh size Δx × Δy. Numerical solution
of (5a) relies on an implicit-explicit (IMEX) finite volume scheme. For x = (x, y)�
and An

i, j ≡ A(iΔx, jΔy, nΔt) with i = 1, . . . , Nx and j = 1, . . . , Ny , this yields,
for the (n + 1)st time step,

An+1
i, j − An

i, j

Δt
= D

An+1
i+1, j − 2An+1

i, j − An+1
i−1, j

Δx2

+ D
An+1

i, j+1 − 2An+1
i, j − An+1

i, j−1

Δy2
+ kpb

n
i, j .

(6)

Defining sx = DΔt/(Δx)2 and sy = DΔt/(Δy)2, this translates into

− syAn+1
i, j−1 − sxAn+1

i−1, j + (1 + 2sx + 2sy)An+1
i, j

− sxAn+1
i+1, j − syAn+1

i, j+1 = ΔtAn
i, j + Δtkpb

n
i, j .

(7)

The time-step size Δt is updated at every iteration, as explained in Sect. 3.3. This
discretization produces a penta-diagonal matrix, whose inversion is well suited for
the restarted Generalized Minimum Residual (GMRES) algorithm (Saad and Schultz
1986). If the continuum-level description of bacteria were valid, then bni, j ≡ Bn

i, j . Oth-
erwise, it has to be replaced with its discrete (and stochastic) counterpart, as discussed
in the section below.

OnceA at a given times step is computed, the chemotaxis velocityVch is determined
from (1) via automatic differentiation.

3.2 Discrete module: leukocytes and bacteria

Since transport (motility and/or chemotactic drift) and reactions take place at different
time scales, we use stochastic operator splitting (Choi et al. 2012; Ruiz-Martinez
et al. 2019). Motility (diffusion) of bacteria and motility and chemotaxis (advection-
diffusion) of leukocytes are modeled via Brownian motion and Brownian motion
with a drift, respectively. Chemical and/or biological transformations of bacteria and
leukocytes within individual elements of the mesh are described via a (modified)
Gillespie algorithm.

3.2.1 Stochastic operator splitting

If the continuummodel (5) were valid, then, during a time interval [t, t+Δt], the oper-
ator splitting algorithm (Hundsdorfer and Verwer 2013) would replace (5b) and (5c)
with

∂L′

∂t
= μL∇2L′ − ∇ · (VchL′), (8a)

∂B′

∂t
= μB∇2B′. (8b)
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and

∂L′′

∂t
= −(g0 + g1B′′)L′′, (9a)

∂B′′

∂t
= (kg − kdL′′)B′′. (9b)

HereL′(t) = L(t) andB′(t) = B(t); andL′′(t) = L′(t+Δt) andB′′(t) = B′(t+Δt),
so that L′′(t) = L(t +Δt) and B′′(t) = B(t +Δt). Then, one would solve (8) and (9)
on a fixed mesh with explicit and implicit methods, respectively.

Instead, we use meshless particle methods and stochastic simulations in the dis-
crete setting. A discrete representation replaces the concentrations L(x, t) and B(x, t)
at point x with the numbers of leukocytes, NL(Vx, t), and bacteria, NB(Vx, t), in a
volume Vx centered around point x. We denote the position of the kth leukocyte and
mth bacterium at time t by XLk (t) = (XLk

1 , XLk
2 )� and XBm (t) = (XBm

1 , XBm
2 )�,

respectively.

3.2.2 Randommotility and chemotaxis

We adapt the common assumption (Farrell et al. 1990) that the motility coefficients of
populations of bacteria or leukocytes, μB and μL, coincide with those characterizing
random motion of single bacterium and leukocyte. For leukocytes, this coefficient is
calculated as

μL = 1

2
Tpv

2, (10)

where Tp is the persistence time (i.e., the time period between direction change); and,
for the sake of simplicity andwithout loss of generality, we set the leukocytemaximum
velocity in the i th direction to v1 = v2 = v. For bacteria, the motility coefficientμB is
relatively small; its experimentally determined value is listed in Table 1, together with
values of the other parameters used in our model. The initial bacterial concentration
is assumed to be the same as the initial bacterial concentration.

Motion of bacteria and leukocytes are modeled as random walks with motility
(Chandrasekhar 1943),

XLk (t + Δt) = XLk (t) + VchΔt + √
2μBΔt ξ , (11a)

where k = 1, . . . , ML; and

XBm (t + Δt) = XBm (t) + √
2μLΔt ξ , (11b)

where m = 1, . . . , MB. Here ξ is a standard Gaussian random variable with the same
dimension as XLk ; and ML and MB are the total numbers of leukocytes and bacteria
in the simulation, respectively.
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Table 1 Model parameters and their values used in numerical experiments

Parameter Description Value References

Tp Persistence time 300 s Rivero et al. (1989)

v Max chemotactic velocity 2 × 10−7 m Hoang et al. (2013)

χ0 Chemotactic sensitivity 4 × 10−8 m/receptor Rivero et al. (1989)

Ntot Total receptors on cell membrane 5 × 1010 Rivero et al. (1989)

Kd Receptor dissociation constant 2 × 10−8 s−1 Rivero et al. (1989)

D Diffusion coeff of chemoattractant 10−10 m2s−1 Rivero et al. (1989)

μL Motility coeff of leukocyte Equation (10)

μB Motility coeff of bacteria 10−14 m2s−1 Rivero et al. (1989)

rB Radius of bacteria 10−6 m Rivero et al. (1989)

rL Radius of leukocyte 1.4 × 10−5 m Rivero et al. (1989)

Nav Avogadro number 6.02 × 1023 mol−1

kp Production rate of bacteria 10−6 s−1 Rivero et al. (1989)

kg Generation rate of bacteria 3.47 × 10−6 s−1 Su et al. (2009)

g0 Decay rate of leukocyte 1.61 × 10−5 s−1 Su et al. (2009)

kd = g1 Reaction rate of bacteria/leukocyte Equation (4)

A0 Initial chemoattractant concentration 10−5 M Walker et al. (1990)

L0 Initial leukocyte concentration 8.3 × 10−15 M Su et al. (2009)

B0 Initial bacterial concentration 8.3 × 10−15 M

3.2.3 Reactions

Within the (i, j)mesh element (for any i = 1, . . . , Nx and j = 1, . . . , Ny , as specified
inSect. 3.1), the bacteria and leukocytes are assumed to bewell-mixed, so thatGillespie
multi-particle (GMP) method (Rodríguez et al. 2006) can be used for particle-based
treatment of chemical reactions and biological transformations. Let

n(i, j)
L (t) = NL(V(xi ,y j ), t), (12a)

n(i, j)
B (t) = NB(V(xi ,y j ), t) (12b)

denote the numbers of leukocytes and bacteria within the (i, j)mesh element, respec-
tively. Then, the state of the systemwithin that mesh element at any time t is described
by the vector

n(i, j)(t) = (n(i, j)
L , n(i, j)

B )�. (13)

In GMP, the system is advanced from its current state at time t to its state at the
(random) time t + τ (i, j), with τ (i, j) < Δt for all i and j , by the following procedure.
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First, one generates a random number r1 distributed uniformly on the unit interval
[0, 1]. Second, the size of the reaction time step τ (i, j) is selected probabilistically as

τ (i, j) = − ln r1

a(i, j)
sum

, (14)

where a(i, j)
sum is the sum of all propensity functions a(i, j)

r in themesh element (i, j). The
details on calculation of these propensity functions andGMP in general are provided in
“Appendix A”. After one reaction time step τ (i, j), the system state n(i, j)(t) is updated
by

n(i, j)(t + τ (i, j)) = n(i, j)(t) + ν(i, j), (15)

where ν(i, j) = (Δn(i, j)
L ,Δn(i, j)

B )� is the change in the number of leukocytes and
bacteria due to these reactions.

3.3 Time-step selection

A proper time step is determined by accounting for the time scales of chemotaxis,
random motility, and reactions of leukocytes and bacteria. Leukocyte migration due
to random motility and chemotaxis introduces a time constraint, which is expressed
in terms of the Péclet number

Pe = |Vch|hmin

μL
= τmotL

τch
,

τmotL = h2min

2μLd
, τch = hmin

|Vch| ,
(16)

where hmin is the smallest element-mesh size; d is a characteristic length scale; and
τmotL and τch are the time scales of randommotility and chemotaxis, respectively. The
system in the (i, j) mesh element is diffusion-dominated if Pe < 1 and advection-
dominated if Pe > 1. We define the leukocyte migration time step as

τmig = min{τmotL , τch}. (17)

By the same token, the time scale of bacterial randommotility is τmotB = h2min/(2μBd).
Since bacterium’s motility is much smaller than leukocyte’s, i.e., since μB � μL, the
respective time scales satisfy the inequality τmotB 	 τmotL . Therefore, it is sufficient
to consider τmotL when calculating the migration time step.

The reaction time step, τreac, is chosen to be the smallest among the reaction time
steps, t (i, j), for each mesh element (i, j),

τreac ≡ min{t (i, j) : i = 1, . . . , Nx ; j = 1, . . . , Ny}. (18)
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We define t (i, j) as the upper bound of τ (i, j) in (14), i.e., set t (i, j) = 1/a(i, j)
sum . With

the migration and reaction time scales thus defined, the system is characterized by the
Damköhler number

Da = τmig

τreac
. (19)

At each time step in the simulation, the system is migration-dominated if Da > 1
or reaction-dominated if Da < 1. In the reaction-dominated regime, the system is
well mixed and is advanced by the migration time step, Δt = τmig. In the migration-
dominated regime, Δt should be larger than τreac in order to provide enough time for
the reaction between a bacterium and a leukocyte to take place (Choi et al. 2012). In
summary, we set

Δt =

⎧⎪⎨
⎪⎩

τmig if Da < 1,

5τmig if 0.5 < Da < 1.0,

10τmig if Da < 0.5.

(20)

Note that Δt is recomputed at each simulation step; and other strategies for the time-
step selection are available (Ruiz-Martinez et al. 2019).

3.4 Algorithm

A detailed algorithm for hybrid simulations of the inflammation process during time
interval [t0, T ] is summarized below.

1. Initialize t = t0
2. While t ≤ T

(a) Determine whether the system is migration- or reaction-dominated
i. Calculate Pe from (16); τmig from (17); τreac from (18); and Da from (19)
ii. Determine Δt from (20)

(b) Set told = t
(c) Perform the migration and reaction steps using the operator-splitting method

i. Migration with time step Δt
– Find A from (7)
– Calculate Vch from (1)
– Assign Vch to each leukocyte based on its current position XLk

– Use (11) to update positions of all leukocyte and bacteria XLk and
XBm

ii. Reactions within each mesh element (i, j)
– Count the numbers of leukocyte and bacteria, n(i, j) in (13), from the
distributions of XLk and XBm

– while (t − told) ≤ Δt
- Calculate τ (i, j) from (14)
- If τ (i, j) ≤ Δt , use (15) to update n(i, j)
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- Otherwise, do not update n(i, j)

end while
– Go to the next mesh element; repeat

(d) t = told + Δt

end while

3.5 Initial and boundary conditions

In our simulations of the inflammation caused by a wound at time t0, leukocytes
migrate from a capillary/venule with surface Γcap towards bacteria in the wound at
the skin surface Γsk. We model this process by placing, at time t = 0, leukocytes and
bacteria along small segments of these surfaces. This gives rise to the initial conditions

L(x, t0) = L0(x), x ∈ Γcap

B(x, t0) = B0(x), x ∈ Γsk,
(21)

or their discrete counterpart

NL(Vx, t0) = NL0(Vx), x ∈ Γcap

NB(Vx, t0) = NB0(Vx), x ∈ Γsk.
(22)

In either case, the initial concentration of the chemoattractant is A(x, t0) = 0 for
x ∈ Ω . If leukocytes leave the capillary at point xcap ∈ Γcap and bacteria enter the
tissue at point xsk ∈ Γsk, then the initial concentrations L0 and B0, or their discrete
counterparts NL0(Vx) and NB0(Vx), are non-zero only in the mesh element containing
xcap/xsk.

Our choice of boundary conditions is motivated by the one-dimensional study of
Lauffenburger and Keller (1979). The scenario in which leukocytes and bacteria,
once in the tissue, cannot leave it through the blood vessel and the skin is modeled
by treating Γcap and Γsk as impermeable surfaces. This gives rise to the boundary
conditions

n · (μL∇L − VchL) = 0, n · ∇B = 0, x ∈ Γcap ∪ Γsk. (23)

In the particle simulations, the reflective boundary conditions are imposed along Γcap
andΓsk. During the modeling process, the chemoattractant concentration at the wound
site (e.g., the point xsk ∈ Γsk) remains constant, A0, once the inflammation process
starts. The remainder of the skin is impervious to chemoattractant diffusion. Hence,

A(xsk, t) = A0, n · ∇A = 0, x ∈ Γsk/{xsk}. (24a)

It is common to assume (Lauffenburger and Keller 1979) that the chemoattractant
moves between the bloodstream and tissue across the venule wall Γcap. The rate of net
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movement across thewall is postulated to be proportional to the difference between the
concentrations at the two sides of the wall, with a constant of proportionality (transfer
coefficient) ha quantifying the ease of movement across the wall:

D n · ∇A = ha(Acap − A), x ∈ Γcap. (24b)

In the simulations reported below, we set the chemoattractant concentration in the
venule wall to Acap = 0.

We use these boundary conditions for the sake of concretness and to demonstrate
the capabilities of our hybrid algorithm. They can be replaced with other boundary
conditions, e.g., those used inBeesley et al. (1978) or Fehr and Jacob (1977), in order to
account for transient circulatory leukocyte mobilization, diffusion of chemoattractant
through the wall, etc.We leave these and other model enhancements for future studies.

4 Numerical experiments

We conduct several numerical experiments to demonstrate the accuracy of our hybrid
method and its ability to predict salient stochastic features of leukocyte chemotaxis
during inflammation. The first test, reported in “Appendix B.1”, illustrates the close
agreement between the solution of a PDE and its discrete counterpart when the number
of particles used in the latter is large.

The same conclusion is reached in the second test, which deals with the one-
dimensional version of the chemotaxis–motility–reaction system (5) for small,
intermediate, and large populations of leukocytes and bacteria (“Appendix B.2”).
Strong stochastic effects are observed for small populations, while large numbers
result in predictions consistent with the numerical solution of (5).

This one-dimensional setting has been the subject of previous theoretical studies that
established bacteria elimination criterion for steady-state (Lauffenburger and Keller
1979) and transient (Alt and Lauffenburger 1987) chemoattractant concentrations. In
both regimes, the criterion identifies four culprits of infection: (i) low numbers of
circulating leukocytes; (ii) defective phagocytosis or toxic bacteria; (iii) short-lived
leukocytes; and (iv) large tissue radius R. While our model is considerably more
evolved than the original models (Lauffenburger and Keller 1979; Alt and Lauffen-
burger 1987), our stochastic/hybrid simulations account for each of these factors by
modifying the baseline state with NB0 = 8000 and NL0 = 10,000 (Fig. 2) as follows:
(i) decrease the number of leukocytes to NL0 = 80; (ii) decrease the reaction rate kd
by 1020; (iii) increase leukocyte natural death rate g0 by 100; and (iv) increase the
size of the simulation domain to R = 10−2 m. Figure 2 shows that any of these four
deficiencies indeed can trigger an infection, i.e., cause leukocytes to die out in a finite
time and bacteria to survive and multiply.

The third test deals with two-dimensional models, in which stochastic simulations
are conducted in a domain with multiple entrances for leukocytes from a blood vessel
(Fig. 3). The simulation domain Ω is a rectangle [xin, xout]× [ysk, ycap], such that the
skin is located at y = ysk = 0, the blood vessel at y = ycap, and R = ycap − ysk
denotes the tissue radius in the Krogh model (Krogh 1922). The length of the blood
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(a)

(b) (c)

(d) (e)

Fig. 2 Change in the number of leukocytes and bacteria in a the baseline scenario with NL0 = 10,000 and
NB0 = 8000; and scenarios with b the number of leukocytes decreased to NL0 = 80, c kd decreased by

1020, d g0 increased by 100, and e the domain size increased by 10

Fig. 3 Two-dimensional
simulation domain. The skin is
located at y = ysk = 0, and the
capillary at y = ycap = 10−4 m

vessel and the simulation domain is Lx = xout − xin. The wound is located at xsk =
(Lx/2, ysk = 0)�, as is initially bacteria.

Once the chemoattractant is released at t = t0 = 0, leukocytes transmigrate from
the blood, through the endothelial layer of the capillary, to the wound site during
the inflammation process. We allow for this process to occur at three sites along the

123



   23 Page 14 of 28 H. Lu et al.

(c)(b)(a)

Fig. 4 A leukocyte chasing a bacterium in the tissue: a chemoattractant concentrationA at the capture time
t = 533.333 s, b trajectory of the leukocyte; and c trajectory of the bacterium. Lighter shades represent
positions at earlier times and darker color represent positions at later times. Big red diamonds are leukocyte
traces, and small blue crosses are bacteria traces

Fig. 5 Histogram of the capture
time of the bacterium by the
leukocyte from 100 simulations

capillary: xL1 = 0.3Lx , xL2 = 0.5Lx , and xL3 = 0.7Lx (Fig. 3). The release is
assumed to occur at specified number of particles NL1 , NL2 , and NL3 , respectively, in
accordance with (22).

4.1 One leukocyte chasing one bacterium

A leukocyte is released at xcap = Lx/2, i.e., we set NL1 = 0, NL2 = 1, and NL3 = 0.
The simulation domain size is Lx = 10−4 m and R = 10−4 m, and the chemoattrac-
tant’s diffusion coefficient is D = 10−12 m2s−1. All other parameters have the values
specified in Table 1.

This setupmimics the 16mmmoviemade byD. Rogers in the 1950s (Rogers xxxx).
Figure 4 exhibits the chemoattractant concentration and trajectories of the leukocyte
and bacterium. The bacterium diffuses in the vicinity of the wound because of its small
motility. The leukocyte has more freedom to explore the space, covering much of the
10−4 m by 10−4 m square area of the tissue. Figure 5 shows the histogram of the
capture time of the bacterium by the leukocyte from 100 simulations, with an average
of 711.3 s.

Results of similar simulations for small (NL0 = NB0 = 5) and large (NL0 = NB0 =
8× 105) populations of leukocytes and bacteria are presented in “Appendix B.3”. As
expected, the former setting gives rise to appreciable stochastic fluctuations, which
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(a) (b) (c)

Fig. 6 Intermediate-size populations of leukocytes and bacteria. Temporal snapshots, at time t = 1000 s,
of a the chemoattractant concentration and the numbers of b leukocytes and c bacteria, normalized with
their initial population numbers

cannot be captured with the deterministic, PDE-based model (5). These fluctuations
average out in the latter setting, so that the stochastic (hybrid) and deterministic (PDE-
based) models yield similar predictions. Results for populations of intermediate size
are presented below.

4.2 Intermediate populations of leukocytes and bacteria

In this experiment, the total of NL0 = 8000 leukocytes enter the tissue at three sites:
NL1 = 3000 at xL1 , NL2 = 3000 at xL2 , and NL3 = 2000 at xL3 . They attack
NB0 = 8000 released at the wound (Fig. 3). Figure 6 exhibits a temporal snapshot (at
t = 1000 s) of the chemoattractant concentration and the numbers of leukocytes and
bacteria, normalized respectively by NL0 and NB0 . By this time, the leukocytes have
spread all over the tissue due to randomwalk with large motility, while the bacteria are
concentrated near the wound due to their small motility. However, very few leukocytes
exist near thewound because the leukocytes die after annihilating the invading bacteria
during phagocytosis.

Figure 7 shows the trajectories of three leukocytes released from the blood vessel at
the three sites.All of themexhibit the samepattern ofBrownianmotion and chemotaxis
as those observed in small populations (“Appendix B.3”). The rate of decrease in the
numbers of leukocytes and bacteria grows in the presence of large populations. The
last frame in Fig. 7 zooms in on the early stage of the process, highlighting both the
natural death of leukocytes and the growth of bacteria before their interactions take
place.

Finally, we report the computational time for the simulation time horizon of
2000 s for 1D and 200 s for 2D using Intel(R) Core(TM) i7-6700 at 3.40 GHz
processor. The mean CPU time and variance, calculated from twenty realizations,
are reported in Table 2. The time step of the deterministic PDE solver is set to
min{Δx2/2D, Δx/|Vch|}, considering the Péclet number. The hybrid simulation is
more efficient, accurate and informative for systems with small and intermediate pop-
ulation sizes (NL0 = NB0).

5 Summary and conclusions

Multiscale features of complex biological systems undermine the validity, and raise
computational cost, of continuum (PDE-based) descriptors. We developed a hybrid
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Fig. 7 Intermediate-size populations of leukocytes and bacteria. Top row: trajectories of a few leukocytes
and bacteria at t = 500 s and t = 1000 s. The lighter shades represent positions at earlier time, and darker
shades represent positions at later times. Red diamonds represent the leukocytes released from xL1 , green
diamonds from xL2 , and blue diamonds from xL3 ; cyan crosses designate a representative bacterium trace;
Bottom row: the reduction in the numbers of leukocytes and bacteria versus time, and its magnified behavior
during the early stage

Table 2 Computational time for
the deterministic PDE solver and
hybrid simulations with different
population sizes

Mean CPU time (min) Variance

PDE solver 60.7083 –

Hybrid, N0 = 8 33.1574 2.6404

Hybrid, N0 = 80 34.1768 1.0551

Hybrid, N0 = 800 37.1287 0.2009

Hybrid, N0 = 8000 41.7389 0.3618

Hybrid, N0 = 80000 65.9329 0.2449

Twenty realizations are conducted to compute the mean CPU time and
variance

algorithm that combines continuumand stochasticmethods to handle these challenges.
Its general features and performance were demonstrated on a model of inflammation,
which describes leukocyte migration towards, and phagocytosis of, bacteria invading
the tissue from a skin wound.
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The solution algorithm involves three inter-connected components. The first com-
prises a continuum (PDE-based) model of diffusion and reactions of chemoattractant.
The second component deals with discrete (stochastic) simulations of the move-
ment of individual leukocytes and bacteria in the tissue: motility of both is modeled
via Brownian motion, with the drift due to chemotactic (chemoattractant-dependent)
velocity added for the former. The third component consists of a discrete (stochastic)
computation of biochemical transformations, which utilizes the modified Gillespie
multi-particle method. In each mesh element and at each time step, the time step size
is autonomously modified depending on whether the system is locally at a diffusion-
advection- or reaction-dominated state, asmeasured by the local Péclet andDamköhler
numbers.

For small and intermediate populations of leukocytes and bacteria, our hybrid
method yields more accurate simulation results in much less computation time than
the deterministic PDE-based solver. For large populations, the two methods yield
similar results; the PDE-based solver is faster, but the hybrid method provides more
informative individual properties on the fly.

Understanding the conditions under which infection persists helps identify both
intrinsic deficiencies in the host system and superior features of invading bacteria.
Deterministic models are of limited use in determining an elimination/infection time
and examining the sensitivity to different biological parameters. That is because (at
least one) species decreases to a small population at later stages of either elimina-
tion or infection. Our simulations demonstrate that concentrations, and deterministic
PDE-based models, do not provide accurate descriptors of the dynamics of small pop-
ulations. Given the presence of chemoattractant with relatively large concentrations,
only a continuum-discrete hybrid model of the kind developed in this study can pro-
vide an accurate, yet computationally efficient, simulation tool in applications such as
detecting immune system defects and monitoring antibiotic responses.

In summary, the proposed hybrid method is advantageous in multi-species biolog-
ical and biochemical systems whose dynamic behavior is manifest on dramatically
different time scales. It can be utilized as a powerful tool to simulate laboratory exper-
iments and test infection diagnosis, among other applications.

Acknowledgements We thank the two anonymous reviewers and the Associate Editor for their insightful
comments, which helped us to improve our manuscript.

Data Availability The data that support the findings of this study are available within the article.

A GMP simulation

In each mesh element (i, j) at any time t , the system is described by the numbers of
leukocytes and bacteria n(i, j)(t), as defined in (12) and (13). The superscript (i, j) is
omitted below to simplify the notation.

Let P0[τ |n, t] denote the (conditional) probability of no reactions taking place dur-
ing the time interval [t, t + τ) provided that the system is at state n at time t . The
reaction system is assumed to be Markovian, i.e., the probability that no reactions
occur during [t, t + τ + dτ ] equals the product of the probabilities of no reactions
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Table 3 Propensity functions for
the leukocytes-bacteria-
chemoattractant
system

Reaction Number, r Propensity function, ar

B
kg−→ 2B 1 a1 = kgNB

L
g0−→ ∅ 2 a2 = g0NL

B + L
g1−→ ∅ 3 a3 = kd NBNL

occurring during [t, t + τ) and during [t + τ, t + τ + dτ). A propensity function ar
is defined such that ardτ is the probability that both the next reaction will be the r th
reaction and it will occur during [t+τ, t+τ +dτ ]. Then, one obtains (Gillespie 1976)

P0[τ + dτ |n, t] = P0[τ |n, t](1 − asum(n)dτ),

asum(n) =
S∑

r=1

ar (n),
(25)

where S is the number of chemical reactions. Taking the limit as dτ → 0 and solving
the resulting PDE leads to

P0(τ |n, t) = e−asum(n)τ . (26)

The propensity functions for the reactions in (3) are listed in Table 3.
It follows from the definition of P0 and ar that the probability P(τ, r |n, t) of both

the next reaction being the r th reaction and occurring during [t + τ, t + τ +dτ), given
the present state of the system n(t), is

P(τ, r |n, t) = P0[τ |n, t]ar (n). (27)

Accounting for (26),

P(τ, r |n, t) = ar (n)

asum(n)
asum(n)e−asum(n)τ . (28)

The ratio ar (n)/asum(n) represents the probability of a discrete random variable: the
label of the next reaction. The term asum(n) exp[−asum(n)τ ] is the exponential density
function of a continuous randomvariable: the time atwhich the next reactionwill occur.
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The GMP algorithm for reactions is presented below.

For i = 1, · · · , Nx

For j = 1, · · · , Ny

1. Count n(i, j)
L and n(i, j)

B , the numbers of leukocytes and bacteria in the mesh element
(i, j)

2. Generate random numbers r1 and r2 distributed uniformly on the interval [0, 1];
use (14) to determine the reaction time step τ (i, j)

3. If τ (i, j) ≤ Δt

– if r2a
(i, j)
sum < a(i, j)

1 , reaction 1 happens: n(i, j)(t + τ (i, j)) = n(i, j)(t) + [0, 1]�
– if a(i, j)

1 ≤ r2a
(i, j)
sum < a(i, j)

1 + a(i, j)
2 , reaction 2 happens: n(i, j)(t + τ (i, j)) =

n(i, j)(t) − [1, 0]�
– if a(i, j)

1 + a(i, j)
2 ≤ r2a

(i, j)
sum , reaction 3 happens: n(i, j)(t + τ (i, j)) = n(i, j)(t) −

[1, 1]�
else, n(i, j)(t + τ (i, j)) = n(i, j)(t)

4. Go to the next mesh element.

B Additional numerical tests

B.1 Particle-based solution of a PDE

Consider a one-dimensional advection-diffusion PDE on the semi-infinite domain
Ω = [0,+∞),

⎧⎪⎪⎨
⎪⎪⎩

∂u

∂t
+ v

∂u

∂x
= D

∂2u

∂x2
, u(x, t0) = u0(x),

vu(0, t) + D
∂u

∂x
(0, t) = 0, u(+∞, t) = 0,

(29)

where u0 is non-zero on a single element of the numerical mesh. This problem can be
represented by a stochastic equation with a reflective boundary condition at x = 0:

Xk(t + Δt) = Xk(t) + vΔt + √
2DΔtξ, (30)

where k = 1, · · · , M and ξ is a standard Gaussian random variable. Xk is the position
of particle k, driven by Brownian dynamics and velocity v. Initially at t0 = 0, the M
particles are located very close to x = 0 to mimic the Dirac delta point source, i.e.,

Xk(0) = ε, where 0 < ε � 1. (31)

The Péclet number Pe = (vΔx)/D classifies the system as diffusion-dominated
(Pe < 1) or advection-dominated (Pe 	 1). For D = 10−5 m2/s and Δx = 0.01 m,
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Fig. 8 Left column: Deterministic and stochastic solutions of (29). Results are shown at t = 500 s,
1000 s, and 1500 s with Péclet numbers Pe = 0.5, 2.0, and 10.0; Right column: Model discrepancy ε at
t = 500 s, 1000 s, and 1500 s. The error ε is plotted in log–log scale as function of the number of particles
M = 2p × 1000 (p = 1, . . . , 8), for Péclet numbers Pe = 0.5, 2.0 and 10.0

we vary the velocity v to get Pe = 0.5, 2.0 and 10.0. Figure 8 provides a comparison
between the deterministic and stochastic models. The latter involves M = 10,000
particles; and the number of particles in each mesh element is normalized by M . Good
agreement is observed for a range of Péclet number.

Thediscrepancy error ε provides a quantitative comparisonbetween the twomodels.
It is defined as the �2 norm of the difference between their respective solutions, ε =
[∑Nx

i=1(ui −Ui )
2]1/2. Here ui is the deterministic solution at x = (i−0.5)Δx andUi is

the normalized number of particleswithin the i thmesh element, (i−1)Δx ≤ x ≤ iΔx .
The stochastic simulation is not affected by the mesh size Δx ; the mesh is only used
to count the number of particles in each mesh element so that visual comparison
can be made. Figure 8 exhibits ε as function of the number of particles M , where
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Fig. 9 One-dimensional simulation domain motivated by the Krogh tissue cylinder model

M = 2p × 1000 with p = 1, . . . , 8, for various Péclet numbers. As expected, the
error decreases with M in all Pe regimes.

B.2 One-dimensional simulations

We consider a one-dimensional analog of the Krogh tissue cylinder model (Krogh
1922), in which the tissue is perfused by parallel blood vessels. According to this
model, the tissue is composed of cylindrical regions (of radius R), such is that each
region is fed by a single blood vessel and effectively isolated from the adjacent regions
by a cylindrical surface of symmetry. Without loss of generality, we replace the cylin-
drical domain with a one-dimensional geometry shown in Fig. 9.

As a result, significant mathematical simplifications can be made in the analysis
of the model (Keller and Segel 1971). The one-dimensional version of (5) is solved
numerically on the spatial domain Ω = [xsk, xcap] of length R = xcap − xsk, where
xsk = 0 and xcap are the locations of the skin and the capillary/venule, respectively.

In the one-dimensional version of the initial and boundary conditions fromSect. 3.5,
we set ha = 1 and A0 = 10−5 M, with values of the remaining parameters listed in
Table 1.

B.2.1 One leukocyte chasing one bacterium

In this numerical experiment, one bacterium is released at xsk = 0 m and one leuko-
cyte at xcap = 10−4 m. The interval Ω is divided into 200 mesh elements. This setting
provides a simplified representation of a neutrophil chasing a bacterium in the lab
(Rogers xxxx). The reaction-rate value in Table 1 is such that neither the leukocyte
nor the bacterium grows and/or decays during the time interval t ∈ [0, 1000 s]. We
further assume that, upon encounter (numerically, once they enter the same mesh
element), both the bacteria and leukocyte die immediately. To keep a sharper concen-
tration gradient and save the simulation time, we set D = 10−12 m2/s in this single
test.

Left column of Fig. 10 reveals that the deterministic PDE solution does not
provide an accurate description of this experiment. Our hybrid method, on the
other hand, accurately captures the microscopic random dynamics of the cells.
Right column of Fig. 10 shows one trajectory of the leukocyte “chasing” the
bacterium. The Brownian motion of the leukocyte and the bacterium introduces
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(a)

(b)

(c)

Fig. 10 A leukocyte chasing a bacterium in one spatial dimension. Left column: the deterministic (solid
lines) and hybrid-method (diamonds) solutions at times t = 50 s and 100 s. Right column: a the chemoat-
tractant concentration at capture time, b representative trajectories of the leukocytes and bacteria up to the
capture time, and c histogram of the capture times from 100 hybrid one-dimensional simulations

strong stochastic effects in the trajectory, which is naturally absent in the deter-
ministic solution. This is an extreme scenario where different scales invoke the
need for different simulation approaches. Concentration, as an average (macro-
scopic) description generally used for large number of particles, becomes an
inadequate quantity to represent the dynamic of single particles (bacterium and leuko-
cyte).

The last frame of Fig. 10 shows the histogram of capture time from 100 hybrid
simulations. The average capture time of these 100 simulations is 351.3035 s. Since
the leukocyte has less space to move about in one dimension than in two, it captures
the bacterium faster.

B.2.2 Large populations of leukocytes and bacteria

We examine the situation where relatively large numbers of bacteria and leukocytes
are involved in the inflammation process. The latter takes place in the domain Ω =
[0, 10−3 m], which is divided into 200 mesh elements. Populations of intermediate
size consist of NL0 = 8000 leukocytes and NB0 = 8000 bacteria. Figure 11 shows
two profiles of the chemoattractant concentration and the normalized numbers of
bacteria and leukocytes. Predictions of the two methods are similar, except for some
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stochastic fluctuations in the numbers of cells. Furthermore, the hybrid method yields
more detailed information about the reactions between leukocytes and bacteria than its
PDE-based counterpart. The reduction in the population size with time is reported in
Fig. 11a, b. During the early stages of inflammation, before leukocytes reach bacteria
near the wound, the population-size changes are mostly due to the growth of bacteria
and the natural death of leukocytes. Three representative leukocyte trajectories are
shown in Fig. 11c.

We repeat this experiment but for large populations of leukocytes and bacteria,
NL0 = NB0 = 8× 105. As one would expect, the PDE-based and hybrid models now
yield virtually indistinguishable results (Fig. 12). This proves our hybrid method to
be accurate as well as flexible for multiscale simulations in multi-species biological
systems. Moreover, reactions, population changes and individual cell behavior can be
observed on the fly (Fig. 12).

(a)

(b)

(c)

Fig. 11 One-dimensional deterministic (solid lines) and hybrid (diamonds) simulations of inflammation
process with an intermediate-size population of leukocytes (NL0 = 8000) and bacteria NB0 = 8000. Left
column: the solution at times t = 1000 s and 2000 s. Right column: a change in the size of populations
over simulation time, b zoomed changes during early times, and c trajectories of three randomly selected
leukocytes
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B.3 Two-dimensional simulations

B.3.1 Small populations of leukocytes and bacteria

Leukocytes enter the tissue from three locations along the blood vessel, as shown
in Fig. 3, with the fixed number of leukocytes at each site NL1 = 2, NL2 = 2 and
NL3 = 1, respectively. The total of NB = 5 bacteria invade from the wound. We set
xout = 4 × 10−4 m and ycap = 10−4 m.

The simulation results are presented in Fig. 13 up to time t = 1000 s. The leukocytes
disperse over the domain as time goes by, showing strong stochastic dynamics due to
motility, but tend to migrate to the wound due to the chemotaxis effects.

B.3.2 Large populations of leukocytes and bacteria

The total of NL0 = MB = 8 × 105 leukocytes enter the tissue from the blood vessel:
NL1 = 3 × 105 at xL1 , NL2 = 3 × 105 at xL2 and NL3 = 2 × 105 at xL3 . The total
of NB0 = 8 × 105 invades from the wound. This setting gives rise to the collective

(a)

(b)

(c)

Fig. 12 One-dimensional deterministic (solid lines) and hybrid (diamonds) simulations of inflammation
process with a large population of leukocytes (NL0 = 8× 105) and bacteria NB0 = 8× 105. Left column:
the solution at times t = 1000 s and 2000 s. Solid lines are the profile of deterministic solution and stars
are the hybrid-method results. Right column: a change in the size of populations over simulation time, b
zoomed-in changes during early times, and c trajectories of three randomly selected leukocytes
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behavior of leukocytes (Fig. 14), in which the random fluctuations observed in the
previous section are smoothed out. The normalized particle-numbermap is less chaotic
and smoother than that in Fig. 6. More leukocytes congregate in the left part of the
simulation domain than on the right because more of them are released from xL1 than
from xL3 . This is well understood in terms of diffusion of concentration. The reaction
zone is more pronounced in the results for large populations.

The individual behavior of leukocytes has the same pattern as before (Fig. 15).
Changes in the population size have the same trends as those observed in the
intermediate-size populations. However, the reactions are more intense during the
same zoomed-in time interval due to a larger number of leukocytes.

Fig. 13 Two-dimensional simulations of chemotaxis–motility–reactions of 5 particles. Top row: the
chemoattractant concentration, A(x, t), at t = 1000 s. Bottom row: trajectories of the leukocytes and
bacteria at times t = 500 s and 1000 s, respectively. The lighter colors represent positions at earlier times,
and the darker colors represent positions at later times. Red diamonds are leukocytes released from xL1 ,
green diamonds are from xL2 , blue diamonds are from xL3 , and cyan diamonds represent bacteria traces

(a) (b) (c)

Fig. 14 Two-dimensional simulations of chemotaxis–motility–reactions of 8 × 105 particles. Temporal
snapshots, at time t = 1000 s, of a the chemoattractant concentration and the numbers of b leukocytes and
c bacteria normalized with their initial population numbers
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Fig. 15 Two-dimensional simulations of chemotaxis–motility–reactions of 8 × 105 particles. Top row:
trajectories of the leukocytes and bacteria at times t = 500 s and 1000 s, respectively. The lighter colors
represent positions at earlier times, and the darker colors represent positions at later times. Red diamonds
are leukocytes released from xL1 , green diamonds are from xL2 , blue diamonds are from xL3 , and cyan
diamonds represent bacteria traces. Bottom row: change in the size of populations over simulation time and
zoomed changes during early times
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Rodríguez JV, Kaandorp JA, Dobrzyński M, Blom JG (2006) Spatial stochastic modelling of the

phosphoenolpyruvate-dependent phosphotransferase (PTS) pathway in Escherichia coli. Bioinfor-
matics 22(15):1895–1901

Rogers D, Movie–neutrophil chasing bacteria. https://embryology.med.unsw.edu.au/embryology/index.
php/Movie_-_Neutrophil_chasing_bacteria

Ruiz-MartinezA,Bartol TM,Sejnowski TJ, TartakovskyDM(2019) Stochastic self-tuning hybrid algorithm
for reaction–diffusion systems. J Chem Phys 151(24):244117

Saad Y, Schultz MH (1986) GMRES: a generalized minimal residual algorithm for solving nonsymmetric
linear systems. SIAM J Sci Stat Comput 7(3):856–869

Strang G (1968) On the construction and comparison of difference schemes. SIAM JNumer Anal 5(3):506–
517

Su B, Zhou W, Dorman KS, Jones DE (2009) Mathematical modelling of immune response in tissues.
Comput Math Methods Med 10(1):9–38

Taverniers S, Tartakovsky DM (2017) A tightly-coupled domain-decomposition approach for highly non-
linear stochastic multiphysics systems. J Comput Phys 330:884–901

Tranquillo RT, Lauffenburger DA (1990) Definition and measurement of cell migration coefficients. In:
Alt W, Hoffmann G (eds) Biological motion, vol 89. Lecture notes in biomathematics. Springer,
Heidelberg, pp 475–486

Tyson R, Stern LG, LeVeque RJ (2000) Fractional step methods applied to a chemotaxis model. J Math
Biol 41(5):455–475

123

https://embryology.med.unsw.edu.au/embryology/index.php/Movie_-_Neutrophil_chasing_bacteria
https://embryology.med.unsw.edu.au/embryology/index.php/Movie_-_Neutrophil_chasing_bacteria


   23 Page 28 of 28 H. Lu et al.

Walker HK, Hall WD, Hurst JW (1990) The oral cavity and associated structures-clinical methods: the
history, physical, and laboratory examinations. Butterworths, London

Ward ND, Falle S, OlsonMS (2011) Modeling chemotactic waves in saturated porous media using adaptive
mesh refinement. Transp Porous Media 89(3):487–504

Zigmond SH (1977) Ability of polymorphonuclear leukocytes to orient in gradients of chemotactic factors.
J Cell Biol 75(2):606–616

Zigmond SH (1981) Consequences of chemotactic peptide receptor modulation for leukocyte orientation.
J Cell Biol 88(3):644–647

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	Hybrid models of chemotaxis with application to leukocyte migration
	Abstract
	1 Introduction
	2 Model of leukocyte migration
	3 Materials and methods
	3.1 Continuum module: chemoattractant
	3.2 Discrete module: leukocytes and bacteria
	3.2.1 Stochastic operator splitting
	3.2.2 Random motility and chemotaxis
	3.2.3 Reactions

	3.3 Time-step selection
	3.4 Algorithm
	3.5 Initial and boundary conditions

	4 Numerical experiments
	4.1 One leukocyte chasing one bacterium
	4.2 Intermediate populations of leukocytes and bacteria

	5 Summary and conclusions

	Acknowledgements
	A GMP simulation
	B Additional numerical tests
	B.1 Particle-based solution of a PDE
	B.2 One-dimensional simulations
	B.2.1 One leukocyte chasing one bacterium
	B.2.2 Large populations of leukocytes and bacteria

	B.3 Two-dimensional simulations
	B.3.1 Small populations of leukocytes and bacteria
	B.3.2 Large populations of leukocytes and bacteria


	References




