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Construction of reduced-order models (ROMs) for hyperbolic conservation laws is notoriously chal-

lenging mainly due to the translational property and nonlinearity of the governing equations. While

the Lagrangian framework for ROM construction resolves the translational issue, it is valid only be-

fore a shock forms. Once that occurs, characteristic lines cross each other and projection from a high-

fidelity model space onto a ROM space distorts a moving grid, resulting in numerical instabilities.

We address this grid distortion issue by developing a physics-aware dynamic mode decomposition

(DMD) method based on hodograph transformation. The latter provides a map between the original

nonlinear system and its linear counterpart, which coincides with the Koopman operator. This strat-

egy is consistent with the spirit of physics-aware DMDs in that it retains information about shock

dynamics. Several numerical examples are presented to validate the proposed physics-aware DMD

approach for construction of accurate ROMs.

KEY WORDS: conservation law, Koopman operator, proper orthogonal decomposition,
hodograph transformation, learning ROMs

1. INTRODUCTION

Since introduction of Euler equations, hyperbolic conservation laws play a significant role in
gas dynamics, astrophysics, plasma, traffic flow, multiphase flow in porous media (Bear, 2013;
Chang and Hsiao, 1989; Courant and Friedrichs, 1999; Shu, 1991; Whitham, 2011) and other
fields of science and engineering. Wave-like solutions of hyperbolic equations can exhibit var-
ious rarefaction and shock behaviors, whose occurrence strongly depends on a functional form
of the flux function. Discontinuity and uniqueness of such solutions pose challenges in theo-
retical treatment of hyperbolic conservation laws (Oleinik, 1957; Smoller, 2012). Theoretical
advances, such as entropy conditions and the concept of a weak solution (Harten, 1983; Lax,
1971), ameliorate this difficulty by providing physical interpretation to these solutions. Like-
wise, numerical high-resolution methods have been designed to resolve nonlinearities and accu-
rately capture shocks (LeVeque, 1992; Majda and Osher, 1979; Osher and Chakravarthy, 1984).
Although continued developments in scientific computing have improved the performance of
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high-resolution simulations, their computational cost isoften too high to model complex sys-
tems at spatiotemporal resolutions and scales of interest.The cost can become prohibitive when
used in the context of uncertainty quantification or data assimilation, both of which require a
large number of repeated forward model runs.

Reduced-order models (ROMs) provide an efficient alternative to their high-fidelity, physics-
based counterparts that can be deployed in large-scale multiphysics simulations. Robust tools
for construction of ROMs for problems described by ordinarydifferential equations or parabolic
partial differential equations (PDEs) include proper orthogonal decomposition (POD) (Benner
et al., 2015; Kerschen et al., 2005; Rowley, 2005) and dynamic mode decomposition (DMD)
(Alessandro and Nathan, 2017; Brunton et al., 2016; Schmid,2010; Williams et al., 2013). The
challenge of extending these techniques to hyperbolic or advection-dominated parabolic PDEs
with smooth solutions was met by Lu and Tartakovsky (2020a) through development of the
physics-aware DMD and POD approaches within a Lagrangian framework. However, in the
presence of strong shocks and/or sharp gradients, Lagrangian POD methods can generate nu-
merical instability caused by grid distortion (Mojgani andBalajewicz, 2017). Once characteris-
tics of a nonlinear hyperbolic PDE intersect each other, theprojection from a high-dimensional
manifold of the high-fidelity model (HFM) onto a low-dimensional subspace of the low-fidelity
model (e.g., ROM) is not guaranteed and typically fails to preserve topological properties of the
original HFM. We elaborate on this point in Section 2, in terms relevant to DMD.

We use hodograph transformation (Hamilton, 1847) to resolve this outstanding issue in con-
struction of ROMs for PDEs with discontinuous solutions andshocks. Hodograph diagrams
originated in meteorology to plot wind from soundings of Earth’s atmosphere. Since then, hodo-
graph transformation morphed into a technique designed to transform nonlinear PDEs into lin-
ear ones by interchanging the dependent and independent variables. Hodograph-type transfor-
mations have been used to find quasilinear analogs of semilinear equations and to derive new
analytical solutions to special classes of PDEs (Clarkson et al., 1989). Advantages of mapping
nonlinear PDEs onto their linear counterparts are self-evident: analytical tools available for lin-
ear PDEs provide better understanding of the behavior of a solution, and numerical solvers for
linear systems are both easier to implement and computationally cheaper.

The Koopman operator theory (Koopman, 1931) shares the goalof hodograph transforma-
tion: a Koopman operator is an infinite-dimensional linear operator that represents the underlying
finite-dimensional nonlinear dynamic system by judiciously choosing observable functions. It is
also similar in its goal to integral transformations that map certain classes of nonlinear PDEs onto
their linear counterparts; for example, the Cole-Hopf transformation and the Kirchhoff transfor-
mation map, respectively, Burgers’ equation and a class of nonlinear diffusion (heat conduction)
equations onto a linear diffusion equation. These integraltransformations have been used in
the context of the Koopman operator theory and DMD/POD to constructed ROMs for Burgers’
equation (Kutz et al., 2018) and a nonlinear diffusion equation (Lu and Tartakovsky, 2020b). A
major goal of our study is to establish clear connections between hodograph transformation and
the Koopman theory. This relationship between the two is then used both to identify observables
for a Koopman operator via hodograph transformation and to construct ROMs for hyperbolic
conservation laws with shocks via DMD.

Besides the choice of the observable functions, another keyingredient of the success of a
DMD algorithm is data availability. As proved theoretically by Tu et al. (2014) and verified
numerically by Lu and Tartakovsky (2020b), data have to be sufficiently rich for the learning
algorithm to capture all essential features of the underlying dynamics. Therefore, a key condition
in our DMD framework for mixed wave problems is that the data be collected until and after all
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forms of propagation occurs. A resulting ROM remains valuable as a predictor of the continuing
propagation. For example, the Buckley-Leverett equation (see Section 5.5) is widely used in the
oil and gas industries to describe water injection and oil production processes. A shock profile
forms right after the injection begins. Quantities of interest are breakthrough time (i.e., the time
when the shock front exits the domain) and water-cut curve (i.e., the cumulative rarefaction curve
after the breakthrough), which can be efficiently predictedby a successful ROM.

A general procedure of the physics-aware DMD algorithm and its connection with Koop-
man operators are reviewed in Section 2. This section also contains a numerical demonstration
of the failure of Lagrangian-based ROMs to capture the dynamics described by conservation
laws with shocks. We illustrate the use of hodograph transformation by analyzing the inviscid
Burgers’ equation (Section 3) and more general hyperbolic PDEs with a convex flux function
(Appendix A). In Section 4, we combine hodograph transformation with the Koopman operator
theory to design a physics-aware DMD algorithm for construction of ROMs for conservation
laws with shocks. Several numerical tests are presented in Section 5 to validate the proposed
physics-aware DMD approach. Main conclusions drawn from our study are summarized in Sec-
tion 6.

2. CONSTRUCTION OF ROMS AND THEIR FAILURE FOR PROBLEMS WITH
SHOCKS

Consider a state variableu(x, t) : [a, b]× [0, T ] → R, where the constantsa, b ∈ R andT ∈ R+.
The dynamics ofu(x, t) is described by a one-dimensional scalar conservation law:

∂u

∂t
+

∂F (x, t, u)

∂x
= 0 or

∂u

∂t
+ f(x, t, u)

∂u

∂x
= 0, f(x, t, u) =

∂F (x, t, u)

∂u
. (2.1)

This hyperbolic PDE is subject to the initial conditionu(x, t = 0) = u0(x) and, when ap-
propriate (i.e., when|a|, |b| < ∞), boundary conditions ata and/orb. The intervals[0, T ] and
[a, b] are discretized with(N + 1) andJx nodes separated, respectively, by∆t and∆x. The
uniform spacial mesh is denoted byx̃ = [x1, . . . , xJx

]⊤. To be specific, we solve Eq. (2.1) with
a conservative first-order upwind scheme (LeVeque, 1992):

un+1
j = un

j − ∆t

∆x
(F n

j+1/2 − F n
j−1/2), (2.2)

wheren = 0, . . . , N indicates thenth time step, withn = 0 corresponding tot = 0, andn = N
to t = T ; j = 1, . . . , Jx denotes thejth spatial node, such thatj = 1 andJx coincide with
x = a andb, respectively; and

F n
j+1/2 =

F (·, un
j+1) + F (·, un

j )

2
− |αn

j+1/2|
un
j+1 − un

j

2
,

αn
j+1/2 =











F n
j+1 − F n

j

un
j+1 − un

j

if un
j+1 6= un

j ,

f(·, uj) if un
j+1 = un

j .

A numerical solution provided by Eq. (2.2) with sufficientlysmall∆t and∆x, satisfying the
corresponding Courant-Friedrichs-Lewy (CFL) condition,are referred to as a reference HFM
throughout the paper.
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Standard (Eulerian) approaches to construction of a ROM forEq. (2.1) often fail due to
the traveling-wave nature of its solution (Lu and Tartakovsky, 2020a; Mojgani and Balajewicz,
2017). In a shock-free scenario, the Lagrangian framework can resolve the translational issue in
the POD or DMD approaches to ROMs by keeping track of the characteristic lines.

In the Lagrangian framework, Eq. (2.1) becomes










dx
dt

= f(x, t, u), x(0) = η,

du
dt

= 0, u(η, 0) = u0(η),

(2.3)

whereη ∈ R is a label of the characteristicx(t). As in the Eulerian case, we use the uniform
discretization of the time interval[0, T ], such that 0= t0 < t1 < . . . < tN = T with time
step∆t = tn+1 − tn. At time t = 0, the space,[a, b], is discretized with a uniform mesh
x0 = [x0

1, . . . , x
0
Jx
]⊤ of mesh size∆x0 = x0

j+1 − x0
j . Unlike its Eulerian counterpart, the

spatiotemporal discretization ofu(x, t) in the Lagrangian framework,un = [un
1 , . . . , u

n
Jx
]⊤ for

n = 0, . . . , N , may be nonuniform in space due to the temporal evolution of the grid nodes
xj(t). The backward Euler discretization, used by Mojgani and Balajewicz (2017), transforms
Eq. (2.3) into

{

xn+1
j = xn

j +∆tf(xn+1
j , (n+ 1)∆t, un+1

j ),

un+1
j = un

j

(2.4)

or, in vector form,
{

Rx(x
n+1) ≡ xn+1 − xn −∆tfn+1(·,un+1) = 0,

Ru(u
n+1) ≡ un+1 − un = 0,

(2.5)

wherexn = [xn
1 , . . . , x

n
Jx
]⊤ denotes the nodes of the Lagrangian computational grid at thenth

time step. This numerical scheme involvesN iterations in the two high-dimensionalJx × 1
vectors,xn+1 andun+1. It provides a Lagrangian HFM.

To construct a ROM, a data set consisting of a sequence ofM solution snapshots (M ≤ N
and, ideally,M ≪ N ) is collected from the HFM. Sinceun is conservative and invariant in
time, we only need the data matrixX with M snapshots of the Lagrangian gridxn:

X =





| | |
x1 x2 . . . xM

| | |



. (2.6)

In the next two subsections, we briefly revisit the algorithms of Lagrangian POD (Mojgani and
Balajewicz, 2017) and Lagrangian DMD (Lu and Tartakovsky, 2020a) used to construct a ROM.

2.1 Lagrangian POD

Identification of the POD modes is based on a reduced singularvalue decomposition (SVD),

X = UΣV∗, (2.7)

whereU ∈ CJx×K andV ∈ CM×K are orthogonal matrices,Σ = CK×K is a diagonal matrix,
andK is the rank of the matrixX approximated by the reduced SVD. Further rank truncation
can be achieved by using the energy criterion,
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r = mink

{

σk
∑K

k′=1 σk′

< ε

}

, (2.8)

whereσk are the diagonal elements ofΣ, andε is a small number (tolerance), chosen to be
ε = 10−4 in all our numerical examples. After the truncation, we get the POD modes

Φ = U(:, 1 : r) =





| | |
φ1 φ2 . . . φr

| | |



. (2.9)

Notice thatr ≪ K ≤ min{Jx,M}, and the basis{φ1, . . . ,φr} is orthonormal. Galerkin pro-
jection in the low-dimensional space spanned by the POD basis provides a ROM (low-fidelity
solution),

xn+1
POD =

r
∑

k=1

x̂n+1
k φk = Φx̂n+1. (2.10)

Ther × 1 vectorx̂n+1 of coefficients is computed as a solution of

Φ⊤R



Φ





|
x̂n+1

|







 = 0, (2.11)

that is obtained by substituting Eq. (2.10) into the first equation in Eq. (2.5) and projecting onto
the subspace spanned byΦ.

2.2 Lagrangian DMD

Lagrangian DMD (Lu and Tartakovsky, 2020a) applies the standard DMD to the Lagrangian
grid matrixX in Eq. (2.6). We denote byK the evolution operator of the characteristic linesxn

described in Eq. (2.4); that is
xn+1 = Kxn, (2.12)

with initial uniform meshx0. Evolution of the Lagrangian mesh grid is predicted by the Algo-
rithm 1, and solutionun can be interpolated afterward.

2.3 ROM Failure for Problems with Shocks: Inviscid Burgers’ Equation

One of the most studied examples of Eq. (2.1) is the inviscid Burgers’ equation:

∂u

∂t
+ u

∂u

∂x
= 0, u(x, 0) = u0(x), (2.13)

which we define on the space-time domain(x, t) ∈ [0, 2π]× [0, 1]. Depending on the boundary
and initial conditions, this problem admits both smooth anddiscontinuous solutionsu(x, t). For
example, a smooth solution is obtained for the periodic boundary conditions,u(0, t) = u(2π, t),
and the initial datau0(x) = 1 + sin(x). In this setting, standard (Eulerian) ROMs fail due to
the inability of SVD to represent a low-rank structure of translational problem, while the ROMs
based on either Lagrangian POD or Lagrangian DMD perform well in terms of both accuracy
and computational efficiency (Lu and Tartakovsky, 2020a).
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Algorithm 1: Lagrangian DMD algorithm (Lu and Tartakovsky, 2020a)

0. Create data matrices of(M − 1) observables,X1 andX2,

X1 =





| | |
x1 x2 . . . xM−1

| | |



, X2 =





| | |
x2 x3 . . . xM

| | |



. (2.14)

1. Apply SVD of matrixX1 ≈ UΣV∗ with U ∈ C
Jx×r,Σ ∈ C

r×r,V ∈ C
(M−1)×r, where

U andV are orthogonal matrices,Σ is a diagonal matrix, andr is the truncated rank chosen
by a certain criterion; for example, Eq. (2.8).

2. ComputeK̃ = U∗X2VΣ−1 as anr × r low-rank approximation ofK.

3. Compute eigen-decomposition ofK̃: K̃W = WΛ, Λ = (λk).

4. Reconstruct eigen-decomposition ofK. Eigenvalues areΛ and eigenvectors areΦ = UW.

5. Futurexn+1
DMD is predicted by

xn+1
DMD = ΦΛn+1b, n > M (2.15)

with b = Φ−1x1.

6. Interpret the solution in the moving grid:

uDMD(x
n
j , n∆t) = u0(x

0
j). (2.16)

A solution to Eq. (2.13) develops shocks in finite time, for example, for a Gaussian-type
initial data,

u0(x) = 0.8+ 0.5exp

[

− (x− 0.3)2

0.001

]

. (2.17)

In the pure Lagrangian approach [Eq. (2.3)], the discretization has to account for shock
formation. Once the characteristic lines cross each other,the Lagrangian mesh becomes sensi-
tive to the choice of discretization ofu[x(t), t]. For instance, a discretization of Eq. (2.3) with
f(·, u) = u,

{

un+1
j = un

j ,

xn+1
j = xn

j +∆tun+1
j ,

(2.18)

would lead to the so-called overshoot that admits multi-value solutions [Fig. 1(a)], which contra-
dicts the entropy condition. This is a typical problem with the Lagrangian framework. It should
come as no surprise that an attempt to build a ROM with the Lagrangian DMD based on the faulty
discretization of Eq. (2.18) likewise results in failure [Fig. 1(b)]. The Lagrangian DMD faithfully
reproduces the unphysical solution obtained with the faulty discretization scheme [Eq. (2.18)].
In other words, the resulting unphysical ROM is not caused bythe DMD algorithm itself; the
data from the full Lagrangian model [Eq. (2.18)] provide inaccurate and incomplete (without
shock) information from the very beginning.

We consider a numerical scheme that is known for its ability to handle shocks: the backward
semi-Lagrangian method
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ROMs for Hyperbolic Problems with Shocks 7

FIG. 1: Solutions of the inviscid Burgers’ equation with a shock. (a) The full solution obtained with the
Lagrangian numerical scheme [Eq. (2.18)] leading to the overshoot. (b) The Lagrangian DMD solution
trained on a few snapshots of the faulty full solution. The reference solution is obtained with Eq. (2.2).























un+1
j = un

j ,

x∗ = xn
j +

∆t

2
un
j ,

xn+1
j = xn

j +
∆t

2

[

u(x∗, tn) + u(x∗, tn+1)
]

,

(2.19)

and employ the (explicit) mid-point rule to avoid implicit iterations. Sinceu(·, tn+1) is un-
changed fromu(·, tn), the evaluations atx∗ can be calculated via interpolation (e.g., via linear
interpolation used below). Figure 2(a) reveals that this numerical scheme is indeed capable to
accurately approximate the solution of the inviscid Burgers’ equation with shocks. However,
the Lagrangian DMD algorithm using snapshots from the full solution [Eq. (2.19)] suffers from

Volume 2, Issue 1, 2021



8 Lu & Tartakovsky

FIG. 2: Solutions of the inviscid Burgers’ equation with a shock. (a) The full solution obtained with the
appropriate Lagrangian numerical scheme [Eq. (2.19)]. (b)The Lagrangian DMD solution trained on a few
snapshots of the accurate full solution. The reference solution is obtained with Eq. (2.2).

instability once a shock is about to form [Fig. 2(b)]. The grid becomes severely distorted once
the characteristic lines intersect each other at the interface where sharp gradients ofu(x, t) oc-
cur. At the intersect, one arrival location ofx corresponds to two different departure values ofu.
However, the DMD modes projection from the HFM to the ROM doesnot keep the topological
information about this multivalued mapping in the ROM process, resulting in the Lagrangian
grid distortion.

Remark 2.1. The Lagrangian POD approach suffers from similar problems (Mojgani and Bal-
ajewicz, 2017). Moreover, the POD projection on the accurate Lagrangian scheme [Eq. 2.19]
would still require interpolation in the high-dimensionalspace. We might need techniques such
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as DEIM (Chaturantabut and Sorensen, 2010) to keep the resulting ROM’s efficiency. Neverthe-
less, extensions of POD are beyond the scope of our study; we focus on DMD-based ROMs due
to their iteration-free nature.

3. HODOGRAPH TRANSFORMATION

We start with a mathematical definition of hodograph transformation reproduced from Clarkson
et al. (1989).

Definition 3.1. A pure hodograph transform is a transformation of the form

τ = t, ξ = u(x, t). (3.1)

For the inviscid Burgers’ equation [Eq. (2.13)], we first consider a scenario where only one
shock is developed from the initial datau0(x) in finite time. This necessitates the following
assumption.

Assumption 3.1. The functionu0(x) satisfies four conditions:

• u0(x) is smooth.

• u0(x) decreases monotonically:u′
0(x) < 0 for all x; and limx→+∞ u0(x) = uR,

limx→−∞ u0(x) = uL with constantsuR < uL.

• u0(x) has a unique inflection point(x∗, u∗) with u∗ = u0(x
∗), meaningu′′

0(x
∗) = 0.

• u′′′
0 (x∗) > 0.

This assumption ensures existence of an inverse functionx(t, u) : [0, T ]× [uR, uL] → [a, b]
of the monotonic functionu(t, x) : [0, T ]× [a, b] → [uR, uL]. The last two assumptions ensure
single-shock formation for illustration purposes. It follows from Definition 3.1 that the inverse
functionx(t, u) = x(τ, ξ) is a pure hodograph transform based on Eq. (3.1).

3.1 Solution before Shock Formation

With u acting as the independent variable andx as the dependent variable, hodograph transfor-
mationx = x(t, u) maps the equation for characteristics [Eq. (2.3)] of the inviscid Burgers’
equation [Eq. (2.13)], before the shock formation timet∗ (defined later), onto

dx(t, u)
dt

= u, x(0, u) = x0(u), for (t, u) ∈ [0, t∗)× [uR, uL]. (3.2)

Assumption 3.1 translates into conditions on the functionx0(u):

• x′
0(u) < 0.

• x0(u) has a unique inflection point at(u∗, x∗).

• x′′′
0 (u∗) < 0.
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10 Lu & Tartakovsky

Differentiation of Eq. (3.2) with respect tou gives

∂2x

∂t∂u
(t, u) = 1, (3.3)

from which
∂x

∂u
(t, u) = x′

0(u) + t, for (t, u) ∈ [0, t∗)× [uR, uL]. (3.4)

Let t∗ = minu[−x′
0(u)] = −x′

0(u
∗) denote the time of shock formation; the shock location is

x∗ = x(u∗, t∗). Sincex′
0(u) < 0, the derivative∂ux(t, u) < 0 as long ast < t∗.

3.2 Solution after Shock Formation

At times t larger thant∗ = −x′
0(u

∗) (i.e., once the shock forms), Eq. (3.2) is no longer valid.
In the(x, u) plane, we would use the entropy (Rankine-Hugoniot) condition to construct a weak
formulation of Burgers’ equation. Its analog in the(u, x) plane gives an equation for the shock
speeds:

s =
1
2
u2

1 − u2
2

u1 − u2
=

u1 + u2

2
, (3.5)

whereu1(t) andu2(t) are defined as the limits ofu(t) from the top and bottom of the shock,
respectively. They are computed as solutions of a system of ordinary differential equations (see
Li et al., 2018 for detailed derivation):















du1

dt
=

1
2

u1 − u2

ψ(u1)− t
,

du2

dt
= −1

2
u1 − u2

ψ(u2)− t
,

(3.6)

whereψ(u) ≡ −x′
0(u). These ODEs are subject to initial conditionsu1(t

∗) = u∗ andu2(t
∗) =

u∗. Sinces = dx∗(t)/dt, an equation for the shock trajectoryx∗(t) is

dx∗(t)

dt
=

u1 + u2

2
. (3.7)

3.3 Summary of Hodograph Solution

Under Assumption 3.1, the hodograph-transformed Burgers’equation [Eq. (2.13)] takes the form
of the following ODEs forx(t, u):











t < t∗ : Eq. (3.2)

t > t∗ :

{

Eq. (3.2) for u ∈ (uR, u2) ∪ (u1, uL)

Eq. (3.7) for u ∈ (u2, u1),

(3.8)

wheret∗ = −x′
0(u

∗), andu1 andu2 are solutions of Eq. (3.6).

Remark 3.1. We can show thatu1(t) is a monotonically increasing function andu2(t) is a mono-
tonically decreasing function, such that

u1 ≥ u∗, u2 ≤ u∗, x′

0(u1) + t ≤ 0, x′

0(u2) + t ≤ 0. (3.9)
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In many cases of interests, and in some our numerical experiments, eitheru1 andu2 are known
or |u2−uR|, |u1−uL| ≪ ∆t (so thatu2 ≈ uR andu1 ≈ uL). This allows one to focus on shock
propagation, that is on Eq. (3.7), without having to solve Eq. (3.6).

Remark 3.2. Functionsu0(x) that do not satisfy Assumption 3.1, such as Eq. (2.17), require a
decomposition of the initial data into monotonic parts. Each monotonic piece ofu0(x) would
have a unique inverse functionx0(u). The entropy condition implies that the increasingx0(u),
x′

0(u) > 0, results in a rarefaction solution, which satisfies Eq. (3.2). The union of the rarefaction
pieces and shock pieces would give the full solution.

Remark 3.3. The inviscid Burgers’ equation is an example of hyperbolic conservation laws with
monotonically increasing flux functionsF (·, u). Generalization to hyperbolic conservation laws
with a convex flux is presented in Appendix A.

4. PHYSICS-AWARE DMD FOR CONSERVATION LAWS WITH SHOCKS

Previous theoretic investigations, for example by Lu and Tartakovsky (2020b), demonstrated
that the key to the success of the DMD in capturing nonlinear dynamics is to identify the un-
derlying Koopman operator. Several numerical studies (Kutz et al., 2018; Rowley et al., 2009;
Williams et al., 2015) confirmed this finding. The Koopman operator theory ensures that a DMD
algorithm utilizes all relevant physical information to learn the dynamics. We refer to this ap-
proach as physics-aware DMD to distinguish it from the conventional DMD that learns only
from (simulations-generated) data.

We review the Koopman operator theory and analyze its connection with hodograph transfor-
mation in the context of hyperbolic conservation laws. Then, we present our general framework
for physics-aware DMD for problems with discontinuous solutions and shocks.

A suitable spatial discretization of Eq. (2.1) leads to a nonlinear dynamical system

du
dt

= N (u), (4.1)

whereu(t) = (u1, . . . , uJx
)⊤ ∈ M ⊂ RJx is the solution vector withuj(t) = u(xj , t) and

discretization nodesxj (j = 1, . . . , Jx); andN is a finite-dimensional nonlinear operator. A
flow mapN∆t : M → M,

N∆t[u(t0)] ≡ u(t0 +∆t) = u(t0) +

∫ t0+∆t

t0

N [u(τ)]dτ, (4.2)

induces the corresponding discrete-time dynamical system

un+1 = N∆t(u
n). (4.3)

Definition 4.1 (Koopman operator: Kutz et al., 2016). Consider a stateu on a smoothJx-
dimensional manifoldM, whose dynamics are described by Eq. (4.1). The Koopman operator
K is an infinite-dimensional linear operator that acts on all observable functionsg : M → C

such that
Kg(u) = g[N (u)]. (4.4)

The discrete-time Koopman operatorK∆t for the discrete dynamical system [Eq. (4.3)] is de-
fined as

K∆tg(u
n) = g[N∆t(u

n)] = g(un+1). (4.5)
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A major benefit of the Koopman operator is the transformationof the finite-dimensional
nonlinear problem [Eq. (4.3)] in the state space into an infinite-dimensional linear problem
[Eq. (4.5)] in the observable space. SinceK∆t is an infinite-dimensional linear operator, it has
an infinite number of eigenvalues{λk}∞k=1 and eigenfunctions{φk}∞k=1. In practice, we must
make a finite approximation of the eigenvalues and eigenfunctions. The following assumption is
essential to the finite approximation and the choice of observables:

Assumption 4.1. Consider a vector ofP observablesy,

yn = g(un) =







g1(u
n)

...
gP (u

n)






, gp : M → C is an observable functionp = 1, . . . , P . (4.6)

Let g be restricted to an invariant subspace spanned by eigenfunctions of the Koopman operator
K∆t.

Under this assumption,g induces a linear operatorK that is finite-dimensional and advances
these eigen-observable functions on this subspace (Brunton et al., 2016). The physics-aware
DMD Algorithm 2 can be applied to approximate the eigenvalues and eigenfunctions ofK from
snapshots data collected in the observable space.

There is no principled way to choose the observables withoutexpert knowledge of a system
under consideration. Selection of observables remains a grand challenge and an active research
area; for example, machine learning and deep learning techniques were recently employed to
identify the underlying Koopman operator (Morton et al., 2018). In the context of conservation
laws with shocks, the equivalency between hodograph transformation and the Koopman opera-
tor, established in this study, facilitates a “smart” choice of the observables. It is implemented
via the Algorithm 2.

Remark 4.1. Numerically,g can be obtained by interpolation from a uniform mesh in the(x, u)
plane to a uniform mesh in the(u, x) plane, and so cang−1. The monotonicity Assumption 3.1
ensures that the observable functions are one-to-one maps.

Remark 4.2. The challenge of incorporating the shock information into the Lagrangian DMD
algorithm of Lu and Tartakovsky (2020a) is the dependence ofshock speed on the dependent
variableu. Hodograph transformation facilitates the incorporationof this implicitly nonlinear
information by turningu into an independent variable and by rendering the shock speed given
by the Rankine-Hugoniot condition linear.

Remark 4.3. For problems with shocks, we need to collect snapshots untiland after a shock
forms. Otherwise, the Koopman operator cannot learn the shock dynamics.

Remark 4.4. For mixed wave problems, we need to collect snapshots until and after all forms of
propagation occur. This requires preobservation, preprocessing, and understanding of the data.
General initial datau0(x) have to be separated into monotonic subregions. Physical quantities,
such as shock speed and intersection point of shock and rarefaction propagation, must be under-
stood from given data features. They give an explicit form ofthe shock observable functiongP ;
although problem-dependent, all the shock information is linear with respect tou.
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Algorithm 2: Physics-aware DMD algorithm

0. Create data matrices of(M − 1) observables,Y1 andY2,

Y1 =





| | |
y1 y2 . . . yM−1

| | |



, Y2 =





| | |
y2 y3 . . . yM

| | |



. (4.7)

Each column of these matrices is given by

yn = g(un) = [g1(u
n), . . . , gP (u

n)]⊤. (4.8)

Here,gnp = x(n∆t,un) with p = 1, . . . , P − 1 is the inverse function ofu(t, x), evaluated
at the prescribed mesh̃u. The last observablegnP is a problem-dependent recording of shock
information.

1. Apply SVD: Y1 ≈ UΣV∗, with orthogonal matricesU ∈ C
P×r andV ∈ C

(M−1)×r and
diagonal matrixΣ ∈ C

r×r, wherer denotes the truncated rank chosen by certain criteria,
for example, Eq. (2.8).

2. ComputeK̃ = U∗Y2VΣ−1 as anr × r low-rank approximation forK.

3. Compute eigen-decomposition ofK̃: K̃W = WΛ, Λ = (λk).

4. Reconstruct eigen-decomposition ofK. Eigenvalues areΛ and eigenvectors areΦ = UW.

5. Futureyn+1
DMD is predicted by

yn+1
DMD = ΦΛn+1b, n > M, (4.9)

with b = Φ−1y1.

6. Transform from observables back to state-space:

un
DMD = g−1(yn

DMD). (4.10)

Remark 4.5. The error of our physics-aware DMD algorithm stems from two sources. The first
is the error due to order reduction in the observable space; it represents the accuracy with which
[Eq. (4.9)] predicts the true observableyn+1. According to the error estimator of Lu and Tar-
takovsky (2020b), this prediction accuracy depends on the number of snapshotsM ; the rank
truncation criteria, as in Eq. (2.8); and the linear operator K induced byg. The second is the
error due to forward and backward mappingg; in the discrete setting, it presents an error in
projection between the(x, u) space and the(u, x) space. The model-order-reduction error and
projection error are studied numerically in Section 5.6.

5. NUMERICAL TESTS

We apply the physics-aware DMD to construct ROMs of scalar conservation laws in different
scenarios, including a shock, rarefaction, and a mixture ofboth. These hyperbolic conservation
laws take the forms of the inviscid Burgers’ equation (Sections 5.1–5.4), the Buckley-Leverett
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equation (Section 5.5), and the Euler equations (Section 5.6). The conservative first-order up-
wind scheme [Eq. (2.2)] is employed as a reference solution (usingJx = Ju), except when an
analytical solution is available. The rank truncation criterion [Eq. (2.8)] withε = 10−4 is used
in all cases.

The observable datayn in Eq. (4.8) rely on the mesh̃u = [ũ1, . . . , ũJu
]⊤ with mesh size

∆ũ = ũj+1 − ũj and the minimum and maximum valuesũ1 andũJu
, respectively. In general,

there are two strategies of collecting data on meshũ:

(1) Solving Eq. (3.8) forx(t, u) in the (u, x) plane on the mesh̃u at discrete timetn, n =
1, . . . ,M ;

(2) Solving Eq. (2.2) foru(t, x) in the (x, u) plane on the mesh̃x at discrete timetn, n =
1, . . . ,M , then interpolating forx(t, u) in the(u, x) plane on the mesh̃u.

In the case of Burgers’ equation and the Buckley-Leverett equation, both strategies are applica-
ble. We choose strategy (1) for the examples in Sections 5.1–5.5 to avoid the projection error
due to the mapping between the(x, u) and (u, x) planes. In the case of the Euler equations
(Section 5.6), only strategy (2) is feasible. Regardless ofthe strategy used, the physics-aware
DMD of Algorithm 2, applied to theM observablesy1, . . . ,yM in Eq. (4.8), allows us to pre-
dict yn+1

DMD for n > M and to obtainun
DMD by concatenating the interpolation ofyn+1

DMD on the
mesh forx.

5.1 Riemann Problem for Burgers’ Equation with Shock

Consider the inviscid Burgers’ equation [Eq. (2.13)] defined for (x, t) ∈ [−0.5, 1.5]× [0, 1] and
with initial data

u0(x) =

{

2 for − 0.5 ≤ x < 0

0 for 0≤ x ≤ 1.5.
(5.1)

This problem admits an analytical solution

u(x, t) =

{

2 for − 0.5 ≤ x < st

0 for st < x ≤ 1.5,
(5.2)

where the shock speeds = 1 is determined from the Rankine-Hugoniot condition.
The discontinuous initial datau0(x) in Eq. (5.2) do not satisfy Assumption 3.1. Thus we

approximate the step functionu0(x) with a smooth function; for example the hyperbolic tangent

u0 ≈ 1− tanh
(x

δ

)

, δ≪ 1, (5.3)

which satisfies Assumption 3.1. In the(u, x) plane,

x0 ≈
δ

2
log

(

2− u0

u0

)

, δ≪ 1. (5.4)

This approximation is valid in the neighborhood of the shockinterface; away from it, Eq. (5.1)
is used. It follows from Eq. (5.4) that

• x′
0(u) = δ/[(u− 2)u] < 0 for u ∈ (0, 2).
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• x0(u) has a unique inflection point at(u∗ = 1, x∗ = 0).

• x′′′
0 (u) = [4(3u2 − 6u+ 4)]/[(u− 2)3u3] and thusx′′′

0 (u∗) = −4 < 0.

Snapshots ofx(t, u) on a uniform mesh̃u = [ũ1, . . . , ũJu
]⊤, which consists ofJu = 2000

equidistant points, are collected atM = 250 times untilT = 0.25. The ROM is used to pre-
dict the solutionu(x, t) for larger times,t > T . The shock-related information is contained
in u1(t) andu2(t), first defined in Eq. (3.5). Since both are constant in this example, no ex-
tra observablegP is needed to record the shock information. Each columnyn in the data ma-
trix is of lengthP = 2000 and elementsyn

j = x(tn, ũj) for j = 1, . . . , Ju. If we were to
add the constant shock informationu1 andu2 to the observables, thenyn would have length
P = 2002 such that elementsyn

j = x(tn, ũj) for j = 1, . . . , Ju are supplemented with two
extra elementsyn

2001 = u1 = 2 andyn
2002 = u2 = 0. Doing so would lead to the same predic-

tion: the DMD algorithm is able to learn the pattern of the last two observables being constant
in time.

Figure 3 demonstrates that the physics-aware DMD algorithmwith hodograph transforma-
tion captures the behavior of the shock propagation. Onlyr = 2 modes are needed to construct
the ROM, which remains accurate for a relatively long time inthe extrapolation mode. Hodo-
graph transformation converts the nonlinear conservationlaw [Eq. (2.13)] with discontinuous
initial data [Eq. (5.1)] into a linear shift with constant speed, which is readily learned from data.
Due to the monotonicity constraint, the solution using hodograph transformation (and the con-
comitant DMD prediction) is only valid in the neighborhood of the shock interface, which is of-
ten of interest in itself. Away from the discontinuity, the Lagrangian DMD (Lu and Tartakovsky,
2020a) is accurate and should be used instead.

5.2 Riemann Problem for Burgers’ Equation with Rarefaction Wave

Consider the inviscid Burgers’ equation [Eq. (2.13)] defined for (x, t) ∈ [−1, 1]× [0, 1] and with
initial data

u0(x) =

{

− 1 for − 1 ≤ x < 0

1 for 0≤ x ≤ 1.
(5.5)

FIG. 3: Physics-aware DMD solution of the inviscid Burgers’ equation with a shock. The reference solution
is given by analytic solution (5.2). 1st order upwind schemeby Eq. (2.2) is also plotted here in solid line.
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This problem admits an analytical solution in the form of a rarefaction wave,

u(x, t) =











− 1 for − 1 ≤ x < −t

x/t for − t < x < t

1 for t < x ≤ 1.

(5.6)

A hyperbolic-tangent approximation analogous to Eq. (5.3)is used to deal with the discontinuity
in the initial datau0(x). And the same structure of data matrix is used in the physics-aware
DMD algorithm 2 withJu = 2000 andM = 250 untilt = 0.25. Since there is no shock in this
scenario, no extra observable is needed to record shock-related information.

Figure 4 shows the same satisfactory ROM results for this problem with a rarefaction wave.
Only r = 2 modes are needed to obtain accurate predictions because the hodograph transform,
x = x(t, u), satisfies a linear ODE [Eq. (3.2)], withu acting as an independent variable. The ab-
sence of a shock suggests that this rarefaction scenario canalso be handled with the Lagrangian
DMD algorithm, with similar results.

Given an accurate approximation of the initial discontinuity (i.e., selectingδ to be sufficiently
small) the ROM trained on the data generated from the solution of Eq. (3.2) is even more accurate
than the HFM solution. The upwind scheme [Eq. (2.2)] has first-order accuracy,O(∆t), while
the physics-aware DMD algorithm can have spectral accuracy. Figures 3 and 4 show that the
physics-aware DMD solution has a much sharper interface than that estimated with the first-
order upwind scheme [Eq. (2.2)].

5.3 Smooth Solution of Riemann Problem for Burgers’ Equation with
Nonmonotonic Initial Data

Consider Burgers’ equation [Eq. (2.13)] defined for(x, t) ∈ [−π/2, 3π/2] × [0, 1] and with
initial data

u0(x) = 1+ sin(x). (5.7)

Since these initial data violate Assumption 3.1, we decompose the interval[0, 2π] into two
parts: in the left part,x ∈ [−π/2, π/2], u0(x) monotonically increases; in the right part,x ∈

FIG. 4: Physics-aware DMD solution of the inviscid Burgers’ equation with a rarefaction wave. The ref-
erence solution is given by analytic solution [Eq. (5.6)]. First order upwind scheme by Eq. (2.2) is also
plotted here in solid line.
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[π/2, 3π/2], it monotonically decreases. Each part has a unique inversefunction ofx0(t, u0); we
denotexl(t, u) as the evolution of the left part andxr(t, u) as the evolution of the right part. Since
the shock formation time ist∗ = 1, the equation of characteristics for this Riemann problemis
equivalent to Eq. (3.2) on any finite-time interval[0, T ] ⊂ [0, 1]. Although this is a shock-free
scenario, the two parts have different wave propagation behaviors. The numerical scheme (2.2)
with Jx = 2000 spatial discretization points andN = 1000 time steps provides the reference
solution. The data used to inform our DMD method consist ofM = 250 snapshots with observ-
ablesyn

p = xl(t
n, ũp) for p = 1, . . . , Ju andyn

p = xr(t
n, ũp−Ju

) for p = Ju + 1, . . . , 2Ju. No
extra observable is needed to record shock-related information since there is no shock formation
in the considered time interval.

Figure 5 demonstrates the ability of the ROM based on our physics-aware DMD algorithm to
capture these nonlinear dynamics. Onlyr = 2 modes are needed to obtain accurate predictions
due to the linearity after hodograph transform. The ROM was trained on the early (t ≤ 0.25)
data, which exhibit smooth gradients. Yet, it accurately captures sharp gradients at later times
(e.g.,t = 1). That is because, in the(u, x) domain of the hodograph transform, higher gradients
of u(·, x) translate into flatter horizontal plots ofx(·, u).

5.4 Riemann Problem for Burgers’ Equation with Rarefaction and Shock

Consider Burgers’ equation [Eq. (2.13)] defined for(x, t) ∈ [0, 2]× [0, 1] and with the Gaussian-
type initial data in Eq. (2.17). This is the setting we used toillustrate the failure of the La-
grangian DMD in Section 2.3 (Fig. 2). The numerical scheme [Eq. (2.2)] withJx = 2000 spatial
discretization points andN = 105 time steps provides the reference solution. The finer time dis-
cretization is needed to satisfy the CFL constraints. The data used to inform our physics-aware
DMD method consist ofM = 3000 snapshots of solving Eq. (3.8). These data are sufficiently
rich to identify the rarefaction and shock behavior of the solution.

A decomposition of the initial datau0(x) in Eq. (2.17) is needed to enforce monotonicity.
The increasing branch ofu0(x) is responsible for the rarefaction and its decreasing branch gives
rise to the shock. It follows from Eq. (2.17) that

xl(u, t
0) = 0.3−

√

−0.001ln(2u− 1.6) and xr(u, t
0) = 0.3+

√

−0.001ln(2u− 1.6).

FIG. 5: Physics-aware DMD solution of the inviscid Burgers’ equation subject to nonmonotonic initial
condition. The reference solution is computed with Eq. (2.2).

Volume 2, Issue 1, 2021



18 Lu & Tartakovsky

We can verify thatxr(u; t
0) has a unique inflection point(u∗, x∗) with u∗ = 0.8+1/(2

√
e) and

x∗ =
√

0.002e and, foru ∈ (0.8, 1.3), bothx′
r(u; t

0) < 0 andx′′′
r (u; t0) < 0. Consequently, the

data are generated from Eq. (3.8) as follows.

1. A uniform mesh̃u = [ũ1, . . . , ũJu
]⊤ is constructed with mesh size∆ũ = ũj+1− ũj , and

ũ1 = 0.8 andũJu
= 1.3.

2. Forxl(u, t), no shock develops. The full discretization [Eq. (3.2)] gives










xl(ũj , t
n+1)− xl(ũj , t

n)

∆t
= ũj ,

xl(ũj , t
0) = 0.3−

√

−0.001ln(2ũj − 1.6).
(5.8)

3. Forxr(u, t), the shock formation timet∗ is calculated as

t∗ = minu{−x′

r(u, t
0)} ≈ 0.074. (5.9)

a. If tn+1 ≤ t∗, then










xr(ũj , t
n+1)− xr(ũj , t

n)

∆t
= ũj ,

xr(ũj , t
0) = 0.3+

√

−0.001ln(2ũj − 1.6).

(5.10)

b. If tn+1 > t∗, u2(t
n) = uR = 0.8 is known andu1(t

n) is approximated by the
intersection ofxl(u, t

n) andxr(u, t
n) due to the continuity of the solution; that is











u1(t
n) = argmin

ũj

|xr(ũj , t
n)− xl(ũj , t

n)|, u2(t
n) = uR = 0.8,

xr(ũj , t
n+1)− xr(ũj , t

n)

∆t
=

u1(t
n) + u2(t

n)

2
.

(5.11)

4. The observable vectoryn of lengthP = 2Ju + 2 comprisesyn
p = xl(ũp, t

n) for p =
1, . . . , Ju; yn

p = xr(ũp−Ju
, tn) for p = J + 1, . . . , 2Ju; andyn

2Ju+1 = u1(t
n) and

yn
2Ju+2 = u2(t

n).

Figure 6 shows that the physics-aware DMD based on hodographtransformation provides
an accurate ROM for this Riemann problem, which could not be treated with the original La-
grangian DMD. The physical shock information, which is needed for the last two observable
functions, includes the shock speed and the intersection point of the rarefaction wave and the
shock trajectory. In this setting, the shock speed varies with time but is still linear with respect
to u. The physics-aware DMD algorithm can learn this linear relationship from the data with no
difficulties. Only r = 4 modes are needed and all of the advantages of linearity are achieved
with the hodograph transform.

5.5 Riemann Problem for Buckley-Leverett’s Equation

Consider the hyperbolic conservation law [Eq. (2.1)] with anonmonotonic flux function,

F =
u2

u2 + a(1− u)2
, a = 0.5, (5.12)
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FIG. 6: Physics-aware DMD solution of the inviscid Burgers’ equation with a rarefaction wave and shock.
The reference solution is computed with Eq. (2.2).

that is defined for(x, t) ∈ [0, 2]× [0, 0.5] and is equipped with initial data

u0(x) =

{

1 for 0≤ x < 1

0 for 1≤ x ≤ 2.
(5.13)

The Buckley-Leverett equation [Eqs. (2.1) and (5.12)] withinitial condition [Eq. (5.13)] is
widely used to describe the injection process of immiscibletwo-phase flow in porous media.

Similar to Eq. (5.3), the initial discontinuity is approximated with the hyperbolic tangent
function. The hodograph treatment of this more general problem is provided in Appendix A.
The numerical scheme [Eq. (2.2)] withJx = 2000 spatial discretization points andN = 1000
time steps provides the reference solution up tot = 0.5. The data used to inform our physics-
aware DMD method consist ofM = 250 snapshots of solving Eq. (A.11) withJu = 2000
discretization points untilt = 0.125. This set of snapshots is sufficiently rich to reveal a self-
similar structure of the solution.

Although the initial datau0 are monotonic, their decomposition is needed according to the
convex hull construction of the flux function (Appendix A). The reformulation involves two
branches of different linear equations with two sets of the disjoint initial data. Similar to the
previous section, the last two observation functions comprises the shock speed as well as the
intersection point of the rarefaction wave and the shock trajectory. This intersection point defines
the magnitude of the shock and informs the convex hull construction of the flux function.

Figure 7 demonstrates that the physics-aware DMD withr = 4 modes accurately captures
the future states in a relatively long time. Hodograph transformation allows us to determine
the underlying linear Koopman operator in the nonlinear conservation laws. The iteration-free
feature of DMD enhances its effectiveness and efficiency.

Remark 5.1. In laboratory experiments with multiphase flows in porous media, we often measure
the flow rates of two fluids and approximates the displacementprofiles. Such observational data
can be used to construct an effective ROM after interpolating them from the(x, u) plane to
the (u, x) plane. Such a construction would not require any knowledge of the empirical flux
function, such as Eq. (5.12), and its parameters, such asa.
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FIG. 7: Physics-aware DMD solution of the Buckley-Leverett equation, which has a nonmonotonic flux
function. The reference solution is computed with Eq. (2.2).

5.6 Riemann Problem for Euler Equations

Consider a one-dimensional Sod shock tube problem,

∂

∂t





ρ

ρu
E



+
∂

∂x





ρu
ρu2 + p
u(E + p)



 = 0, (x, t) ∈ [−0.5, 0.5]× [0, 0.25],

E =
p

γ− 1
+

1
2
ρu2, γ = 1.4,

(5.14)

with initial conditions

ρ(x, 0) =

{

1 x < 0.5

0.125 x ≥ 0.5
, p(x, 0) =

{

1 x < 0.5

0.1 x ≥ 0.5
, u(x, 0) = 0. (5.15)

This problem admits an analytic solution obtained, for example via the method of characteristics.
Figure 8 shows that the solution is a mixture of a rarefactionwave and a shock, which undermines
the performance of conventional ROM approaches. For example, Fig. 9(a) shows the failure of
the standard (Eulerian) DMD to construct a ROM in the(x, ρ) plane, with similarly unsatisfac-
tory performance forp andu. In these simulations,x is discretized usingJx = 1000 equidistant
points, andM = 250 snapshots data are collected fromt = 0 to t = 0.0625. The prediction
at later time,t = 0.125, already shows tremendous errors and loss of correct rarefaction/shock
features.

Our hodograph-based physics-aware DMD resolves this challenge. Figure 9(b) demonstrates
that it yields an accurate ROM by interpolating theM = 250 snapshots of the analytical solu-
tion onto the(ρ, x) plane in which theρ coordinate is discretized with aJρ = 1000 equidistant
mesh. Here,x(ρ, t) is selected as the observable and the linear Koopman operator on x(ρ, t)
is efficiently represented byr = 210 modes in the physics-aware DMD algorithm. Nearly 4/5
rank reduction is obtained and the computational time for DMD prediction is negligible due to its
iteration-free nature. Although an equation forx(ρ, t) is not available, the hodograph transform
for one-dimensional scalar hyperbolic equations motivates this proper selection of an observable.
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The hodograph transform for multidimensional PDEs is more complicated (e.g., Li and Zheng,
2009; Mohyuddin et al., 2008) and not directly applicable toour current ROM framework. Our
results demonstrate that while the connection between the hodograph transform and the Koop-
man theory is unclear in multiple dimensions, it can still guide the selection of observables.

Finally, we investigate the model-order reduction errorex and the projection errorepr dis-
cussed in Remark 4.5. In this example,ex is the DMD prediction error in terms ofx(ρ, t),

enx = ‖yn − yn
DMD‖,

yn = [x(ρ1, t
n), · · · , x(ρJρ

, tn)]⊤ = g([ρ(x1, t
n), · · · , ρ(xJx

, tn)]⊤).
(5.16)

This quantity provides a measure of the discrepancy betweenthe reference observable values and
their DMD prediction, without isolating various sources ofthe error. We also considerepr, the
error in creating the observablex(ρ, t) via projection from the(x, ρ) plane onto the(ρ, x) plane
during preprocessing and in estimating the solutionρ(x, t) backward during post processing.

FIG. 8.
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FIG. 8: The analytical solution to the Sod shock tube problem [Eq. (5.14)]: (a) density, (b) pressure, (c)
velocity, and (d) energy; all evaluated at timet = 0.25

Bothex andepr contribute to the total erroreρ in DMD estimation of the solutionρ(x, t),

en
ρ
= ‖ρn − ρ

n
DMD‖, ρ

n = [ρ(x1, t
n), · · · , ρ(xJx

.tn)]⊤, ρ
n
DMD = g−1(yn

DMD). (5.17)

Temporal evolution of the errorsex andeρ is plotted in Fig. 10 with both errors [Eqs. (5.16)
and (5.17)] reported inL2 norm and defined on the corresponding meshesJρ = 1000 and
Jx = 1000. The model-order-reduction errorex decreases with the number of snapshotsM ,
resulting in a more accurate prediction. This is consistentwith the intuition that DMD can bet-
ter capture the dynamics by learning from richer/larger data sets. For example, insufficient data
(M = 125) fail to sample the essential features in the dynamics ofx(ρ, t). The rank truncationε
also plays a crucial role in the model-order-reduction error ex: significant accuracy is sacrificed if
essential singular values are truncated in SVD (e.g., by setting ε = 10−2) but retaining too many
singular values, e.g., by settingε = 10−4, increases the impact of noise. This issue has been
discussed in several DMD studies (e.g., by Kutz et al., 2016). The choice of a rank-truncation
criteria is nontrivial and, thus, the optimal truncation isproblem-dependent. The total DMD error
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FIG. 9: ROMs constructed by (a) the standard DMD and (b) the physics-aware DMD. The former uses
snapshots ofρ(x, t) in the(x, ρ) plane, while the latter relies on snapshots ofx(ρ, t) in the(ρ, x) plane.

eρ is shown in the bottom row of Fig. 10. In addition toex, this error also accounts for the projec-
tion between the(x, ρ) plane and the(ρ, x) plane, which was conducted via a shape-preserving
interpolation method. For a well-controlled model-reduction error,ex ∼ O(10−2), the total er-
ror,eρ ∼ O(10−1), is dominated by the projection error. For insufficient data(M = 125) or low
rank truncation (ε = 10−2), the large total error in the prediction regime,eρ ∼ O(1), is dom-
inated by the model-reduction error,ex ∼ O(1). The time evolution of the errors is oscillatory
due to the interpolation during the transformation betweenobservables and state-space.

6. SUMMARY AND CONCLUSIONS

The Lagrangian DMD (Lu and Tartakovsky, 2020a) provides a robust tool to construct ROMs of
hyperbolic conservation laws, a class of problems for whichstandard (Eulerian) DMD methods
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FIG. 10.
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FIG. 10: Prediction errors of the ROMs constructed by the physics-aware DMD with different parameters.
The top row shows the model-order reduction errorex defined in Eq. (5.16); the total DMD erroreρ,
defined in Eq. (5.17), is shown in the bottom row.

fail. However, this algorithm is limited to problems that admit smooth strong solutions. We
extended it to problems with shocks and rarefaction waves, thus addressing a long-standing
challenge in ROM construction. This challenge stems from severe grid distortion typical of La-
grangian POD and DMD algorithms. Lacking information aboutshocks and discontinuities,
DMD mode projection from the HFM to a ROM does not preserve thetopological structure
of the interface where characteristic lines cross each other. We resolved this issue by com-
bining hodograph transformation with physics-aware DMD algorithm (Lu and Tartakovsky,
2020a). The relevant research codes are available at https://github.com/DDMS-ERE-Stanford/
dmd hodograph.

Hodograph transforms are consistent with the Koopman operator theory in that both aim
to identify linear structures in the underlying nonlinear dynamics. Our physics-aware DMD al-
gorithm enhanced by hodograph transformation is capable ofpredicting the dynamics of weak
solutions, which satisfies the entropy condition. We demonstrated the accuracy and robustness
of our algorithm on several numerical tests.

To the best of our knowledge, our study is the first to establish a connection between hodo-
graph transformation and the Koopman operators. By providing a principled way for identifying
the observables needed by the Koopman operator theory, thisconnection opens a door to con-
struct ROMs for a wide range of nonlinear PDEs that are linearizable by hodograph transforma-
tion (Clarkson et al., 1989). There is an algorithmic methodto do the linearization viaextended
hodograph transforms. As a result, we can take advantage of the linearity and design robust
iteration-free physics-aware DMD. Moreover, data-drivenmodeling and uncertainty quantifica-
tion can be further explored using this framework. Our numerical experiments demonstrated that
many physical quantities, such as the shock speed in Burgers’ equation and the mobility constant
in the Buckley-Leverett equation, can be learned from (simulation) data as long as we analyze
them in a “smart” way.

We established a connection between the hodograph transforms and the Koopman oper-
ator theory for one-dimensional scalar hyperbolic PDEs. A similar idea was carried over to
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one-dimensional hyperbolic systems. The construction of ROMs for multidimensional hyper-
bolic systems remains an open challenge. We leave such multidimensional interpretations of the
Koopman operator theory in terms of hodograph (or other) transforms for future studies. Another
future work direction is to improve the current framework inhandling experimental data, which
are potentially contaminated by measurement noise. Due to the regularity at the shock front, we
would expect Eulerian DMD approaches and regular DMD approaches to have stability prob-
lems. The current framework is expected to be more robust as the hodograph transform improves
the regularity at the shock front (i.e., shocks become flat constants). For mixed wave problems,
the current framework can still be sensitive to noise at the intersection of different waves. In an
attempt to deal with experimental data, we would consider combining the proposed method with
noise filters.
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APPENDIX A. SCALAR CONSERVATION LAWS WITH CONVEX FLUXES

Burgers’ equation has a monotonically increasing flux function. Here, we extend our analy-
sis to smooth, strictly convex flux functionsF (u). We consider a hyperbolic conservation law
[Eq. (2.1)] defined for(x, t) ∈ R × [0, T ]. It is subject to the initial conditionu(x, 0) = u0(x),
where the initial datau0(x) satisfy the following assumption.

Assumption A.1. The real-valued functionu0(x) is such that

• limx→±∞ u0(x) = ∓1, and

• u0(x) is non-increasing and, therefore, the inverse functionx(u0) is well defined on−1 ≤
u0 ≤ 1.

Remark A.1. The domain of definitionx ∈ R can be generalized to a finite-length interval
(uR, uL). The derivation is similar.

A.1 Solution before Shock Formation

Similar to Section 3.1, hodograph transformation yields anequation forx(t, u):

dx
dt

(t, u) = f(u), x(0, u) = x0(u); u ∈ (−1, 1). (A.1)

The convexity ofF (u) ensures that its derivativef(u) is an increasing function. LetG denote
the inverse function off :

G[f(u)] = f [G(u)] = u. (A.2)

Then, definingy(t, u) = x[t, G(u)], Eq. (A.1) becomes

dy
dt

(t, u) = u, y(0, u) = y0(u) = x0[G(u)]; u ∈ (−1, 1). (A.3)

Differentiating both sides of this equation with respect tou,
∂2y

∂t∂u
= 1, (A.4)

which gives
du
dt

(t, u) = y′0(u) + t. (A.5)

Therefore the shock formation time is determined by

t∗ = −minuy
′

0(u) = −y′0[f(u
∗)]. (A.6)

A.2 Solution after Shock Formation

The shock speeds is given by the Rankine-Hugoniot condition,

s =
F (u1)− F (u2)

u1 − u2
, (A.7)
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whereu1(t) andu2(t) are defined as the limits ofu(t) from the top and bottom of the shock,
respectively. Sinces = dx∗/dt, this gives an equation for the shock trajectoryx∗(t),

dx∗

dt
=

F (u1)− F (u2)

u1 − u2
. (A.8)

A system of coupled ODEs foru1(t) andu2(t) is derived in Li et al. (2018):

du1

dt
= F1(u1, u2) ≡

1
g(u1)− f ′(u1)t

[

f(u1)−
F (u1)− F (u2)

u1 − u2

]

, (A.9)

du2

dt
= F2(u1, u2) ≡

1
g(u2)− f ′(u2)t

[

f(u2)−
F (u1)− F (u2)

u1 − u2

]

, (A.10)

whereg(u) = −x′
0(u). These ODEs are subject to initial conditionsu1(t

∗) = u∗ andu2(t
∗) =

u∗.

A.3 Summary of Hodograph Solution

In summary, the reformulation for general scalar conservation law with convex flux is











t < t∗ : Eq. (A.1),

t > t∗ :

{

Eq. (A.1) for u ∈ (uR, u2) ∪ (u1, uL),

Eq. (A.8) for u ∈ (u2, u1),

(A.11)

wheret∗ = −x′
0(u

∗).

Remark A.2. We can show thatu1(t) is monotonically increasing in time andu2(t) is monoton-
ically decreasing, so that

u1 ≥ u∗, u2 ≤ u∗, x′

0(u1) + t ≤ 0, x′

0(u2) + t ≤ 0. (A.12)

In many cases of interests, and in our numerical experiment,eitheru2 = uR andu1 = uL or
|u2 − u1| ≪ ∆t (so thatu2 ≈ uR andu1 ≈ uL). This allows us to focus on shock propagation
[i.e., on Eq. (3.7)] without having to solve Eq. (A.9).

Remark A.3. For the more general initial conditionu0, we need to decomposeu0(x) into regions
of monotonicity. Each monotonic piece ofu0 would have a unique inverse functionx0(u0).
Then, based on the generalized entropy condition, we construct the convex hull for the flux
functionF (u), providing a way to decompose the initial data. Shock propagating initial data
and rarefaction propagating initial data are determined afterward. Then, the full solution is the
combination of the rarefaction pieces and the shock pieces.
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