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Abstract. Dynamic mode decomposition (DMD), which belongs to the family of singular-
value decompositions (SVDs), is a popular tool of data-driven regression. While multiple numerical
tests demonstrated the power and efficiency of DMD in representing data (i.e., in the interpolation
mode), applications of DMD as a predictive tool (i.e., in the extrapolation mode) are scarce. This
is due, in part, to the lack of rigorous error estimators for DMD-based predictions. We provide
a theoretical error estimator for DMD extrapolation of numerical solutions to linear and nonlinear
parabolic equations. This error analysis allows one to monitor and control the errors associated with
DMD-based temporal extrapolation of numerical solutions to parabolic differential equations. We use
several computational experiments to verify the robustness of our error estimators and to compare
the predictive ability of DMD with that of proper orthogonal decomposition (POD), another member
of the SVD family. Our analysis demonstrates the importance of a proper selection of observables,
as predicted by the Koopman operator theory. In all the tests considered, DMD outperformed POD
in terms of efficiency due to its iteration-free feature. In some of these experiments, POD proved to
be more accurate than DMD. This suggests that DMD is preferable for obtaining a fast prediction
with slightly lower accuracy, while POD should be used if the accuracy is paramount.
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1. Introduction. Dynamic mode decomposition (DMD) [16] has recently be-
come a popular tool of data-driven regression. It belongs to the family of singular-
value decompositions (SVDs) and has its origins in the representation of complex fluid
flows in terms of their spatial modes and temporal frequencies [29]. This strategy for
representation of spatiotemporal coherent structures has since been used for data
diagnostics and related applications including video processing [18], interpretation
of neural activity measurements [4], financial trading [20], and forecast of infectious
decease spreading [24]. DMD with control has been developed to extract the input-
output characteristics of dynamic systems with external control [23]. It has also been
deployed for machine learning of models of high-dimensional complex systems from
data [19, 28, 36], in the spirit of equation-free simulations [13].

DMD is connected to interpretation of nonlinear dynamical systems via the Koop-
man operator theory [27, 21]. The latter provides a bridge between finite-dimensional
nonlinear dynamics and infinite-dimensional linear systems by observable functions [14].
Theoretical studies of the DMD approximation to eigenvalues and eigenfunctions of
the infinite-dimensional Koopman operator show that the performance of this finite
eigen-approximation depends crucially on the choice of observable functions, requiring
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expert prior knowledge of the underlying dynamics [27, 36]. Machine learning tech-
niques have been used to select the observable by identifying relevant terms in the
dynamics from data [6, 30, 35]. Extended DMD employs regression from a dictionary
of observables that spans a subspace of the space of scalar observables [36].

Numerical implementations of DMD are also undergoing modifications and en-
hancements. Under various assumptions on the data, many variants of the standard
DMD algorithm were introduced to compute the eigenvalues and DMD modes in more
accurate and efficient ways [9, 10]. Sparsity-promoting DMD and compressed DMD
combine DMD with sparsity techniques and the modern theory of compressed sens-
ing [7, 33]. Inspired by the applications of DMD in video processing, multiresolution
DMD (mrDMD) provides a means for recursive computation of DMD of separate
spatiotemporal features at different scales in the data [17]. The mrDMD approach
preserves the translational and rotational invariances, which remain the Achilles heel
of many SVD-based methods [26].

While multiple numerical tests demonstrated the power and efficiency of DMD
in representing data (i.e., for interpolation), applications of DMD as a predictive tool
(i.e., for extrapolation) are scarce. This is due, in part, to the lack of rigorous er-
ror estimators for DMD-based predictions. The convergence of DMD predictions are
reported in [11] from the numerical perspective and in [15, 2, 22] from the theoretic
perspective. A goal of our analysis is to provide a theoretical error estimator for
DMD extrapolation of numerical solutions to linear and nonlinear parabolic equa-
tions. We are aware of no other quantitative analysis of the accuracy of DMD pre-
dictions. This error analysis allows one to monitor and control the errors associated
with DMD-based temporal extrapolation of numerical solutions to parabolic differ-
ential equations. That, in turn, would facilitate the design of efficient algorithms for
multiscale/multiphysics simulations.

An alternative way to predict future states of a system relies on reduced-order
models (ROMs), which are constructed with the proper orthogonal decomposition
(POD) [12, 25]. Time integration is still needed to compute future states, but only in
a low-dimensional surrogate model. Thus, the computational cost is reduced and fu-
ture states are predicted using the ROM derived from projecting the dynamics of the
full system onto the hyperplane that the POD extracts from data. POD is an SVD-
based method that is closely related to the principle component analysis and the
Karhuen–Loève transform. Recently, the empirical interpolation method (EIM) [3]
and the discrete EIM (DEIM) [8] were combined with POD in order to overcome the
difficulty of handling nonlinearities in ROM. Although the POD-EIM/DEIM methods
lack error estimation, they have been used in various fields with satisfactory accuracy.
While both POD and DMD are based on SVD, they provide two independent ap-
proaches to constructing ROMs. It is therefore worthwhile to compare their relative
performance in terms of accuracy and efficiency. Advantages of hybridizing the two
methods have been demonstrated in several numerical tests [1, 37].

The paper is organized as follows: In section 2, we formulate the DMD algorithm
for the linear and nonlinear diffusion equations as a problem setup and provide a brief
review of the DMD method and its connection to the Koopman operator theory. Our
selection of the observables is also demonstrated with prior knowledge of underlying
physics. In section 3, we present our main results in error estimation. Several numeri-
cal tests are presented in section 4 to verify the error bound and the efficiency of DMD
in prediction. DMD and POD are compared in terms of their computational costs
and accuracy. We summarize the results with a discussion of applications, challenges,
and future work in section 5.
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2. DMD and Koopman operators. Consider a state variable u(x, t) : D ×
R+ → R whose dynamics are governed by the parabolic partial differential equation
(PDE),

(2.1)
∂u

∂t
= N (u) + f(u), x ∈ D ⊂ Rd, t > 0,

where N is a linear or nonlinear differential operator representing the internal dynam-
ics in d-dimensional space, and the linear or nonlinear source term f represents the
external source/sink into the system. Discretization of the simulation domain D into
N elements or nodes (N � 1) transforms the PDE (2.1) into either a high-dimensional
linear dynamical system

(2.2)
du

dt
= Au + f ,

or a high-dimensional nonlinear dynamical system

(2.3)
du

dt
= Ψ(u) + f ,

where u = [u(x1, t), . . . , u(xN , t)]
> is the spatial discretization of u(x, t); A and Ψ

are linear and nonlinear differential operators on RN , respectively; and f represents
the correspondingly discretized reaction term f .

Low-dimensional ROMs are often used to reduce the computational cost of solving
the high-dimensional systems (2.2) and (2.3). For example, POD has been deployed
to construct accurate and efficient ROMs for (2.2) [12, 25]. Time evolution of u(x, t)
needs to be computed but only in a small subspace of the original high-dimensional
space. For nonlinear systems (2.3), construction of a right ROM using POD becomes
more challenging and requires some modifications, such as EIM [3] and DEIM [8],
whose accuracy cannot be determined a priori. To the best of our knowledge, error
estimates of POD-EIM/DEIM are lacking unless the fully resolved solution is avail-
able.

The DMD method aims to approximate the eigenvalues and eigenfunctions of A
in (2.2) and provides an alternative to POD in solving large linear systems. A major
advantage of DMD over POD is its equation-free nature, which allows future-state pre-
dictions without any computation of further time evolution. For the nonlinear prob-
lems (2.3), DMD seeks a finite-dimensional approximation of the infinite-dimensional
Koopman operator of the nonlinear dynamics. With carefully chosen observables, a
ROM can be constructed in the observable space with sufficient accuracy. We briefly
review DMD and the related Koopman operator theory in subsections 2.1 and 2.2 as
a setup for the accuracy analysis in section 3.

2.1. Dynamic mode decomposition. Temporal discretization of (2.2) with
time step ∆t yields

(2.4) un+1 = Kun + ∆tfn+1/2, n ≥ 0,

where K is an N × N matrix and fn+1/2 is, e.g., a linear interpolation of fn and
fn+1. The fully resolved model (2.4) is advanced by m time steps and the resulting
temporal snapshots of u(t) are recorded in two matrices:

(2.5) X =



| | |

u0 u1 · · · um−1

| | |


 and X′ =



| | |

u1 u2 · · · um

| | |


 .
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Using these two data sets, one approximates the eigenvalues and eigenvectors of
K using Algorithm 2.1.

Algorithm 2.1 DMD algorithm on state space [16].

1. Apply SVD X ≈ UΣV∗, where U ∈ CN×r is a unitary matrix, Σ ∈ Cr×r is
a diagonal matrix with components σk ≥ 0 that are called singular values of
X, V∗ is the conjugate transpose of unitary matrix V ∈ Cr×m, and r is the
truncated rank chosen by certain criteria.

2. Compute K̃ = U∗X′VΣ−1; use it as a low-rank (r× r) approximation of K.
3. Compute eigendecomposition of K̃: K̃W = WΛ, where Λ = (λk) are eigen-

values and columns of W are the corresponding eigenvectors.
4. Eigenvalues of K can be approximated by Λ with corresponding eigenvectors

in the columns of Φ = UW.

Each column of Φ in Algorithm 2.1 is a DMD mode corresponding to a particular
eigenvalue in Λ. With the approximated eigenvalues and eigenvectors of K in hand,
a solution at the (n+ 1)th time step (n > m) is constructed analytically as

(2.6) un+1
DMD = ΦΛn+1b, n > m,

where b = Φ−1u0 is an r × 1 vector representing the initial amplitude of each mode.
Notice that no more iteration is needed in the prediction. The solution at any future
time is approximated directly with (2.6) using only information encapsulated in the
first m temporal snapshots.

2.2. Koopman operator theory. The nonlinear dynamical system (2.3) be-
longs to a general class of dynamical systems,

(2.7)
du

dt
= N (u),

where the state u ∈ M ⊂ RN is defined on a smooth N -dimensional manifold M,
and N is a finite-dimensional nonlinear operator. Given a flow map Nt :M→M,

(2.8) Nt(u(t0)) = u(t0 + t) = u(t0) +

∫ t0+t

t0

N (u(τ))dτ,

the corresponding discrete-time dynamical system is described by

(2.9) un+1 = N∆t(u
n).

Definition 2.1 (Koopman operator [16]). For nonlinear dynamic system (2.7),
the Koopman operator K is an infinite-dimensional linear operator that acts on all
observable functions g :M→ C so that

(2.10) Kg(u) = g(N (u)).

For discrete dynamic system (2.9), the discrete-time Koopman operator Kt is

(2.11) K∆tg(un) = g(N∆t(u
n)) = g(un+1).

The Koopman operator transforms the finite-dimensional nonlinear problem (2.9)
in the state space into the infinite-dimensional linear problem (2.11) in the observable
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space. Since K∆t is an infinite-dimensional linear operator, it is equipped with infinite
eigenvalues {λk}∞k=1 and eigenfunctions {φk}∞k=1. In practice, one has to make a finite
approximation of the eigenvalues and eigenfunctions. The following assumption is
essential to both a finite-dimensional approximation and the choice of observables.

Assumption 2.2. Let y denote a p× 1 vector of observables,

(2.12) yn = g(un) =



g1(un)

...
gp(un)


 ,

where gj : M → C is an observable function with j = 1, . . . , p. If the chosen ob-
servable g is restricted to an invariant subspace spanned by eigenfunctions of the
Koopman operator Kt, then it induces a linear operator K that is finite-dimensional
and advances these eigenobservable functions on this subspace [5].

Based on Assumption 2.2, the DMD algorithm can be deployed to approximate
the eigenvalues and eigenfunctions of K using the collected temporal snapshots in the
observable space. This DMD strategy is implemented in Algorithm 2.2.

Algorithm 2.2 DMD algorithm on observable space [16].

0. Create the data matrices of observables

(2.13) Y =



| | |

y0 y1 · · · ym−1

| | |


 and Y′ =



| | |

y1 y2 · · · ym

| | |


 ,

where each column is given by yk = g(uk).
1. Apply SVD Y ≈ UΣV∗ with U ∈ Cp×r,Σ ∈ Cr×r,V ∈ Cr×m, where r is

the truncated rank chosen by certain criteria.
2. Compute K̃ = U∗Y′VΣ−1 as an r × r low-rank approximation for K.
3. Compute eigendecomposition of K̃: K̃W = WΛ, Λ = (λk).
4. Reconstruct eigendecomposition of K. Eigenvalues are Λ and eigenvectors

are Φ = UW.
5. Predict future yn+1

DMD as

(2.14) yn+1
DMD = ΦΛn+1b, b = Φ−1y0 for n > m.

6. Transform from observables space back to the state space,

(2.15) un
DMD = g−1(yn

DMD).

Remark 2.3. Connections between the DMD theory and the Koopman spectral
analysis under specific conditions on the observables and collected data are established
by a theorem in [34]. This theorem indicates that judicious selection of the observables
is critical to success of the Koopman method.

Remark 2.4. In general, there is no principled way to select observables without
expert knowledge of a dynamical system. Machine learning techniques can be deployed
to identify relevant terms in the dynamics from data, which guide selection of the
observables [30, 35, 6].



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A1644 HANNAH LU AND DANIEL M. TARTAKOVSKY

3. Analysis of predictive accuracy. We use a resolved accurate solution
of (2.4) under a certain CFL condition as a reference or yardstick against which
to test the accuracy of the DMD prediction (2.6).

3.1. Preliminaries. We start with a brief summary of the key results relevant
to our subsequent analysis.

Lemma 3.1. For parabolic PDEs, denote the spectral radius of K in (2.4) by ρ(K)
and assume ρ(K) < 1. Then a stable numerical method of (2.4) satisfies the maximum
principle in the discrete setting, i.e.,

(3.1)

‖un+1‖22 < ‖un‖22 + ∆tmax{‖fn‖22, ‖fn+1‖22}
< · · ·

< ‖u0‖22 + ∆t
n∑

k=0

max{‖fk‖22, ‖fk+1‖22}.

Proof.

(3.2)

‖un+1‖22 ≤ ‖Kun‖22 + ∆t‖fn+1/2‖22
≤ ‖K‖22‖un‖22 + ∆t‖fn+1/2‖22
≤ ρ(K)2‖un‖22 + ∆tmax{‖fn‖22, ‖fn+1‖22}.

According to the assumption ρ(K) < 1,

(3.3) ‖un+1‖22 < ‖un‖22 + ∆tmax{‖fn‖22, ‖fn+1‖22},

and Lemma 3.1 holds.

Lemma 3.2. DMD on m temporal snapshots is designed such that ‖um−um
DMD‖2

is minimized.

Proof. See [29, 10] for the proof.

3.2. Main results. We rewrite the DMD prediction (2.6) as

(3.4)

un+1
DMD = ΦΛn+1b

= ΦΛΦ−1ΦΛnb

= ΦΛΦ−1un
DMD

= un
DMD + (ΦΛΦ−1 − IN×N )un

DMD

= un
DMD + Bun

DMD.

Here B = ΦΛΦ−1 − IN×N , where Φ is an N × r matrix and Φ−1 is an r×N matrix
Φ−1 defined as Φ−1Φ = Ir×r.

Theorem 3.3. Define the local truncation error

(3.5) τn = un − un
DMD(un−1).

Then, for any n ≥ m,

(3.6) ‖τn‖2 ≤ εm,

where the constant εm depends only on the number of snapshots m.
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Proof.

(3.7)

‖τn‖22 = ‖un − un
DMD(un−1)‖22

= ‖Kun−1 −ΦΛΦ−1un−1‖22
= ‖(K−ΦΛΦ−1)un−1‖22
≤ ‖K−ΦΛΦ−1‖22‖un−1‖22.

Note that

(3.8)

K−ΦΛΦ−1 = K− (UW) Λ (UW)
−1

= K−U
(
WΛW−1

)
U∗

= K−UK̃U∗

= (K−X′X†) + (X′X† −UK̃U∗).

The term X′X† −UK̃U∗ introduces an error depending only on the rank truncation
in the SVD step of the DMD algorithm. The error is assumed to be subordinate, i.e.,

‖X′X† −UK̃U∗‖22 ≤ δ‖K−X′X†‖22

for constant δ such that 0 < δ � 1. Subsequently,

‖K−ΦΛΦ−1‖22 ≤ (1 + δ)‖K−X′X†‖22.

Since X′X† is the best-fit linear operator to approximate K obtained from available
m snapshots,

X′X† = argmin
A∈RN×N

m−1∑

k=0

‖Auk − uk+1‖22.

On the other hand,

K = argmin
A∈RN×N

∞∑

k=0

‖Auk − uk+1‖22

is the linear operator that fits all data. Thus, since

‖K−ΦΛΦ−1‖22
≤ (1 + δ)‖K−X′X†‖22

= (1 + δ)

∥∥∥∥∥ argmin
A∈RN×N

∞∑

k=0

‖Auk − uk+1‖22 − argmin
A∈RN×N

m−1∑

k=0

‖Auk − uk+1‖22

∥∥∥∥∥

2

2

≤ ‖cm‖22,

where cm is a term depending on the number of snapshots m, Theorem 3.3 holds with

(3.9) εm =

(
‖cm‖22(‖u0‖22 + ∆t

n−1∑

k=0

max{‖fk‖22, ‖fk+1‖22})
)1/2

.
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Remark 3.4. The value of cm decreases to 0 as m increases and so does εm. In
the limit of large number of snapshots, Λ and Φ become the exact eigenvalues and
eigenvectors of K. Then

(3.10)

‖K−ΦΛΦ−1‖2 = sup
z∈RN\{0}

‖Kz −ΦΛΦ−1z‖2
‖z‖2

= sup
w∈RN\{0}

‖KΦw −ΦΛw‖2
‖Φw‖2

= sup
w∈RN\{0}

‖ΛΦw −ΦΛw‖2
‖Φw‖2

= 0.

In other words, the more snapshots are obtained, the more accurate the approximation
of K becomes. Thus, the local truncation error caused by replacing K with B can be
minimized. A convergence proof of the eigenvalue and eigenfunction approximation
of K by DMD and convergence from K→ Kt can be found in [15].

Remark 3.5. For fixed m, the local truncation error can be improved by refining
the Ritz pairs in the DMD algorithm. See [10].

Theorem 3.6. Define the global truncation error

(3.11) en = un − un
DMD.

Then, for n ≥ m,

(3.12) ‖en‖2 < ‖Φ‖2‖Φ−1‖2[‖em‖2 + (n−m)εm].

Proof. Subtracting

(3.13) un
DMD = un−1

DMD + Bun−1
DMD

from

(3.14) un = un−1 + τn + Bun−1,

one gets

(3.15)

en = un − un
DMD

= en−1 + τn + Ben−1

= τn + ΦΛΦ−1en−1

= τn + ΦΛΦ−1(τn−1 + ΦΛΦ−1en−2)

= τn + ΦΛΦ−1τn−1 + ΦΛ2Φ−1en−2

= · · ·

= ΦΛn−mΦ−1em +
n−m−1∑

k=0

ΦΛkΦ−1τn−k.
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Then

(3.16)

‖ΦΛn−mΦ−1em +
n−m−1∑

k=0

ΦΛkΦ−1τn−k‖2

≤ ‖ΦΛn−mΦ−1‖2‖em‖2 + (n−m)εm max
0≤k≤n−m−1

‖ΦΛkΦ−1‖2

≤ ‖ΦΛn−m‖2‖Φ−1‖2‖em‖2 + (n−m)εm max
0≤k≤n−m−1

‖ΦΛk‖2‖Φ−1‖2

≤ ‖Φ−1‖2
(
‖Λn−m‖2‖Φ‖2‖em‖2 + (n−m)εm max

0≤k≤n−m−1
‖Λk‖2‖Φ‖2

)

= ‖Φ‖2‖Φ−1‖2
(
ρ(Λn−m)‖em‖2 + (n−m)εm max

0≤k≤n−m−1
ρ(Λk)

)

≤ ‖Φ‖2‖Φ−1‖2 [ρ(Λ)‖em‖2 + (n−m)εmρ(Λ)]

< ‖Φ‖2‖Φ−1‖2[‖em‖2 + (n−m)εm].

According to Lemma 3.2, ‖em‖ is fixed and minimal. Hence, if accuracy of the local
truncation error is of O((∆t)q), then the global truncation error is of O((∆t)q−1).

Theorem 3.6 provides quantitative error bounds of the DMD method with explicit
error dependence. In practice, one can determine cm by ‖K−ΦΛΦ−1‖2 and determine
εm from (3.9) subsequently. In complex simulations, one would not expect the DMD
prediction from a local data set to capture the global dynamics accurately. Instead,
one can use the error bounds to set up a threshold for DMD prediction limits and
combine a resolved algorithm with fast DMD prediction. This would considerably
speed up the simulations.

3.3. Application to nonlinear parabolic problems. Consider a general non-
linear reaction-diffusion equation in d spatial dimensions,

(3.17)

{
∂tu = ∇ · [kψ(u)∇u] + f(u), x ∈ D ⊂ Rd, t > 0,

u(x, 0) = u0(x), x ∈ D,

with nonnegative functions k = k(x) and ψ = ψ(u) whose product is diffusion coeffi-
cient D(x, u) = k(x)ψ(u). Spatial discretization of (3.17) leads to the corresponding
high-dimensional nonlinear ODE (2.3). Its DMD treatment relies on one’s ability to
identify informative observables and requires the prior knowledge of the structure of
governing equations such as (3.17). Examples in subsections 4.2 to 4.4 illustrate the
critical role of observable selection in the DMD method.

For (3.17), expert knowledge suggests the existence of a function η(u) such that
η′(u) = ψ(u), which can be constructed via the Kirchhoff transform (e.g., [31, 32]).
Then, by chain rule, (3.17) is rewritten as

(3.18)

{
∂tu−∇ · [k∇η(u)] = f(u),

u(x, 0) = u0(x),

so that the nonlinear diffusion in u becomes linear in η. Spatial discretization of (3.18)
leads to

(3.19)
du

dt
= Aη(u) + F(u),
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where A is the same linear operator in (2.2). Motivated by the nonlinear observable
choice for the nonlinear Schrödinger equation in [16], and by the accurate and robust
performance of DMD on linear diffusion reported below, we choose the observable

(3.20) g = [g1(u), . . . , gp(u)] s.t. u,η(u),F(u) ∈ span{g1(u), . . . , gp(u)}.

The reference solution of (3.17) is obtained by discretizing (3.19) in time,

(3.21) un+1 = un + ∆tη∗ + ∆tF∗,

where the superscript ∗ denotes linear interpolation between time tn+1 and tn. For
the observables in (3.20), we have

(3.22)
un+1,ηn+1,Fn+1 ∈ span{g1(un+1), . . . , gp(un+1)},
un,ηn,Fn ∈ span{g1(un), . . . , gp(un)}.

Thus, Algorithm 2.1 induces a linear operator denoted by K such that

(3.23) yn+1 = Kyn,

where yn = g(un) defined in (2.12). Treating (3.23) as the reference solution, against
which we compare the DMD prediction (2.15), one gets exactly the same formulas
as (2.4) and (2.6) but in observable space:

(3.24)
yn+1 = Kyn,

yn+1
DMD = ΦΛn+1b.

So the error analysis in section 3 carries on in terms of y.

4. Numerical tests. We test the robustness of our error estimates and the
DMD performance in the extrapolation regime on several test problems arranged in
order of difficulty.

In our resolved simulations, we use finite difference in space and forward Euler in
time with CFL condition ∆t ∼ O((∆x)2). Although there are many relatively efficient
implicit/semi-implicit solvers, the computational difficulty of solving high-dimensional
systems iteratively remains essentially the same. We would apply the same order of
computational time to them and simply take the fully explicit discretization as the
resolved solutions. In the following tests, an N = 500 spatial mesh is created in x
and n = 500 solutions are uniformly selected from a specified time interval. Thus,
the reference solution is built on this 500 × 500 mesh. We also compare the relative
performance of DMD and POD(-DEIM) in terms of both their computational time
and error with respect to the reference solution.

4.1. Linear diffusion. We start with a linear diffusion equation,

(4.1a)
∂u

∂t
=
∂2u

∂x2
, x ∈ [0, 1], t ∈ [0, T ],

subject to several sets of initial and boundary conditions

u(x, 0) = u0, u(0, t) = uL, u(1, t) = 1.(4.1b)

Discretization of the spatial domain [0, 1] with a fine mesh of size ∆x� 1 gives rise to
the equivalent high-dimensional ODE (2.2), where u = [u(x1, t), . . . , u(xN , t)]

> is the
spatial discretization of u(x, t) with N � 1 and A is a linear operator representing
the diffusion.
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Fig. 1. Test 1a. Reference solution (left) and its DMD approximation with m = 200 snapshots
(right).

4.1.1. Relaxation to equilibrium (Test 1a). Consider (4.1) with T = 0.2,
u0 = 0, and uL = 0. Figure 1 demonstrates visual agreement between the true solution
u(x, t) and its counterpart predicted by DMD with m = 200 temporal snapshots; the
two solutions converge to the same stationary state.

Figure 2 exhibits the local truncation error τ (3.5) and the global truncation error
e (3.11) of the DMD with m = 100, 200, and 300 snapshots of the reference solution.
The rank in step 1 of Algorithm 2.1. is truncated by the criteria of

(4.2) r = max{i : σi > εσ1},

where σi are the diagonal elements of Σ in SVD. The figure shows that the local
truncation errors decrease with the number of snapshots, resulting in a more accurate
prediction. This is consistent with the intuition that DMD can better capture the
dynamics by learning from richer/larger data sets.

If a more stringent condition on the rank truncation is imposed, i.e., a relatively
higher-order surrogate model is established, further reduction in both local and global
errors is observed (Figure 3). The good performance of DMD in Test 1a is not sur-
prising: The monotonic (exponential) decay of the solution to the linear diffusion
equation is captured by a relatively few temporal snapshots. The next example pro-
vides a more challenging test by introducing temporal fluctuations at the boundary
x = 0.

4.1.2. Periodic boundary fluctuations (Test 1b). Consider (4.1) with T =
π/2, u0 = 1, and uL = 1.01 + 0.01 sin(−π/2 + 10t). Figure 4 demonstrates that
m = 200 snapshots is sufficient for DMD to match the reference solution. The corre-
sponding local and global truncation errors are plotted in Figure 5. Since the solution
u(x, t) to (4.1) with the parameter values used in Test 2 has a period of π/5, m = 100
snapshots are not enough to cover the whole period. Consequently, DMD fails to cap-
ture the system dynamic and to predict the future states accurately. However, once
the full period of the solution is covered by the snapshot’s data, i.e., when m = 200
or 300 snapshots are used, DMD is accurate even for long-time prediction. The error
bound in Theorem 3.6 does a good job bounding the computed error.

Although not shown here, the reliance on a more restricted rank truncation, i.e.,
setting the rank threshold to ε = 10−12, improves the DMD’s accuracy by at least an
order of magnitude for the parameter values considered.
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Fig. 2. Test 1a. Local truncation error τ for DMD with m = 100, 200, and 300 snapshots
(top); and global error e (error of the solution u) for DMD with m = 100 (middle) and m = 200
snapshots (bottom). The global error is negligible for m = 300 (not shown). The rank threshold is
set to ε = 10−8.

4.2. Reaction-diffusion equation. Consider a reaction-diffusion equation

(4.3a)
∂u

∂t
= θ

∂2u

∂x2
− µ(u− u3), x ∈ [0, 1], t ∈ [0, 2],

with constant coefficients θ, µ ∈ R+. It is subject to initial and boundary conditions

(4.3b) u(x, 0) = 0.5 + 0.5 sin(πx), u(0, t) = 0, u(1, t) = 0.

4.2.1. Diffusion-dominated regime (Test 2a). To achieve this regime (θ �
µ), we set θ = 0.1 and µ = 0.01. Figure 6 exhibits the fully resolved solution with its
approximations provided by DMD with different observables, g1(u) = u and g2(u) =
(u, u3), and by POD-DEIM. In Figure 6, the choice of observables does not appreciably
affect the DMD’s performance due to the dominating linear diffusion, though one
can still observe higher-order accuracy of g2 than g1 in the logarithm solution error
plot Figure 7.

The corresponding prediction errors are also reported in Figure 7. With the same
rank truncation criteria, POD is more accurate than DMD, especially in the absence
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Fig. 3. Test 1a. Local truncation error for DMD with m = 100, 200, and 300 snapshots (top);
and global error e (error of the solution u) for DMD with m = 100 snapshots (bottom). The global
error is negligible for m = 200 and 300 (not shown). The rank threshold is set to ε = 10−12.
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Fig. 4. Test 1b. Reference solution (left) and its DMD approximation with m = 200 snapshots
(right).

of “right” observables. However, DMD is much faster than POD. We report the
computational costs comparison in subsection 4.2.3.

4.2.2. Reaction-dominated regime (Test 2b). To explore this regime (µ�
θ), we set θ = 0.1 and µ = 1. Now the choice of observables has significant (visual)
impact on the predictive accuracy (Figure 8). The Koopman operator theory helps
explain this observation. Since the nonlinear source term dominates the dynamics,
only the consistent observables can capture the eigenvalues and eigenfunctions of the
Koopman operator.

Errors of DMD prediction relying on the observables g1(u) = u and g2(u) =
(u, u3) are shown in Figure 9. Our error estimation, Theorem 3.6, indicates the failure



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A1652 HANNAH LU AND DANIEL M. TARTAKOVSKY

100 200 300 400 500 600
10 -10

10 -5

100

100 200 300 400 500 600

10
0

200 250 300 350 400 450 500 550 600

10
0

Fig. 5. Test 1b. Local truncation error τ for DMD with m = 100, 200, and 300 snapshots (top);
and global error e (error of the solution u) for m = 100 (middle) and m = 200 snapshots (bottom).
The global error is negligible for m = 300 (not shown). The rank threshold is set to ε = 10−8.

of the DMD prediction based on the observable g1(u) = u and provides a robust error
bound for the DMD prediction based on the observable g2(u) = (u, u3). For the same
rank truncation criteria, the errors of POD and DMD using g2(u) are comparable,
while that of DMD with g1(u) is orders of magnitude higher.

4.2.3. Comparison of POD and DMD. Comparison of the computation time
and accuracy of DMD and POD-DEIM is presented in Figure 10 for Test 2b. The
computational time comparison is made for the same rank truncation criteria. Note
that the rank of the ROM is different for DMD and POD because of the different
dimension of the input data matrix. The ROM derived by DMD is in observable
space and the ROM derived by POD is in state space.

Figure 10 demonstrates that DMD prediction is computationally efficient due to
its iteration-free feature. POD, on the other hand, is computationally more expensive
than the fully resolved solver because the computational cost saved by ROM in the
prediction process does not compensate for the cost of establishing the ROM by SVD
and DEIM. This would not be the case for higher-dimensional problems and longer
prediction times. However, being noniterative, DMD would outperform POD on such
problems as well.
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Fig. 6. Test 2a. Fully resolved solution u(x, t) of the reaction-diffusion problem (4.3) in the
diffusion-dominated regime, and its approximations obtained from m = 200 snapshots with DMD
(with two sets of observables g) and POD-DEIM.

Both the accuracy and computational time depend on the rank of the ROM. The
table in Figure 10 reveals that POD has an advantage in accuracy and DMD has
an advantage in efficiency. Thus, if one wants a fast prediction with slightly lower
accuracy, then DMD is a better choice and vice versa.

4.3. Nonlinear reaction-diffusion equation (Test 3). Consider a reaction-
diffusion equation with the state-dependent diffusion coefficient

∂u

∂t
=

∂

∂x

(
u
∂u

∂x

)
− (u− u3), 0 < x < 1, t > 0.(4.4a)

It is subject to the initial and boundary conditions

u(x, 0) = 0.5 + 0.5 sin(πx), u(0, t) = 0, u(1, t) = 0.(4.4b)

As discussed earlier, the Koopman operator theory suggests that only the physical-
informed observables can capture the dynamical systems. To identify the relevant
observables, we use the Kirchhoff transformation to recast (4.4a) as

∂u

∂t
=
∂2φ

∂x2
− (u− u3), φ = u2/2.(4.5)

This form suggests a set of observables g2 = (u;u2;u3).
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Fig. 7. Test 2a. Local truncation error; comparison of POD and DMD errors of the solution;
global error (errors of the observables) for DMD prediction with observables g1 and g2 using m = 200
snapshots.

Figures 11 and 12 provide the visual and quantitative comparison between the
fully resolved solution u(x, t) and its POD and DMD approximations. The perfor-
mance of these approximators on this highly nonlinear problem is qualitatively similar
to its weakly nonlinear counterpart analyzed in subsection 4.2. For the inadequate
choice of observables, g1 = u, our error bound diverges from the true error because
of the fast decay of both the reference and wrong solutions. Nevertheless, the error
bound still serves as a good discriminator between the accurate or inaccurate predic-
tions. For the proper choice of observables, g2 = (u;u2;u3), our error bound remains
accurate.
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Fig. 8. Test 2b. Fully resolved solution u(x, t) of the reaction-diffusion problem (4.3) in the
reaction-dominated regime, and its approximations obtained from m = 200 snapshots with DMD
(with two sets of observables g) and POD-DEIM.

4.4. Nonlinear Schrödinger equation (Test 4). Finally, we consider the
nonlinear Schrödinger equation,

(4.6)




i
∂q

∂t
+

1

2

∂2q

∂ξ2
+ |q|2q = 0,

q(x, 0) = 2sech(x).

It belongs to the general class of nonlinear parabolic PDEs (2.1) and satisfies all of the
assumptions underlying our error estimator. The reference solution is obtained by us-
ing the fast Fourier transform in space and the Runge–Kutta method in time evolution.

We reproduce the results reported in [16] and use them to verify our error bound
in Figures 13 and 14. In this case, DMD with the right observable has better perfor-
mance, in terms of both accuracy and efficiency, than POD. The advantage of taking
physical information into account is tremendous.

5. Conclusion and future outlook. We derived error bounds of DMD pre-
dictions for linear and nonlinear parabolic PDEs and verified their accuracy on four
computational examples with increasing degree of complexity. Our analysis leads to
the following major conclusions.

1. When combined with adequate choice observables, the Koopman operator
maps the nonlinear underlying dynamics with the linear observable space,
where the DMD algorithm can be implemented with good accuracy and effi-
ciency.
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Fig. 9. Test 2b. Local truncation error; comparison of POD and DMD errors of the solution;
global error (errors of the observables) for DMD prediction with observables g1 and g2 using m = 200
snapshots.

2. In the extrapolation (predictive) mode, DMD outperforms other ROM-based
methods (e.g., POD) in terms of computational efficiency, because it requires
no iteration. At the same time, POD has higher predictive accuracy than
DMD.

3. Our error estimator is consistent with previous theoretic understanding of
the DMD algorithm and the Koopman operator theory. More importantly, it
provides a quantitative measure of the accuracy of DMD predictions.

In the follow-up studies we will used our error estimators of DMD predictions to
address several challenges in scientific computing:



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

PREDICTIVE ACCURACY OF DYNAMIC MODE DECOMPOSITION A1657

0.06 0.08 0.1 0.12 0.14 0.16 0.18

0

20

40

60

80

16 H. LU AND D. M. TARTAKOVSKY

0 1 2

0

0.2

0.4

0.6

0.8

1

0.2

0.4

0.6

0.8

1

0 1 2

0

0.2

0.4

0.6

0.8

1
-0.5

0

0.5

0 1 2

0

0.2

0.4

0.6

0.8

1

0.2

0.4

0.6

0.8

0 1 2

0

0.2

0.4

0.6

0.8

1

0.2

0.4

0.6

0.8

Fig. 8: Test 2b. Fully resolved solution u(x, t) of the reaction-di↵usion problem (4.3)
in the reaction-dominated regime, and its approximations obtained from m = 200
snapshots with DMD (with two sets of observables g) and POD-DEIM.

Table1

computational time
(in seconds)

resolved solution 0.014622
DMD with g2 0.006274

POD 0.020766 0.06 0.08 0.1 0.12 0.14 0.16 0.18
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Test 2b. Computational times of the fully resolved solution, POD-DEIM, and DMD
with the observables g2(u) (left table); Comparison of POD and DMD in terms of
computational time and accuracy (right figure).

4.3. Test 4: Nonlinear reaction-di↵usion equation. Consider a nonlinear366

reaction-di↵usion equation367

(4.4)

(
ut � @x(u@xu) + (u � u3) = 0,

u(x, 0) = 0.5 + 0.5 sin(⇡x)
368

This manuscript is for review purposes only.

Fig. 10. Test 2b. Computational times of the fully resolved solution, POD-DEIM, and DMD
with the observables g2(u) (left table); comparison of POD and DMD in terms of computational
time and accuracy (right figure).
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Fig. 11. Test 3. Fully resolved solution u(x, t) of the nonlinear reaction-diffusion problem (4.4)
and its approximations obtained from m = 200 snapshots with DMD (with two sets of observables
g) and POD-DEIM.

1. For PDEs with random coefficients, e.g., for PDE-based models of flow and
transport in (randomly) heterogeneous porous media, DMD predictions with
quantitative error bounds might provide a means for accelerating computa-
tionally expensive Monte Carlo and multiscale simulations.
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Fig. 12. Test 3. Comparison of POD and DMD errors; local truncation error and global error
for DMD prediction with g1 and g2 using m = 200 snapshots.

2. Our error estimators can be used to guide the design of hybrid algorithms that
combine DMD predictions with fully resolved solutions of multidimensional
complex problems.

3. It might be possible to generalize our results to a broader context of advection-
diffusion equations. mrDMD, instead of DMD, can be used to overcome the
translational invariant issues in advection.
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Fig. 13. Test 4. Resolved solution, DMD solutions, and POD solution using m = 20 snapshots;
comparison of POD and DMD errors.
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