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Construction of reduced-order models (ROMs) for hyperbolic conservation laws is notoriously chal-
lenging mainly due to the translational property and nonlinearity of the governing equations. While
the Lagrangian framework for ROM construction resolves the translational issue, it is valid only be-
fore a shock forms. Once that occurs, characteristic lines cross each other and projection from a high-
fidelity model space onto a ROM space distorts a moving grid, resulting in numerical instabilities.
We address this grid distortion issue by developing a physics-aware dynamic mode decomposition
(DMD) method based on hodograph transformation. The latter provides a map between the original
nonlinear system and its linear counterpart, which coincides with the Koopman operator. This strat-
egy is consistent with the spirit of physics-aware DMDs in that it retains information about shock
dynamics. Several numerical examples are presented to validate the proposed physics-aware DMD
approach for construction of accurate ROMs.

KEY WORDS: conservation law, Koopman operator, proper orthogonal decomposition,
hodograph transformation, learning ROMs

1. INTRODUCTION

Since introduction of Euler equations, hyperbolic conagon laws play a significant role in

gas dynamics, astrophysics, plasma, traffic flow, multipHemsv in porous media (Bear, 2013;
Chang and Hsiao, 1989; Courant and Friedrichs, 1999; SHi,; Mhitham, 2011) and other
fields of science and engineering. Wave-like solutions gfenigolic equations can exhibit var-
ious rarefaction and shock behaviors, whose occurrengegdyr depends on a functional form
of the flux function. Discontinuity and uniqueness of suchusons pose challenges in theo-
retical treatment of hyperbolic conservation laws (Olejirli957; Smoller, 2012). Theoretical
advances, such as entropy conditions and the concept of lasedation (Harten, 1983; Lax,

1971), ameliorate this difficulty by providing physical énpretation to these solutions. Like-
wise, numerical high-resolution methods have been dedigmeesolve nonlinearities and accu-
rately capture shocks (LeVeque, 1992; Majda and Osher,;X93t%r and Chakravarthy, 1984).
Although continued developments in scientific computingehamproved the performance of
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high-resolution simulations, their computational cosbften too high to model complex sys-
tems at spatiotemporal resolutions and scales of intérstcost can become prohibitive when
used in the context of uncertainty quantification or datansitgtion, both of which require a
large number of repeated forward model runs.

Reduced-order models (ROMs) provide an efficient altevaadd their high-fidelity, physics-
based counterparts that can be deployed in large-scaléphydics simulations. Robust tools
for construction of ROMs for problems described by ordirgifferential equations or parabolic
partial differential equations (PDES) include proper ogbnal decomposition (POD) (Benner
et al., 2015; Kerschen et al., 2005; Rowley, 2005) and dyoanude decomposition (DMD)
(Alessandro and Nathan, 2017; Brunton et al., 2016; Sch2@dQ; Williams et al., 2013). The
challenge of extending these techniques to hyperbolic eectbn-dominated parabolic PDEs
with smooth solutions was met by Lu and Tartakovsky (2026&)ugh development of the
physics-aware DMD and POD approaches within a Lagrangamework. However, in the
presence of strong shocks and/or sharp gradients, Lagraf§dD methods can generate nu-
merical instability caused by grid distortion (Mojgani aBdlajewicz, 2017). Once characteris-
tics of a nonlinear hyperbolic PDE intersect each otherptiogection from a high-dimensional
manifold of the high-fidelity model (HFM) onto a low-dimensial subspace of the low-fidelity
model (e.g., ROM) is not guaranteed and typically fails tegerve topological properties of the
original HFM. We elaborate on this point in Section 2, in temalevant to DMD.

We use hodograph transformation (Hamilton, 1847) to restlis outstanding issue in con-
struction of ROMs for PDEs with discontinuous solutions amcks. Hodograph diagrams
originated in meteorology to plot wind from soundings of thaatmosphere. Since then, hodo-
graph transformation morphed into a technique designecisform nonlinear PDEs into lin-
ear ones by interchanging the dependent and independésiblest Hodograph-type transfor-
mations have been used to find quasilinear analogs of semiliequations and to derive new
analytical solutions to special classes of PDEs (Clarksah. £1989). Advantages of mapping
nonlinear PDEs onto their linear counterparts are setlent: analytical tools available for lin-
ear PDEs provide better understanding of the behavior ofudien, and numerical solvers for
linear systems are both easier to implement and compugdiyarheaper.

The Koopman operator theory (Koopman, 1931) shares theafdaddograph transforma-
tion: a Koopman operator is an infinite-dimensional lingaemator that represents the underlying
finite-dimensional nonlinear dynamic system by judicigudioosing observable functions. It is
also similar in its goal to integral transformations thaproartain classes of nonlinear PDEs onto
their linear counterparts; for example, the Cole-Hopfsfarmation and the Kirchhoff transfor-
mation map, respectively, Burgers’ equation and a classwulimear diffusion (heat conduction)
equations onto a linear diffusion equation. These intefeaisformations have been used in
the context of the Koopman operator theory and DMD/POD testroted ROMs for Burgers'’
equation (Kutz et al., 2018) and a nonlinear diffusion eiquaflu and Tartakovsky, 2020b). A
major goal of our study is to establish clear connectiong/beh hodograph transformation and
the Koopman theory. This relationship between the two is tised both to identify observables
for a Koopman operator via hodograph transformation andtwsttuct ROMs for hyperbolic
conservation laws with shocks via DMD.

Besides the choice of the observable functions, anotheiriggdient of the success of a
DMD algorithm is data availability. As proved theoretigalhy Tu et al. (2014) and verified
numerically by Lu and Tartakovsky (2020b), data have to Wécgently rich for the learning
algorithm to capture all essential features of the undeglgiynamics. Therefore, a key condition
in our DMD framework for mixed wave problems is that the dagacbllected until and after all

Journal of Machine Learning for Modeling and Computing



ROMs for Hyperbolic Problems with Shocks 3

forms of propagation occurs. A resulting ROM remains valeals a predictor of the continuing

propagation. For example, the Buckley-Leverett equasee Section 5.5) is widely used in the
oil and gas industries to describe water injection and abpction processes. A shock profile
forms right after the injection begins. Quantities of imtgtrare breakthrough time (i.e., the time
when the shock front exits the domain) and water-cut curee the cumulative rarefaction curve
after the breakthrough), which can be efficiently predidig@ successful ROM.

A general procedure of the physics-aware DMD algorithm asaonnection with Koop-
man operators are reviewed in Section 2. This section alstaits a numerical demonstration
of the failure of Lagrangian-based ROMs to capture the dyosutlescribed by conservation
laws with shocks. We illustrate the use of hodograph transition by analyzing the inviscid
Burgers’ equation (Section 3) and more general hyperb@E$with a convex flux function
(Appendix A). In Section 4, we combine hodograph transfdiomawith the Koopman operator
theory to design a physics-aware DMD algorithm for congioumcof ROMs for conservation
laws with shocks. Several numerical tests are presenteédtidd 5 to validate the proposed
physics-aware DMD approach. Main conclusions drawn fromstudy are summarized in Sec-
tion 6.

2. CONSTRUCTION OF ROMS AND THEIR FAILURE FOR PROBLEMS WITH
SHOCKS

Consider a state variablgz, t) : [a,b] x [0, T] — R, where the constanisb € R andT € R™.
The dynamics ofi(z, t) is described by a one-dimensional scalar conservation law:

Ju n OF (x,t,u) Ju Ju OF (x,t,u)

This hyperbolic PDE is subject to the initial conditiaiiz,t = 0) = wo(z) and, when ap-
propriate (i.e., whet/|, [b| < o0), boundary conditions at and/orb. The intervalg0, T'] and
[a, b] are discretized wit{ N + 1) and.J, nodes separated, respectively, iy and Az. The
uniform spacial mesh is denoted Ry= [z1,...,z;,]". To be specific, we solve Eq. (2.1) with
a conservative first-order upwind scheme (LeVeque, 1992):

it = = o (Flge = Filae), (2:2)

wheren = 0, ..., N indicates the:th time step, withm = 0 correspondingto = 0, andn = N
tot =1T;j =1,...,J, denotes thegth spatial node, such that= 1 and.J, coincide with
x = a andb, respectively; and

[ F(oujyy) + F(uf) o Uity Uy
Jh12 = 5 = logya el =5
FJn‘H- B an ; n n
——— if ul, Ful,

n = u,—u? J J
Xjt12 = j+1 J
f,uy) i ul, =uj.

A numerical solution provided by Eq. (2.2) with sufficientiynall At and Az, satisfying the
corresponding Courant-Friedrichs-Lewy (CFL) conditiang referred to as a reference HFM
throughout the paper.

Volume 2, Issue 1, 2021



4 Lu & Tartakovsky

Standard (Eulerian) approaches to construction of a ROMEfpr(2.1) often fail due to
the traveling-wave nature of its solution (Lu and Tartalkgy2020a; Mojgani and Balajewicz,
2017). In a shock-free scenario, the Lagrangian framewankresolve the translational issue in
the POD or DMD approaches to ROMs by keeping track of the deriatic lines.

In the Lagrangian framework, Eq. (2.1) becomes

dx

E:f(watau)a CC(O)ZTL

o (2.3)
E = Oa U('ﬂa 0) = Uo(ﬂ)a

wheren € R is a label of the characteristig(¢). As in the Eulerian case, we use the uniform
discretization of the time intervd0, T}, such that 0= t° < ¢! < ... < t¥ = T with time
stepAt = t"*+1 — 7 Attimet = 0, the spacefa, b], is discretized with a uniform mesh
x0 = [29,...,25,]" of mesh sizeAz® = 29, , — 29. Unlike its Eulerian counterpart, the
spatiotemporal discretization ofz, t) in the Lagrangian frameworky™ = [uf, ..., u" ]" for

n = 0,..., N, may be nonuniform in space due to the temporal evolutiorhefgrid nodes
x;(t). The backward Euler discretization, used by Mojgani andajgalicz (2017), transforms

Eq. (2.3) into

n+l _ _n n+1 n+1
Ly =T, +Atf($j+ ,(n+1)At,uj+ ),
it . (2.4)
Uy =Y
or, in vector form,
R, (x"™) = x" —x" — Atf" (., u" ) =0, 2.5)
R,(u"*) =u" —u" =0, .
wherex” = [z7,... ,:cf}z]T denotes the nodes of the Lagrangian computational grickattth

time step. This numerical scheme involv&siterations in the two high-dimensiond], x 1
vectorsx" ! andu™*. It provides a Lagrangian HFM.

To construct a ROM, a data set consisting of a sequendé eblution snapshots\{ < N
and, ideally,M < N) is collected from the HFM. Sinca” is conservative and invariant in
time, we only need the data mat& with M snapshots of the Lagrangian gsitt:

| |
X=|xt x> ... xM]|. (2.6)
|

In the next two subsections, we briefly revisit the algorighof Lagrangian POD (Mojgani and
Balajewicz, 2017) and Lagrangian DMD (Lu and Tartakovsld2@a) used to construct a ROM.

2.1 Lagrangian POD
Identification of the POD modes is based on a reduced singalae decomposition (SVD),
X =UXV~", (2.7)

whereU € C/=*K andV € CM*X are orthogonal matricey; = CX*¥ is a diagonal matrix,
and K is the rank of the matriX approximated by the reduced SVD. Further rank truncation
can be achieved by using the energy criterion,
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r_mink{% <a}, (2.8)

=19k

where o, are the diagonal elements &f, and¢ is a small number (tolerance), chosen to be
¢ = 10~*in all our numerical examples. After the truncation, we getPOD modes

| |
®=UGL:r) = b1 b2 ... & (2.9)
| |

Notice thatr < K < min{J,, M}, and the basi§¢d, ..., ..} is orthonormal. Galerkin pro-
jection in the low-dimensional space spanned by the PODslmsvides a ROM (low-fidelity
solution),

xpop = ip Ty = @x" L (2.10)
k=1

Ther x 1 vectorx™*?! of coefficients is computed as a solution of

|
®'R(®[x"| | =0, (2.11)
|

that is obtained by substituting Eg. (2.10) into the firstagepn in Eq. (2.5) and projecting onto
the subspace spanned &y

2.2 Lagrangian DMD

Lagrangian DMD (Lu and Tartakovsky, 2020a) applies thedsath DMD to the Lagrangian
grid matrixX in Eq. (2.6). We denote bIK the evolution operator of the characteristic ling's
described in Eq. (2.4); that is

x" = Kx", (2.12)

with initial uniform meshx®. Evolution of the Lagrangian mesh grid is predicted by thgoAl
rithm 1, and solutioma™ can be interpolated afterward.

2.3 ROM Failure for Problems with Shocks: Inviscid Burgers’ Equation

One of the most studied examples of Eq. (2.1) is the inviscithBrs’ equation:

ou ou

T + up- = 0, u(z, 0) = uo(z), (2.13)

which we define on the space-time doméint) € [0, 27] x [0, 1]. Depending on the boundary
and initial conditions, this problem admits both smooth disgontinuous solutions(x, t). For
example, a smooth solution is obtained for the periodic bamnconditionsy (0, t) = u (2w, t),
and the initial datai(z) = 1 + sin(x). In this setting, standard (Eulerian) ROMs fail due to
the inability of SVD to represent a low-rank structure ohskational problem, while the ROMs
based on either Lagrangian POD or Lagrangian DMD perfornt iweerms of both accuracy
and computational efficiency (Lu and Tartakovsky, 2020a).
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Algorithm 1: Lagrangian DMD algorithm (Lu and Tartakovsky, 2020a)
0. Create data matrices 6} — 1) observablesX; andXs,

X, =[xt x* ... xM1, X, =[x x® ... xM]|. (2.14)

1. Apply SVD of matrixX; ~ UXV* with U € C’=*", 3 € C"*", V € CM-Dx" where
U andV are orthogonal matricey; is a diagonal matrix, andis the truncated rank chosen
by a certain criterion; for example, Eq. (2.8).

. ComputeK = U*X,VX 1 as anr x r low-rank approximation oK.
. Compute eigen-decomposition K. KW = WA, A = (A;).

. Reconstruct eigen-decompositionk§f Eigenvalues arA and eigenvectors ale = UW.

a A w DN

. Futurex}1 L, is predicted by
xpit = ®A" b, n> M (2.15)
withb = <I’*lx1.
6. Interpret the solution in the moving grid:

upmp (7], nAt) = uo(x?). (2.16)

A solution to Eq. (2.13) develops shocks in finite time, fomeple, for a Gaussian-type
initial data,

(2.17)

up(r) = 0.8+ O.Sexp[—w}

0.001

In the pure Lagrangian approach [Eq. (2.3)], the discrétimahas to account for shock
formation. Once the characteristic lines cross each other.agrangian mesh becomes sensi-
tive to the choice of discretization afiz(¢), ¢t]. For instance, a discretization of Eq. (2.3) with

f(a U) = u, X
n+1l _ n
{uﬂ' o (2.18)

:c;-“Ll = :c? + Atu?“,

would lead to the so-called overshoot that admits multit@aolutions [Fig. 1(a)], which contra-
dicts the entropy condition. This is a typical problem witle t_agrangian framework. It should
come as no surprise that an attempt to build a ROM with thedragjan DMD based on the faulty
discretization of Eq. (2.18) likewise results in failuregFL(b)]. The Lagrangian DMD faithfully
reproduces the unphysical solution obtained with the yadikcretization scheme [Eq. (2.18)].
In other words, the resulting unphysical ROM is not causedhieyDMD algorithm itself; the
data from the full Lagrangian model [Eq. (2.18)] providedoarate and incomplete (without
shock) information from the very beginning.

We consider a numerical scheme that is known for its abitityandle shocks: the backward
semi-Lagrangian method
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Lagrangian vs. Reference (Eulerian) Solution
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FIG. 1: Solutions of the inviscid Burgers’ equation with a shocR.Tae full solution obtained with the
Lagrangian numerical scheme [Eq. (2.18)] leading to theshaot. (b) The Lagrangian DMD solution
trained on a few snapshots of the faulty full solution. THemence solution is obtained with Eq. (2.2).

n+l _ n
Uy = Uy,

At
Tt =z} + 7uy,

x}”‘l =] + % [u(z*, t") + u(z*, "],
and employ the (explicit) mid-point rule to avoid implicterations. Sinceu(-,t"*1) is un-
changed fromu(-,t"), the evaluations at* can be calculated via interpolation (e.g., via linear
interpolation used below). Figure 2(a) reveals that thimerical scheme is indeed capable to
accurately approximate the solution of the inviscid Busgequation with shocks. However,
the Lagrangian DMD algorithm using snapshots from the folllion [Eq. (2.19)] suffers from

(2.19)
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Lagrangian vs. Reference (Eulerian) Solution
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FIG. 2: Solutions of the inviscid Burgers’ equation with a shocR.Tae full solution obtained with the
appropriate Lagrangian numerical scheme [Eq. (2.19)[Tfi®) Lagrangian DMD solution trained on a few
snapshots of the accurate full solution. The referencdisalis obtained with Eq. (2.2).

instability once a shock is about to form [Fig. 2(b)]. Thedgecomes severely distorted once
the characteristic lines intersect each other at the exterfvhere sharp gradients«fz, t) oc-
cur. At the intersect, one arrival locationetorresponds to two different departure values of
However, the DMD modes projection from the HFM to the ROM doeskeep the topological
information about this multivalued mapping in the ROM pregeresulting in the Lagrangian
grid distortion.

Remark 2.1. The Lagrangian POD approach suffers from similar probledajgani and Bal-

ajewicz, 2017). Moreover, the POD projection on the aceutatgrangian scheme [Eq. 2.19]
would still require interpolation in the high-dimensiosglace. We might need techniques such
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as DEIM (Chaturantabut and Sorensen, 2010) to keep thdirgsRIOM'’s efficiency. Neverthe-
less, extensions of POD are beyond the scope of our studygeus bn DMD-based ROMs due
to their iteration-free nature.

3. HODOGRAPH TRANSFORMATION

We start with a mathematical definition of hodograph tramsfiion reproduced from Clarkson
et al. (1989).

Definition 3.1. A pure hodograph transform is a transformation of the form

T=t, &=u(zt). (3.2)

For the inviscid Burgers’ equation [Eq. (2.13)], we first sa@ter a scenario where only one
shock is developed from the initial datg(x) in finite time. This necessitates the following
assumption.

Assumption 3.1. The functionug(z) satisfies four conditions:

e up(z) is smooth.

e ug(x) decreases monotonicallyiy(z) < O for all z; and lim,_, 4 uo(z) = ug,
lim, o up(z) = uy with constantaig < up.

0.

¢ up(x) has a unique inflection poirft:*, »*) with u* = ug(z*), meaningug (z*)
o ug'(z*) > 0.
This assumption ensures existence of an inverse funetign) : [0, 7] X [ug,ur] — [a, ]

of the monotonic functiom(¢, z) : [0,T] x [a,b] — [ug,ur]. The last two assumptions ensure

single-shock formation for illustration purposes. It fmlls from Definition 3.1 that the inverse
functionz (¢, u) = x(t, &) is a pure hodograph transform based on Eg. (3.1).

3.1 Solution before Shock Formation

With « acting as the independent variable ands the dependent variable, hodograph transfor-
mationaz = xz(t,u) maps the equation for characteristics [Eq. (2.3)] of thesitid Burgers’
equation [Eq. (2.13)], before the shock formation tithédefined later), onto

dz(t, u)
dt

=u, x(0,u)=zo(u), for (¢t,u) €[0,t") X [ug,ur]. (3.2)

Assumption 3.1 translates into conditions on the functigfu):

e 2o(u) has a unique inflection point &, z*).

o zg'(u*) <O0.
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Differentiation of Eq. (3.2) with respect togives

from which 5
8—%,@ —ah(u)+t,  for (t,u)€[0,t") x [ug, uz). (3.4)
u
Lett* = min,[—x5(u)] = —xp(u*) denote the time of shock formation; the shock location is

¥ = z(u*,t*). Sincexy(u) < 0, the derivatived, z(¢,u) < 0 as long as < t*.

3.2 Solution after Shock Formation

At timest larger thant* = —x((u*) (i.e., once the shock forms), Eq. (3.2) is no longer valid.
In the (z, u) plane, we would use the entropy (Rankine-Hugoniot) cooditd construct a weak
formulation of Burgers’ equation. Its analog in the x) plane gives an equation for the shock
speeds:

}u%—u% _ugtup

: (3.5)

S = =

2 U1 — U2 2
whereu;(t) anduy(t) are defined as the limits ef(¢) from the top and bottom of the shock,
respectively. They are computed as solutions of a systemdaiary differential equations (see
Li et al., 2018 for detailed derivation):

dul o 1 U — U2
dt  2U(ug) —t’
du2 1 Up — U2

at 2¢(up) —

(3.6)

wherey(u) = —z,(u). These ODEs are subject to initial conditiangt*) = u* andu,(t*) =
u*. Sinces = dz*(t)/dt, an equation for the shock trajectory(t) is

dz*(t)  uy+uz

” 5 (3.7)

3.3 Summary of Hodograph Solution

Under Assumption 3.1, the hodograph-transformed Burgepsation [Eq. (2.13)] takes the form
of the following ODEs forz(t, u):

t<t': EQ.(3.2)

ot Eq. (3.2) for w € (ug,up) U (us,ur) (3.8)
' Eq. (3.7) for wu € (up,uy),

wheret* = —z{(u*), andu; andu; are solutions of Eq. (3.6).

Remark 3.1 We can show thai; (¢) is a monotonically increasing function angl(t) is a mono-
tonically decreasing function, such that

up > u, up <uf, wglur) +t <0, wi(uz) +t<0. (3.9)

Journal of Machine Learning for Modeling and Computing



ROMs for Hyperbolic Problems with Shocks 11

In many cases of interests, and in some our numerical expaténeither:; andu, are known
or|uz —ugl, Jus —urp| < At (so thatuy ~ ug andu; =~ ur). This allows one to focus on shock
propagation, that is on Eq. (3.7), without having to solve B®).

Remark 3.2 Functionsug(z) that do not satisfy Assumption 3.1, such as Eq. (2.17), recaui
decomposition of the initial data into monotonic parts. EEawnotonic piece ofig(x) would
have a unique inverse functia (). The entropy condition implies that the increasingu),
zp(u) > 0, results in a rarefaction solution, which satisfies EQ)(3 he union of the rarefaction
pieces and shock pieces would give the full solution.

Remark 3.3, The inviscid Burgers’ equation is an example of hyperbatiegervation laws with
monotonically increasing flux functiorfs(-, «). Generalization to hyperbolic conservation laws
with a convex flux is presented in Appendix A.

4. PHYSICS-AWARE DMD FOR CONSERVATION LAWS WITH SHOCKS

Previous theoretic investigations, for example by Lu andakavsky (2020b), demonstrated
that the key to the success of the DMD in capturing nonlingasachics is to identify the un-
derlying Koopman operator. Several numerical studiesZ{tital., 2018; Rowley et al., 2009;
Williams et al., 2015) confirmed this finding. The Koopmani@gper theory ensures that a DMD
algorithm utilizes all relevant physical information tala the dynamics. We refer to this ap-
proach as physics-aware DMD to distinguish it from the catiemal DMD that learns only
from (simulations-generated) data.

We review the Koopman operator theory and analyze its caimmewith hodograph transfor-
mation in the context of hyperbolic conservation laws. Tive@ present our general framework
for physics-aware DMD for problems with discontinuous $iolus and shocks.

A suitable spatial discretization of Eq. (2.1) leads to alim@ar dynamical system

du
o = N(u), 4.1)
whereu(t) = (ug,...,uy,)" € M C R’« is the solution vector with;(t) = u(z;,t) and
discretization nodes; (j = 1,...,J,); and is a finite-dimensional nonlinear operator. A
flow mapNas : M — M,

to+At
Nat[u(to)] = u(to + At) = u(to) + / Nu(7)]dT, 4.2)

to

induces the corresponding discrete-time dynamical system
u" = Nag(u™). (4.3)

Definition 4.1 (Koopman operator: Kutz et al., 2016 onsider a statea on a smoothJ,-
dimensional manifold\, whose dynamics are described by Eq. (4.1). The Koopmaratger
K is an infinite-dimensional linear operator that acts on biesvable functiong : M — C
such that
Kg(u) = g[N (u)]. (4.4)

The discrete-time Koopman operatn; for the discrete dynamical system [Eq. (4.3)] is de-
fined as

Karg(u™) = g[Na,(u™)] = g(u™*?). (4.5)
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A major benefit of the Koopman operator is the transformatibthe finite-dimensional
nonlinear problem [Eg. (4.3)] in the state space into an itefidimensional linear problem
[Eq. (4.5)] in the observable space. Sir€g; is an infinite-dimensional linear operator, it has
an infinite number of eigenvalugd,, }7° ; and eigenfunction$d, }7>,. In practice, we must
make a finite approximation of the eigenvalues and eigetifume: The following assumption is
essential to the finite approximation and the choice of oladdes:

Assumption 4.1. Consider a vector o observabley,

y*r=gu") = : ,  gp: M — Cisanobservable function=1,...,P. (4.6)

Letg be restricted to an invariant subspace spanned by eigdidosof the Koopman operator
Kat.

Under this assumptioig, induces a linear operaté€ that is finite-dimensional and advances
these eigen-observable functions on this subspace (Brwettal., 2016). The physics-aware
DMD Algorithm 2 can be applied to approximate the eigenvalaed eigenfunctions d€ from
snapshots data collected in the observable space.

There is no principled way to choose the observables withgpért knowledge of a system
under consideration. Selection of observables remainarsdgrhallenge and an active research
area; for example, machine learning and deep learning igaebs were recently employed to
identify the underlying Koopman operator (Morton et al.18D In the context of conservation
laws with shocks, the equivalency between hodograph twamsition and the Koopman opera-
tor, established in this study, facilitates a “smart” cleoaf the observables. It is implemented
via the Algorithm 2.

Remark 4.1 Numerically,g can be obtained by interpolation from a uniform mesh in(the:)
plane to a uniform mesh in the, =) plane, and so cag—!. The monotonicity Assumption 3.1
ensures that the observable functions are one-to-one maps.

Remark 4.2. The challenge of incorporating the shock information irfte tagrangian DMD
algorithm of Lu and Tartakovsky (2020a) is the dependencghotk speed on the dependent
variableu. Hodograph transformation facilitates the incorporatdrihis implicitly nonlinear
information by turningu into an independent variable and by rendering the shockdspieen

by the Rankine-Hugoniot condition linear.

Remark 4.3, For problems with shocks, we need to collect snapshots antllafter a shock
forms. Otherwise, the Koopman operator cannot learn thekstignamics.

Remark 4.4. For mixed wave problems, we need to collect snapshots urdibéter all forms of
propagation occur. This requires preobservation, pregasing, and understanding of the data.
General initial dataio(x) have to be separated into monotonic subregions. Physieaitiges,
such as shock speed and intersection point of shock ana@ctiosf propagation, must be under-
stood from given data features. They give an explicit fornthefshock observable functigm;
although problem-dependent, all the shock informatiomisdr with respect ta.
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Algorithm 2: Physics-aware DMD algorithm
0. Create data matrices 6} — 1) observablesy; andY>,

| | |
Y= |yt y2 ... yM Yo=|y? ¥y ... yM|. 4.7
| |

Each column of these matrices is given by
y" =gu") = [gi(u"),...,gp(u")]". (4.8)

Here,g, = z(nAt,u")withp = 1,..., P — 1is the inverse function af(¢, ), evaluated
at the prescribed mesh The last observablg? is a problem-dependent recording of shock
information.

1. Apply SVD: Y31 ~ UXV*, with orthogonal matrice¥) € C”*" andV € CM~1*" and
diagonal matrix3 € C"*", wherer denotes the truncated rank chosen by certain criteria,
for example, Eq. (2.8).

. ComputeK = U*Y,VX~1as an x r low-rank approximation fok.
. Compute eigen-decomposition K. KW = WA, A = (A;).

. Reconstruct eigen-decompositionkf Eigenvalues ard and eigenvectors ale = UW.

a A w0 N

. Futureypt L, is predicted by

vyl = ®A" b, n > M, (4.9)
withb = @—1y1.
6. Transform from observables back to state-space:

upyp = gil(ngD)' (4.10)

Remark 4.5. The error of our physics-aware DMD algorithm stems from twarses. The first

is the error due to order reduction in the observable spamepiiesents the accuracy with which
[Eq. (4.9)] predicts the true observaly&+!. According to the error estimator of Lu and Tar-
takovsky (2020b), this prediction accuracy depends on thmeber of snapshotd/; the rank
truncation criteria, as in Eq. (2.8); and the linear opar#&oinduced byg. The second is the
error due to forward and backward mappiggin the discrete setting, it presents an error in
projection between thér, u) space and theu, 2:) space. The model-order-reduction error and
projection error are studied numerically in Section 5.6.

5. NUMERICAL TESTS

We apply the physics-aware DMD to construct ROMs of scalaseovation laws in different
scenarios, including a shock, rarefaction, and a mixtutgotti. These hyperbolic conservation
laws take the forms of the inviscid Burgers’ equation (Sewi5.1-5.4), the Buckley-Leverett
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equation (Section 5.5), and the Euler equations (Secti®n bhe conservative first-order up-
wind scheme [Eqg. (2.2)] is employed as a reference solutismg.J, = J,,), except when an
analytical solution is available. The rank truncationemiiin [Eq. (2.8)] withe = 10~* is used
in all cases.

The observable datg™ in Eq. (4.8) rely on the mesh = [dy, ..., ,]" with mesh size
AT = u;41 — u; and the minimum and maximum valués anda s, , respectively. In general,
there are two strategies of collecting data on m&sh

(1) Solving Eq. (3.8) for:(¢, u) in the (u, ) plane on the mesh at discrete time”, n =
1,...,M;

(2) Solving Eg. (2.2) foru(t, «) in the (x, u) plane on the mesk at discrete time”, n =
1,..., M, then interpolating for (¢, w) in the (u, ) plane on the mesh.

In the case of Burgers’ equation and the Buckley-Leverata#qgn, both strategies are applica-
ble. We choose strategy (1) for the examples in Sections$h1te avoid the projection error
due to the mapping between tlie, «) and (u, ) planes. In the case of the Euler equations
(Section 5.6), only strategy (2) is feasible. Regardlesthefstrategy used, the physics-aware
DMD of Algorithm 2, applied to the\/ observables?, ...,y in Eq. (4.8), allows us to pre-
dict ypyo for n > M and to obtainugy,, by concatenating the interpolation g5 on the

mesh forz.

5.1 Riemann Problem for Burgers’ Equation with Shock

Consider the inviscid Burgers’ equation [Eq. (2.13)] ddfifer («,t) € [-0.5,1.5] x [0, 1] and
with initial data

(z) = 2 for-05<z<0 (5.1)
YT N0 foro<z <15, '
This problem admits an analytical solution
2 for —05<zx<st
u(z,t) = =t (5.2)
0 for st<a <15,

where the shock speed= 1 is determined from the Rankine-Hugoniot condition.
The discontinuous initial datag(z) in Eqg. (5.2) do not satisfy Assumption 3.1. Thus we
approximate the step functiar(x) with a smooth function; for example the hyperbolic tangent

up~1— tanh(%), 5 <1, (5.3)

which satisfies Assumption 3.1. In tfe, ;) plane,

5. [2-
ro~ o log( ”0), §< 1. (5.4)
2 uQ

This approximation is valid in the neighborhood of the shimtkrface; away from it, Eq. (5.1)
is used. It follows from Eq. (5.4) that

o zp(u) =68/[(u—2)u] < Oforu € (0,2).
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e xo(u) has a unique inflection point é&* = 1, 2* = 0).
o 2} (u) = [4(3u® — 6u + 4)]/[(u — 2)%:°%] and thust’ (u*) = —4 < 0.

Snapshots of (¢, u) on a uniform meshi = [dy, ..., 4,,]", which consists off, = 2000
equidistant points, are collected &f = 250 times untill’ = 0.25. The ROM is used to pre-
dict the solutionu(x,t) for larger timest > T'. The shock-related information is contained
in uy(t) andwuy(t), first defined in Eqg. (3.5). Since both are constant in thisrgda, no ex-
tra observablgp is needed to record the shock information. Each colgiin the data ma-
trix is of length P = 2000 and elementg} = =(t",4;) for j = 1,...,J,. If we were to
add the constant shock informatian andu, to the observables, theyi* would have length
P = 2002 such that elementg} = z(t", ;) for j = 1,...,J, are supplemented with two
extra elementys,,, = w1 = 2 andy%,y, = u2 = 0. Doing so would lead to the same predic-
tion: the DMD algorithm is able to learn the pattern of thd ko observables being constant
in time.

Figure 3 demonstrates that the physics-aware DMD algorithitm hodograph transforma-
tion captures the behavior of the shock propagation. @rly2 modes are needed to construct
the ROM, which remains accurate for a relatively long timehia extrapolation mode. Hodo-
graph transformation converts the nonlinear conservddion[Eq. (2.13)] with discontinuous
initial data [Eq. (5.1)] into a linear shift with constantega, which is readily learned from data.
Due to the monotonicity constraint, the solution using hgrdph transformation (and the con-
comitant DMD prediction) is only valid in the neighborhooitioe shock interface, which is of-
ten of interest in itself. Away from the discontinuity, thagrangian DMD (Lu and Tartakovsky,
2020a) is accurate and should be used instead.

5.2 Riemann Problem for Burgers’ Equation with Rarefaction Wave

Consider the inviscid Burgers’ equation [Eq. (2.13)] defifer (z,¢) € [-1, 1] x [0, 1] and with
initial data

(2) = -1 for —-1<2<0 (5.5)
Yo=Y for0<z <1 '
2 | reft =0

ref t = 0.25

reft =0.5

15F - reft =1

1st order upwind ¢t = 0
1st order upwind t = 0.25
1st order upwind ¢t = 0.5
1st order upwind t = 1

—-—.DMD¢=0
—-—.DMD¢=025
DMD ¢ = 0.5
051 17 —-—.DMDt=1
: \ —
05 0 05 1 15

r

FIG. 3: Physics-aware DMD solution of the inviscid Burgers’ eqoativith a shock. The reference solution
is given by analytic solution (5.2). 1st order upwind schdméq. (2.2) is also plotted here in solid line.
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This problem admits an analytical solution in the form of gefaction wave,

-1 for —1<z<—t¢
u(z,t) =< x/t for —t<z<t (5.6)
1 for t<ax<1.

A hyperbolic-tangent approximation analogous to Eqg. (&.8sed to deal with the discontinuity
in the initial dataug(x). And the same structure of data matrix is used in the phymsice
DMD algorithm 2 with.J,, = 2000 andM = 250 untilt = 0.25. Since there is no shock in this
scenario, no extra observable is needed to record shoateddhformation.

Figure 4 shows the same satisfactory ROM results for thiblpro with a rarefaction wave.
Only » = 2 modes are needed to obtain accurate predictions becabedbgraph transform,
x = z(t,u), satisfies a linear ODE [Eq. (3.2)], withacting as an independent variable. The ab-
sence of a shock suggests that this rarefaction scenariasaibe handled with the Lagrangian
DMD algorithm, with similar results.

Given an accurate approximation of the initial discontingiie., selecting to be sufficiently
small) the ROM trained on the data generated from the solati&q. (3.2) is even more accurate
than the HFM solution. The upwind scheme [Eqg. (2.2)] has-&rdier accuracy))(At), while
the physics-aware DMD algorithm can have spectral accufégyres 3 and 4 show that the
physics-aware DMD solution has a much sharper interface that estimated with the first-
order upwind scheme [Eq. (2.2)].

5.3 Smooth Solution of Riemann Problem for Burgers’ Equation with
Nonmonotonic Initial Data

Consider Burgers’ equation [Eq. (2.13)] defined fert) € [—7/2,37/2] x [0,1] and with
initial data
uo(z) = 1+ sin(x). (5.7)

Since these initial data violate Assumption 3.1, we decsepbe interval0, 2r] into two
parts: in the left partzy € [—n/2,7/2], uo(x) monotonically increases; in the right part,c

reft =0
ref t =0.25
reft =0.5
reft =1
1st order upwind ¢t = 0
1st order upwind ¢ = 0.25
1st order upwind t = 0.5
1st order upwind t = 1
—-—-DMDt=0
—-—-DMD ¢t =0.25

DMD t = 0.5
—-—-DMD¢t=1

0.5

-0.5

R : . . /" L | L I
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

3

FIG. 4: Physics-aware DMD solution of the inviscid Burgers’ eqoatwith a rarefaction wave. The ref-
erence solution is given by analytic solution [Eq. (5.6)fsEorder upwind scheme by Eq. (2.2) is also
plotted here in solid line.
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[r/2,3n/2], it monotonically decreases. Each part has a unique infenstion ofx(t, ug); we
denoter; (¢, u) as the evolution of the left part and (¢, u) as the evolution of the right part. Since
the shock formation time is* = 1, the equation of characteristics for this Riemann prolieem
equivalent to Eq. (3.2) on any finite-time interv@l T'] C [0, 1]. Although this is a shock-free
scenario, the two parts have different wave propagatioaiels. The numerical scheme (2.2)
with J, = 2000 spatial discretization points and = 1000 time steps provides the reference
solution. The data used to inform our DMD method consistbf 250 snapshots with observ-
ablesy, = z;(t",4,) forp =1,...,J, andy, = z,.(t",4,;,) forp=J, +1,...,2J,. No
extra observable is needed to record shock-related intiwmsince there is no shock formation
in the considered time interval.

Figure 5 demonstrates the ability of the ROM based on ouripsyavare DMD algorithm to
capture these nonlinear dynamics. Only= 2 modes are needed to obtain accurate predictions
due to the linearity after hodograph transform. The ROM waméd on the earlyt(< 0.25)
data, which exhibit smooth gradients. Yet, it accuratelgteees sharp gradients at later times
(e.g.,t = 1). That is because, in the, ) domain of the hodograph transform, higher gradients
of u(-, z) translate into flatter horizontal plots of-, u).

5.4 Riemann Problem for Burgers’ Equation with Rarefaction and Shock

Consider Burgers’ equation [Eg. (2.13)] defined(fert) € [0, 2] x [0, 1] and with the Gaussian-
type initial data in Eq. (2.17). This is the setting we usedlltestrate the failure of the La-
grangian DMD in Section 2.3 (Fig. 2). The numerical schenee [E.2)] withJ,, = 2000 spatial
discretization points andy = 10° time steps provides the reference solution. The finer tirge di
cretization is needed to satisfy the CFL constraints. The dsed to inform our physics-aware
DMD method consist of\f = 3000 shapshots of solving Eq. (3.8). These data are sutfigien
rich to identify the rarefaction and shock behavior of thiigon.

A decomposition of the initial datag(z) in Eq. (2.17) is needed to enforce monotonicity.
The increasing branch af(x) is responsible for the rarefaction and its decreasing lbrgives
rise to the shock. It follows from Eq. (2.17) that

z(u, %) = 0.3 — 4/—0.001In(2u — 1.6) and z,(u,t°) = 0.3+ /—0.001In(2u — 1.6).

2 T T T

/.//./\L \.\ > \ reft =0
/. y .\/.( \ ref t = 0.25
/. ‘/- '/..\ ‘\ \ ref t i 0.5
15} 7/ y . \ . reft =1
/ / J v\ | —-—-DMD =0
'y p \ I —-—-DMD¢=025
¥4 y \ I DMD t =05
=r // 4 \ - ——.DMDt=1
/7 V4 |
/77 S \\ |
/. 7
65 .{/ V 4 “\ |
: VP4 \
& Nl
/}‘,/ N\
* Q
0 ‘—'% 1 1 | L | \s
-1 0 1 2 3 4

FIG. 5: Physics-aware DMD solution of the inviscid Burgers’' eqoatsubject to nonmonotonic initial

condition. The reference solution is computed with Eq. 2.2
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We can verify thatr,.(u; t°) has a unique inflection poirit.*, =*) with u* = 0.8+ 1/(2,/€) and
x* = 1/0.002e and, for € (0.8, 1.3), bothz!.(u;t°) < 0 andz!” (u;t°) < 0. Consequently, the
data are generated from Eq. (3.8) as follows.

1. Auniform meshi = [y, ..., 4y,]" is constructed with mesh sizei = ;1 — @;, and
;= 0.8 andu;, = 1.3.

2. Forz;(u,t), no shock develops. The full discretization [Eq. (3.2)]egv

o (i, t") — @ (@, t")

At g (5.8)
£(@;,1°) = 03— | /~0.0011n(2ii; — 16).

3. Forz,.(u,t), the shock formation time* is calculated as
t* = min, {—2’.(u, )} ~ 0.074 (5.9)
a. Ift"+1 < ¢, then
(U, tn+1) — (4, t")
= U’j?
At (5.10)
£, (ii;,1%) = 0.3+ /-0.001In(2a,; — 1.6).

b. If t"*1 > ¥, uy(t") = ur = 0.8 is known andu, (") is approximated by the
intersection ofz; (u, t™) andx,.(u, t"™) due to the continuity of the solution; that is

Ul(tn) = argmin|l’T(’L~l/J‘, tn) - (El(aj,tn”, UZ(tn) =UR = 087
(4, ) — op(U,t")  ug(t") + ua(t™)

At 2

4. The observable vectgr” of length P = 2J,, + 2 comprisesy;; = x;(i,,t") for p =
L. Juy, = xp(tpyg,,t") forp = J+1,...,2J,; andyy; .1 = w(t") and
Yoy, 42 = up(t").

(5.11)

Figure 6 shows that the physics-aware DMD based on hododrapsformation provides
an accurate ROM for this Riemann problem, which could notréatéd with the original La-
grangian DMD. The physical shock information, which is negdor the last two observable
functions, includes the shock speed and the intersectiort pbthe rarefaction wave and the
shock trajectory. In this setting, the shock speed varids tvne but is still linear with respect
to u. The physics-aware DMD algorithm can learn this lineartreteship from the data with no
difficulties. Onlyr = 4 modes are needed and all of the advantages of linearitychievad
with the hodograph transform.

5.5 Riemann Problem for Buckley-Leverett's Equation

Consider the hyperbolic conservation law [Eqg. (2.1)] withceamonotonic flux function,

w2

F=———— =05 5.12
e =05 (5.12)
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1.3 "\ y ! reft =0
“ reft =0.3
ipk o & i ref t = 0.6
’ |1 reft =1
i ' —-—-DMD¢=0
11l g B 1. | —-—.DMDt=03
: Il /| DMD t = 0.6
s 11 /| —-—-DMDt¢=1
1F 1 /] /1 ]
| 1 /| e
09 | /f | /./ I 1
v/ | /L
0.8 J \ ot A\ > .
0 0.5 1 1.5

FIG. 6: Physics-aware DMD solution of the inviscid Burgers’ eqoativith a rarefaction wave and shock.
The reference solution is computed with Eq. (2.2).

that is defined fofz, ¢) € [0, 2] x [0, 0.5] and is equipped with initial data

B 1 forO<z<1 513
uo(r) = 0 forl<z<2 (5.13)

The Buckley-Leverett equation [Egs. (2.1) and (5.12)] wititial condition [Eq. (5.13)] is
widely used to describe the injection process of immisdivie-phase flow in porous media.

Similar to Eq. (5.3), the initial discontinuity is approxated with the hyperbolic tangent
function. The hodograph treatment of this more general lprobis provided in Appendix A.
The numerical scheme [Eq. (2.2)] with. = 2000 spatial discretization points and = 1000
time steps provides the reference solution up te 0.5. The data used to inform our physics-
aware DMD method consist ¥/ = 250 snapshots of solving Eq. (A.11) with, = 2000
discretization points untit = 0.125. This set of snapshots is sufficiently rich to reveal & sel
similar structure of the solution.

Although the initial data.g are monotonic, their decomposition is needed accordingdo t
convex hull construction of the flux function (Appendix A)h& reformulation involves two
branches of different linear equations with two sets of thsgotht initial data. Similar to the
previous section, the last two observation functions céseprthe shock speed as well as the
intersection point of the rarefaction wave and the shogkdtary. This intersection point defines
the magnitude of the shock and informs the convex hull canstm of the flux function.

Figure 7 demonstrates that the physics-aware DMD with 4 modes accurately captures
the future states in a relatively long time. Hodograph tiamsation allows us to determine
the underlying linear Koopman operator in the nonlinearseowation laws. The iteration-free
feature of DMD enhances its effectiveness and efficiency.

Remark 5.1 In laboratory experiments with multiphase flows in porouslimgwe often measure
the flow rates of two fluids and approximates the displacemeafiles. Such observational data
can be used to construct an effective ROM after interpgdativem from the(z, ) plane to
the (u, x) plane. Such a construction would not require any knowledgbe empirical flux
function, such as Eq. (5.12), and its parameters, suah as
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1 ' ' ' ' k‘ I [ ! ! reft=0
I \’ ref t = 0.125
- i\‘ N | ref t = 0.25
' A \.\ ref t = 0.5
1\ ) —-—-DMDt=0
L . \~
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FIG. 7: Physics-aware DMD solution of the Buckley-Leverett equatiwhich has a nonmonotonic flux
function. The reference solution is computed with Eq. (2.2)

5.6 Riemann Problem for Euler Equations

Consider a one-dimensional Sod shock tube problem,

o (P d ou
5 pu | + 92 pu+p | =0, (x,t) € [-0.5,0.5] x [0,0.25,
E T\wE +p) (5.14)
_ D 3_1 2 _
E_y——1+29u’ v =14,

with initial conditions

wo - {1 p<05 o f1ow<os o 515
5 =V0125 205 PP 7T V01 z>05 WU '

This problem admits an analytic solution obtained, for eplerwia the method of characteristics.
Figure 8 shows that the solution is a mixture of a rarefactiame and a shock, which undermines
the performance of conventional ROM approaches. For exgriig. 9(a) shows the failure of
the standard (Eulerian) DMD to construct a ROM in thep) plane, with similarly unsatisfac-
tory performance fop andu. In these simulations; is discretized using, = 1000 equidistant
points, andM = 250 snapshots data are collected from 0 tot = 0.0625. The prediction
at later timet = 0.125, already shows tremendous errors and loss of corregacdion/shock
features.

Our hodograph-based physics-aware DMD resolves thisasigal Figure 9(b) demonstrates
that it yields an accurate ROM by interpolating the = 250 snapshots of the analytical solu-
tion onto the(p, ) plane in which thep coordinate is discretized with.4, = 1000 equidistant
mesh. Hereg(p,t) is selected as the observable and the linear Koopman opemata(p, t)
is efficiently represented by = 210 modes in the physics-aware DMD algorithm. Nearl$ 4
rank reduction is obtained and the computational time fofDpdediction is negligible due to its
iteration-free nature. Although an equation #dp, ¢) is not available, the hodograph transform
for one-dimensional scalar hyperbolic equations motia/ies proper selection of an observable.
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The hodograph transform for multidimensional PDEs is mamaicated (e.g., Li and Zheng,
2009; Mohyuddin et al., 2008) and not directly applicabletw current ROM framework. Our
results demonstrate that while the connection betweendbedraph transform and the Koop-
man theory is unclear in multiple dimensions, it can stilidguthe selection of observables.

Finally, we investigate the model-order reduction eeprand the projection erragp, dis-
cussed in Remark 4.5. In this examplg,is the DMD prediction error in terms af(p, ¢),

ex = [ly" — yompll;

(5.16)
y" = [e(pn, "), 2(ps, )] = g(lp(e1,"), - o2y, )] ).
This quantity provides a measure of the discrepancy betiteereference observable values and
their DMD prediction, without isolating various sourcestbé error. We also considey,, the
error in creating the observahi€p, t) via projection from théx, p) plane onto thép, z) plane
during preprocessing and in estimating the soluidn, t) backward during post processing.

t = 0.25 Density vs Position
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FIG. 8.
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t = 0.25 Velocity vs Position
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FIG. 8: The analytical solution to the Sod shock tube problem [EdL4}: (a) density, (b) pressure, (c)
velocity, and (d) energy; all evaluated at time- 0.25

Bothe, andey, contribute to the total errar, in DMD estimation of the solutiop(z, t),

eg = ||p7l - pBMD”? pn = [p(zla tn)v e 7p(xJz'tn)]T7 pBMD = gil(y'BMD)' (517)

Temporal evolution of the erroes, ande,, is plotted in Fig. 10 with both errors [Egs. (5.16)
and (5.17)] reported irL, norm and defined on the corresponding meshgs= 1000 and
J, = 1000. The model-order-reduction err@y decreases with the number of snapshutts
resulting in a more accurate prediction. This is consistétit the intuition that DMD can bet-
ter capture the dynamics by learning from richer/largead&ts. For example, insufficient data
(M = 125) fail to sample the essential features in the dynamieg@ft). The rank truncatiom
also plays a crucial role in the model-order-reductionmetfosignificant accuracy is sacrificed if
essential singular values are truncated in SVD (e.g., binget = 10~2) but retaining too many
singular values, e.g., by setting= 104, increases the impact of noise. This issue has been
discussed in several DMD studies (e.g., by Kutz et al., 2016& choice of a rank-truncation
criteria is nontrivial and, thus, the optimal truncatiopisblem-dependent. The total DMD error
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Standard DMD in p(z, t)
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Physics-aware DMD in z(p, t)
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FIG. 9: ROMs constructed by (a) the standard DMD and (b) the physicse DMD. The former uses
snapshots of(z, t) in the (x, p) plane, while the latter relies on snapshots:(, t) in the(p, z) plane.

e, is shown in the bottom row of Fig. 10. In additiondg, this error also accounts for the projec-
tion between théz, p) plane and thép, =) plane, which was conducted via a shape-preserving
interpolation method. For a well-controlled model-redoeterror,e, ~ O(10~2), the total er-
ror,e, ~ O(1071), is dominated by the projection error. For insufficient d@ta= 125) or low
rank truncation § = 10-2), the large total error in the prediction regimsg, ~ O(1), is dom-
inated by the model-reduction errer, ~ O(1). The time evolution of the errors is oscillatory
due to the interpolation during the transformation betwaleservables and state-space.

6. SUMMARY AND CONCLUSIONS

The Lagrangian DMD (Lu and Tartakovsky, 2020a) provideshasbtool to construct ROMs of
hyperbolic conservation laws, a class of problems for wisieimdard (Eulerian) DMD methods
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error in z(p, t)
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error in p(z,t)
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FIG. 10: Prediction errors of the ROMs constructed by the physicaraMD with different parameters.
The top row shows the model-order reduction ewgrdefined in Eqg. (5.16); the total DMD erref,,
defined in Eq. (5.17), is shown in the bottom row.

fail. However, this algorithm is limited to problems thatnaidl smooth strong solutions. We
extended it to problems with shocks and rarefaction wavass tiddressing a long-standing
challenge in ROM construction. This challenge stems froversegrid distortion typical of La-
grangian POD and DMD algorithms. Lacking information abshbibcks and discontinuities,
DMD mode projection from the HFM to a ROM does not preservettpological structure
of the interface where characteristic lines cross eachr.ote resolved this issue by com-
bining hodograph transformation with physics-aware DMQogithm (Lu and Tartakovsky,
2020a). The relevant research codes are available at/hgtfhaib.com/DDMS-ERE-Stanford/
dmd hodograph.

Hodograph transforms are consistent with the Koopman ¢pretlaeory in that both aim
to identify linear structures in the underlying nonlinegndmics. Our physics-aware DMD al-
gorithm enhanced by hodograph transformation is capahpeeaficting the dynamics of weak
solutions, which satisfies the entropy condition. We dertrated the accuracy and robustness
of our algorithm on several numerical tests.

To the best of our knowledge, our study is the first to esthldisonnection between hodo-
graph transformation and the Koopman operators. By progidiprincipled way for identifying
the observables needed by the Koopman operator theorgdhisection opens a door to con-
struct ROMs for a wide range of nonlinear PDESs that are limahte by hodograph transforma-
tion (Clarkson et al., 1989). There is an algorithmic mettmdo the linearization viaxtended
hodograph transforms. As a result, we can take advantageedfrtearity and design robust
iteration-free physics-aware DMD. Moreover, data-drimemdeling and uncertainty quantifica-
tion can be further explored using this framework. Our niocatexperiments demonstrated that
many physical quantities, such as the shock speed in Bugggration and the mobility constant
in the Buckley-Leverett equation, can be learned from (&itian) data as long as we analyze
them in a “smart” way.

We established a connection between the hodograph tramsfand the Koopman oper-
ator theory for one-dimensional scalar hyperbolic PDEs.irAilar idea was carried over to
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one-dimensional hyperbolic systems. The construction@WMR for multidimensional hyper-
bolic systems remains an open challenge. We leave suctdimainsional interpretations of the
Koopman operator theory in terms of hodograph (or othensfiams for future studies. Another
future work direction is to improve the current frameworkisndling experimental data, which
are potentially contaminated by measurement noise. Dueetcegularity at the shock front, we
would expect Eulerian DMD approaches and regular DMD apgres to have stability prob-
lems. The current framework is expected to be more robusiedsadograph transform improves
the regularity at the shock front (i.e., shocks become flastants). For mixed wave problems,
the current framework can still be sensitive to noise at tiversection of different waves. In an
attempt to deal with experimental data, we would considertgaing the proposed method with
noise filters.
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APPENDIX A. SCALAR CONSERVATION LAWS WITH CONVEX FLUXES

Burgers’ equation has a monotonically increasing flux fiomctHere, we extend our analy-
sis to smooth, strictly convex flux functiord§(u). We consider a hyperbolic conservation law
[Eq. (2.1)] defined fofz,t) € R x [0, T]. Itis subject to the initial conditiom(z, 0) = ug(x),
where the initial datag(z) satisfy the following assumption.

Assumption A.1. The real-valued functiong(z) is such that

e lim, .4 up(z) = F1, and

e ug(x) is non-increasing and, therefore, the inverse functian) is well defined on-1 <
uQ S 1.

Remark A.1. The domain of definitionr € R can be generalized to a finite-length interval
(ug,ur). The derivation is similar.

A.1 Solution before Shock Formation

Similar to Section 3.1, hodograph transformation yieldequation forx (¢, u):

((jj—f(t,u) = f(u), x(0,u) = zo(u); u e (-1,1). (A1)

The convexity ofF'(u) ensures that its derivativ&(u) is an increasing function. Le¥ denote
the inverse function of:

Glf(w)] = fIG(u)] = u. (A2)
Then, definingy(t, u) = z[t, G(u)], EQ. (A.1) becomes

d
St =u, y(0u) =yow) = wGlu)l; e (-11). (A3)
Differentiating both sides of this equation with respect:to
0%y
o 1, (A.4)
which gives
du ,
5 bW = vo(u) +t. (A5)

Therefore the shock formation time is determined by
t* = —min,yi(u) = —yolf (u*)]. (A.6)

A.2 Solution after Shock Formation

The shock speeslis given by the Rankine-Hugoniot condition,

o= Flu) = Flug) A7)

Uyl — u2
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whereu;(t) anduy(t) are defined as the limits ef(¢) from the top and bottom of the shock,
respectively. Since = dz* /dt, this gives an equation for the shock trajectotyt),

dz*  F(u1) — F(up)

dt N Up — up ' (AS)
A system of coupled ODEs far, (¢t) andu,(t) is derived in Li et al. (2018):
dul - _ 1 F(ul) — F(’LLQ)
o o o (v A e (R
dup _pon L [ Flw) - Flw)
R e ] L e B

whereg(u) = —z4(u). These ODEs are subject to initial conditiongt*) = v* anduy(t*) =

u*.

A.3 Summary of Hodograph Solution

In summary, the reformulation for general scalar consemdaw with convex flux is
t<t': EQ.(A.1)

b g Eq. (A1) for we€ (ug,up) U (ug,ur), (A.11)
' Eq. (A.8) for wu € (up,u1),

wheret* = —zj(u*).

Remark A.2. We can show that;(¢) is monotonically increasing in time ang(t) is monoton-
ically decreasing, so that

up > u, up <ut, wplur) +t <0, wp(uz)+t<0. (A.12)

In many cases of interests, and in our numerical experine@igerw, = ur andu; = wuy, or
|lug — u1| < At (so thatu, =~ ug anduy = ur). This allows us to focus on shock propagation
[i.e., on Eq. (3.7)] without having to solve Eq. (A.9).

Remark A.3. For the more general initial conditiory, we need to decomposg(z) into regions
of monotonicity. Each monotonic piece af would have a unique inverse functiaf(uo).
Then, based on the generalized entropy condition, we agistne convex hull for the flux
function F'(u), providing a way to decompose the initial data. Shock prafiag initial data
and rarefaction propagating initial data are determinéghafird. Then, the full solution is the
combination of the rarefaction pieces and the shock pieces.
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