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Quantitative predictions of the behavior of many deterministic systems are uncertain due
to ubiquitous heterogeneity and insufficient characterization by data. We present a com-
putational approach to quantify predictive uncertainty in complex phenomena, which is
modeled by (partial) differential equations with uncertain parameters exhibiting multi-
scale variability. The approach is motivated by flow in random composites whose internal
architecture (spatial arrangement of constitutive materials) and spatial variability of prop-
erties of each material are both uncertain. The proposed two-scale framework combines a
random domain decomposition (RDD) and a probabilistic collocation method (PCM) on
sparse grids to quantify these two sources of uncertainty, respectively. The use of sparse
grid points significantly reduces the overall computational cost, especially for random pro-
cesses with small correlation lengths. A series of one-, two-, and three-dimensional com-
putational examples demonstrate that the combined RDD–PCM approach yields efficient,
robust and non-intrusive approximations for the statistics of diffusion in random
composites.

Published by Elsevier Inc.
1. Introduction

Predictions of the behavior of deterministic physical systems are often uncertain because such systems tend to be heter-
ogeneous and under-parameterized by data. In addition to being sparse, parameter data are often corrupted by measurement
and interpretive errors. Modeling of subsurface flow and transport is a case in point. While it relies on equations (e.g. a dif-
fusion equation used to describe single-phase flow in porous media or an advection–dispersion equation used to model sol-
ute transport) that are inherently deterministic, subsurface heterogeneity, data sparsity, and low-resolution indirect
measurements of the parameters entering these equations (e.g. hydraulic conductivity and dispersion coefficients) render
model predictions highly uncertain. A prevailing approach to quantifying predictive uncertainty is to treat such parameters
as random fields, whose statistics are inferred from available data. The corresponding governing equations become stochas-
tic [1,2].

Monte Carlo simulations (MCS) are routinely used to solve stochastic partial differential equations (SPDEs), but they are
computationally prohibitive. Perturbation-based moment equations have been widely used to quantify uncertainty in sub-
surface modeling, e.g. [1–8]. Since these approaches employ the variance of log-hydraulic conductivity as a small perturba-
tion parameter, they are formally applicable to mildly-to-moderately heterogeneous media. Moreover, perturbation-based
moment solutions of some stochastic equations (e.g. advection–dispersion equations, which are the focus of this analysis)
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may diverge for any non-zero variances of the hydraulic conductivity [9]. Stochastic finite elements represent a ‘‘nonpertur-
bative” alternative to MCS and moment equations that, under certain conditions discussed below, is computationally more
efficient than either of the two. The classical polynomial chaos [10], which relies on the Hermite orthogonal polynomials to
represent a second-order stochastic process by a spectral expansion in terms of Gaussian random variables, has been used to
solve SPDEs via a Galerkin projection (see [11] and the references therein). The generalized polynomial chaos [12] extends its
range of applicability by employing orthogonal polynomials from the Askey scheme. Similar to moment equations, polyno-
mial-chaos expansions result in deterministic equations that can be different from the underlying governing equations and,
hence, require one to modify existing deterministic (legacy) codes. Such approaches are sometimes referred to as ‘‘intrusive”.

Probabilistic collocation methods (PCMs) [13–27], which combine the strengths of MCS and stochastic Galerkin methods,
provide a non-intrusive alternative. They utilize the theory of multivariate polynomial interpolations [28,29] to achieve fast
convergence when solutions of SPDEs possess sufficient smoothness in the random space. Implementation of PCMs is
straightforward, since it only requires one to solve of the underlying deterministic problems at pre-selected sampling points.
The choice of these sampling or collocation points is based on sparse grids obtained with the Smolyak algorithm [30]. This
offers high-order accuracy and convergence rates that are less dependent on dimensionality than are those of polynomial-
chaos expansions.

The computational cost of stochastic finite element approaches, both intrusive and non-intrusive, might become prohib-
itive when they are used to analyze highly heterogeneous systems, i.e. when system parameters have a large number of ran-
dom dimensions. In the present study, we address this open issue by introducing a two-scale framework that combines a
random domain decomposition (RDD) [31–33] and the PCM approach on sparse grids. The RDD takes advantage of the fact
that multi-modality of, and the lack of stationarity (statistical homogeneity) in, a system parameter Y typical indicates that it
is sampled from a union of ensembles, each of which is unimodal and stationary (see also [34]). The RDD uses parameter data
to reconstruct probabilistically the spatial extent of distinct populations [35–38], which allows one to replace a non-Gauss-
ian, nonstationary distribution of Y with a joint distribution of random sub-domains (boundaries between populations) and
sub-domains’ properties. RDD has been combined with the generalized polynomial chaos to model diffusion in a one-dimen-
sional random composite [39].

The paper is organized as follows. A general formulation of steady-state diffusion in random composites (or single-phase
flow in highly heterogeneous porous media) is presented in Section 2. Section 3 contains probabilistic representations of the
system parameters describing these phenomena. An outline of the PCM approach on sparse grids is provided in Appendix A
for interested readers. In Section 5 we use the RDD to decrease the computational cost of the PCM approach and to extend its
range of applicability. The accuracy and convergence of the resulting RDD–PCM approach are analyzed in Section 6 by con-
sidering two one-dimensional problems. Finally, Section 7 presents the results of two- and three-dimensional simulations.

2. Governing equations

Consider a Poisson equation:
r � Kðx;xÞrhðx;xÞ½ � þ f ðxÞ ¼ 0; x 2 D; x 2 X; ð1Þ
which describes steady-state single-phase flow in a (randomly heterogeneous) porous medium D, among many other phe-
nomena. Uncertainty in the hydraulic conductivity of a heterogeneous porous medium K(x) is quantified by treating it as a
random field K(x; x), so that K varies in both the physical space, x 2 D, and the sample space, x 2X, with x representing a
random event in the sample space X. In applications, ensemble statistics of the random field K(x; x), including its correlation
structure, are inferred from a set of Nm measurements Ki � K(xi) (i = 1, . . .,Nm) by invoking ergodicity [1,2]. As a solution of (1),
the hydraulic head h(x) becomes random as well, h(x; x). The source function f(x) might be either random or deterministic.

The Poisson Eq. (1) is subject to the boundary conditions:
hðx;xÞ ¼ HðxÞ; x 2 CD; x 2 X; ð2aÞ
Kðx;xÞnðxÞ � rhðx;xÞ ¼ GðxÞ; x 2 CN ; x 2 X; ð2bÞ
where H(x) and G(x) are the forcing functions prescribed on the Dirichlet, CD, and Neumann, CN, segments of the boundary
oD ¼ CD [ CN , and n is the outward unit normal vector. To simplify the presentation, we treat the forcing functions f, H and G
as deterministic, i.e. known with certainty. Randomness (uncertainty) in these functions can be readily accounted for since
their effects are additive [40].

Physical considerations dictate that (random) hydraulic conductivity be non-negative, K(x; x) > 0, almost everywhere
(a.e.) in x 2X. Some reservations (e.g. [41] and references therein) notwithstanding, it is common to treat Y = lnK as a sta-
tionary multivariate-Gaussian random field (e.g. [1,2] and references therein). Such parameterizations of (1) are expected to
fail if a porous medium is highly heterogeneous, consisting of multiple inhomogeneous materials. Even after removing a
deterministic trend (the ensemble mean) YðxÞ, the random increments Y 0ðxÞ � YðxÞ � YðxÞ remain nonstationary, exhibiting
variances that vary from one constitutive material to another and different degrees of correlation within each material and
between different materials [42]. The stochastic algorithm described in Sections 3–5 provides an efficient computational tool
for quantifying uncertainty in such systems, and allows one to deal with highly non-Gaussian system parameters.
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3. Stochastic representations of system parameters

Efficient representations and generations of nonstationary (statistically inhomogeneous) random fields with arbitrary
distributions and correlation structures are elusive. It is at this first stage of uncertainty quantification—probabilistic repre-
sentation of uncertain system parameters—that the advantages of RDD become apparent. Suppose that an analysis of sys-
tem-parameter data fYigNm

i¼1 enables one to identify probabilistically the spatial extent of Np distinct populations Xn

(n = 1, . . .,Np), i.e. to decompose the d-dimensional flow domain D 2 Rd into Np sub-domains Dn (such that D ¼ [Np
n¼1Dn

and Dn \ Dk for n – k), each of which is characterized by a second-order continuous stationary multivariate-Gaussian field
Yn(x; x). (Such an analysis lies outside the scope of the present study; the tools developed in [35–38], among others, can be
used to achieve this goal.) Then one can utilize the well-developed theory of stationary random processes (e.g. [34,43]) to
represent random fields Yn(x; x) (n = 1, . . .,Np) with a required degree of accuracy.

Specifically, if Yn(x; x) is a second-order stationary random process that is mean-square continuous on the closure of Dn,
i.e. if for any x; y 2 Dn � Dn [ oDn:
E Ynðx;xÞ2
h i

<1 and lim
y!x

E Yðy;xÞ � Yðx;xÞj j2
h i

¼ 0; ð3Þ
then its best linear approximation (in the mean-square sense) is provided by the Karhunen–Loève (K–L) expansion [43]:
Ynðx;xÞ ¼ Yn þ
X1
i¼1

ffiffiffiffi
ki

p
wiðxÞniðxÞ; x 2 Dn; x 2 Xn: ð4Þ
Here ni(x) are mutually uncorrelated random variables with zero-mean and unit variance; and ki and wi(x) are the eigen-
values and corresponding eigenfunctions of the covariance function CYn ðx; yÞ, which satisfy a Fredholm equation:
Z

Dn

CYn ðx; yÞwðyÞdVy ¼ kwðxÞ; x 2 Dn; ð5Þ
where dVy = dy1, . . .,dyd. In the analysis below, we take the random variables ni to be Gaussian and the covariance function
CYn ðx; yÞ � CYn ðjx� yjÞ to be separable exponential, i.e. CYn ðjx� yjÞ ¼ r2

Yn
exp �

Pd
i¼1jxi � yij=lni

� �
where r2

Yn
is the variance of

Y in the n-th sub-domain Dn and lni
ði ¼ 1; . . . ; dÞ are the correlation lengths along the x1, . . .,xd coordinate axes, respectively.

Note that here and below we use E½A� and A interchangeably to denote the ensemble mean of a random field A.
In numerical simulations, the infinite series in (4) must be truncated at a finite index number Mn:
YMnðx;xÞ ¼ Yn þ
XMn

i¼1

ffiffiffiffi
ki

p
wiðxÞniðxÞ: ð6Þ
The corresponding optimal mean-square truncation error:
Z
Dn

E Ynðx;xÞ � YMn ðx;xÞj j2
h i

dVx ¼
X1

i¼Mnþ1

ki; ð7Þ
depends on the decay rate of the eigenvalues ki (i P 1). For general second-order stationary random fields, the decay rate of ki

depends on two factors [44]: regularity of the correlation function [45] and its correlation length. For the separable exponen-
tial correlation function CYn considered in this study, the eigenvalue decay rate is completely determined by the correlation
lengths lni

.
Let us sort the eigenvalues ki (i P 1) in the monotonically decreasing order before truncating the K–L expansion. Then a

truncation error criterion:
XMn

i¼1

ki 6 0:9
X1
i¼1

ki; ð8Þ
which aims to retain 90% of the full eigen-spectrum, is used to determine the appropriate number of random dimensions Mn

for each sub-domain Dn ðn ¼ 1; . . . ;NpÞ. The criterion (8) enables one to find Mn from the eigenvalue decay rate prior to solv-
ing the stochastic problem (1)–(2). For large correlation lengths, the eigenvalues decay very fast [46], so that only a small
number of terms must be kept in the K–L expansion. For small correlation lengths, the eigenvalues decay slower and more
terms are needed in the K–L expansion. Moreover, the spatial resolution must be increased to capture small-scale features
associated with short correlation lengths.

For a general d-dimensional domain D 2 Rd and for an arbitrary correlation function CY, the eigenvalue problem (5) has to
be solved numerically. If the domain is a d-dimensional cube, D ¼ fx : 0 6 xi 6 Li; i ¼ 1; . . . ; dg, and if the correlation func-

tion CYðjx� yjÞ ¼ r2
Y exp �

Pd
i¼1jxi � yij=li

� �
, then the eigenvalues ki and the corresponding eigenfunctions wi are computed

analytically by combining one-dimensional eigenvalues and eigenfunctions for the one-dimensional Fredholm equation (5)
(e.g. [46]).

To facilitate computations further, it is common to treat the mutually uncorrelated random variables ni(x) in (6) as sta-
tistically independent (see the discussion and references in Section 3.3 of [47]). If these random variables are multivariate
Gaussian, then this treatment is exact since the lack of correlation implies mutual independence.
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4. Stochastic numerical methods

Monte Carlo simulations (MCS) and probabilistic collocation methods (PCMs) follow a similar procedure for solving sto-
chastic differential equations. It consists of the following steps: (i) select sampling points in the probability space of random
system parameters, (ii) solve corresponding deterministic governing equations at these points, and (iii) estimate statistical
moments of the resulting solutions. The main difference between MCS and PCM is the choice of sampling points and appro-
priate weights associated with these points. To focus on this difference, we employ the same high-order numerical method—
a weighted, essentially non-oscillatory scheme (WENO)—to solve deterministic equations in both MCS and PCM. A brief
description of PCMs is provided below, and algorithms for choosing the sampling points are discussed in the Appendix A.

4.1. Probabilistic collocation methods

Suppose that in each sub-domain Dn ðn ¼ 1; . . . ;NpÞ the random system parameter Y(x; x) can be described, with a given
degree of accuracy, by Mn independent random variables ni(x) (i = 1, . . .,Mn) in accordance with (6). Then the total number of
independent random variables ni(x) needed to describe Y(x; x) for all x 2 D ¼ [Np

n¼1Dn is M ¼
PNp

n¼1Mn. According to the
Doob–Dynkin lemma [48], the same number of random variables is sufficient to describe the system state h(x; x) given
by a solution of (1)–(2). In other words, h = h(x; n) where n(x) = [n1(x), . . .,nM(x)]T.

Let piðniÞ : Ci ! Rþ denote the probability density function (PDF) of the i-th random variable ni (i = 1, . . .,M), where the
images Ci � ni(X) are assumed to be intervals in R. Since ni(x) (i = 1, . . .,M) are independent random variables, the joint
PDF of n(x) is given by
pðnÞ ¼
YM
i¼1

piðniÞ; n 2 C; ð9Þ
and has the support:
C �
YM
i¼1

Ci � RM: ð10Þ
Applying the weighted residual method in the probability space to (1), we obtain:
Z
C
#ðnÞ r � Kðx; nÞrhðx; n½ � þ f ðxÞf gdVn ¼ 0; ð11Þ
where dVn � dn1, . . .,dnM and #(n) represents a family of weight functions. In the Galerkin projection method, weight func-
tions #(n) are taken to be basis functions, e.g. the generalized polynomial chaos (gPC) basis functions [12]. The orthogonality
of (gPC) basis functions allows one to reduce the stochastic integral Eq. (11) to a set of deterministic equations. These equa-
tions can have a functional form that is different from the underlying deterministic equation. Hence one needs to modify an
existing numerical code used to solve the deterministic version of (1), a procedure that is sometimes called ‘‘intrusive”.

In contrast to the Galerkin projection, the collocation formulation employs the Dirac delta functions d(n � nk) with
k = 1, . . .,M as the weight functions. Applying the collocation projection, #(n) = d(n � nk), to (11) yields a set of M deterministic
equations:
r � Kðx; nkÞrhðx; nkÞ½ � þ f ðxÞ ¼ 0; x 2 D; k ¼ 1; . . . ;M: ð12Þ
The main advantages of the collocation projection method over the Galerkin projection method (e.g. [11,12]) are that this
set of deterministic equations is decoupled in random space, and that each of these equations has the same functional form
as the underlying governing equation. These advantages hold regardless of whether a differential operator in the governing
equation is linear (the case considered here) or nonlinear.

A general PCM procedure is similar to that for MCS, except for the choice of the sampling points nk and the corresponding
weights. The procedure consists of the following three steps:

(1) Generate Nc collocation points nk (k = 1, . . .,Nc) in the probability space of random parameters as independent random
inputs based on either the Clenshaw–Curtis formulae for nested sparse grids or the Gauss quadrature formula for non-
nested sparse grids.

(2) Solve a deterministic problem (12) at each collocation point nk.
(3) Compute the statistics of h(x; x) using the corresponding quadrature rule, e.g.
�hðxÞ ¼
Z

C
hðx; nÞpðnÞdVn �

XNc

k¼1

#khðx; nkÞ; ð13Þ

r2
hðxÞ ¼

Z
C

hðx; nÞ � �hðxÞ
� �2

pðnÞdVn �
XNc

k¼1

#kh x; nkð Þ2 � �hðxÞ2; ð14Þ

where f#kgNc
k¼1 is a set of weights corresponding to the set of quadrature points fnkgNc

k¼1. Extensive reviews on construc-
tion of quadrature formulae may be found in [49,50].
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4.2. Selection of collocation points

The computational cost of the PCM approach is the number of collocation points times the cost of computing the corre-
sponding deterministic problem. For a given required accuracy, our goal is to select a collocation point set with the minimal
number of collocation points. The Appendix A contains a brief overview of two different methods for the selection of collo-
cation point sets: tensor products of one-dimensional collocation point sets (Section A.1) and a sparse grid strategy for high
dimensionality (Section A.2).

In the simulations presented below, we employ non-nested sparse grid points, which are selected as follows (see Section
A.4 for more details). First, a one-dimensional Gaussian-quadrature rule is constructed for a given probabilistic distribution
function. Second, the Smolyak algorithm is employed to select sparse combinations in multi-dimensions.

5. Random domain decomposition (RDD)

We use a RDD [31,32] to improve the efficiency and to speed up the convergence of the PCM for random parameters with
multimodal nonstationary distributions. Within the combined RDD–PCM framework, the uncertainty in a system parameter
Y(x) is treated as a two-scale random process. Uncertainty in the spatial extent of Np sub-domains fDigNp

i¼1 is quantified by
treating boundaries aij(x) between sub-domains Di and Djði–jÞ as random fields aij(x; x) with a joint PDF pa(a). Uncertainty
in Y(x) within each sub-domain fDigNp

i¼1 is quantified by treating it as a random field with a joint conditional PDF pYc(yja).
Since each sub-domain Dj represents a distinct population Xi, the conditional PDF pYc(yja) is expected to be unimodal
and stationary. This process replaces pY(y), a multimodal nonstationary distribution for Y(x), with a joint distribution
pY(y,a) = pYc(yja)pa(a).

The stochastic flow Eq. (1) can now be rewritten as
r � Kiðx; xÞrhðx;xÞ½ � þ f ðxÞ ¼ 0; x 2 Di; x 2 Xi; i ¼ 1; . . . ; Np; ð15Þ
where each Yi(x) = lnKi(x) is a multivariate-Gaussian stationary field. Depending on application, the fields Yi(x) and Yj(x)
(i – j) might or might not be cross-correlated. The relative importance of such a cross-correlation has been studied in
[51]. The boundary conditions (2) are now supplemented with the conditions of continuity of the state variable h and the
normal component of the flux Krh along each realization of the random boundaries aij.

Most previous applications of the RDD dealt with MCS and/or perturbation solutions of the moment equations in one and
two spatial dimensions [32,33,35,52]. To circumvent the limitations of moment equations and to alleviate the computational
burden of MCS, an intrusive RDD-polynomial-chaos approach has been investigated in [39]. Here we introduce a new non-
intrusive two-scale RDD–PCM framework that combines the RDD and the PCM approach on sparse grids to improve the abil-
ity of the latter to handle problems with large numbers of random dimensions.

Let Nc;aij
and Nc,i (i, j 2 Np) denote the number of collocation points used to represent boundaries aij(x; x) and random

parameters Yi(x; x), respectively. Then the total number of collocation points is the tensor product of each set of collocation
points, i.e. Pi;j2Np Nc;aij

�PNp

i¼1Nc;i. To simplify the presentation, we consider flow domains D � Rd consisting of two sub-do-
mains, D ¼ D1 [ D2, separated by a random boundary a � a12. In this case, the total number of collocation points is
Nc,a � Nc,1 � Nc,2.

5.1. Combined RDD–PCM framework

We assume that the random boundary a(x; x) can be parameterized by either a Gaussian or a uniformly-distributed ran-
dom variable na. For every realization of a, the K–L expansion (6) is employed to represent the random fields Yi(x; x) within
each sub-domain Di ði ¼ 1;2Þ. Let MYi

denote the number of random dimensions that are required to represent the multi-
variate-Gaussian field Yi(x; x) (i = 1, 2) with a given degree of accuracy. Then the total number of random dimensions that
are require to represent the field Y(x; x) in the whole domain D is MT ¼ MY1 þMY2 þ 1.

5.1.1. Conditional statistics
Within each sub-domain Di ði ¼ 1;2Þ, the random state variable h(x; x) is represented by a polynomial-chaos expansion:
hiðx; nÞ ¼
XMYi

j¼1

~hi;j/jðnÞ; x 2 Di; nðxÞ 2 Xi; ð16Þ
where n(x) is a vector of independent random variables. Substituting (16) into (1) and applying a collocation projection onto
each of the basis f/jg

MYi
j¼0 , we obtain:
r � Kiðx; nkÞrhiðx; nkÞ½ � þ f ¼ 0; x 2 Di; nkðxÞ 2 Xi; i ¼ 1;2; ð17Þ

where nk(x) represents the k-th set of collocation sampling points. These equations are subject to the boundary conditions
(2). At the (random) interface a between the sub-domains D1 and D2, the state variable h and the normal component of the
(random) flux J = �Krh are continuous, i.e.
h�1;k ¼ hþ2;k; n � J�1;k ¼ n � Jþ2;k; ð18Þ
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where the subscript k represents the k-th set of sparse grid points in random space.
For each set of sparse grid points a system of algebraic equations constructed from (17), (18) and the external boundary

conditions (2) is solved. Conditional statistics of h (the conditioning on a is denoted below by the hat �̂) are obtained as
Fig. 1.
heterog
b�hðxjaÞ �XNc;i

k¼1

#i;khk x; nðxÞi;k
h i

; r̂2
hðxjaÞ �

XNc;i

k¼1

#i;kh2
k x; nðxÞi;k
h i

� b�h2; ð19Þ
for i = 1, 2. Here x 2 Di and Nc,i represents the number of sparse collocation points in the i-th sub-domain.
Since the contact boundary a is random, the size of each sub-domain is also subject to uncertainty. For a fixed correlation

length of Yi(x; x) in the sub-domain Di, the number of the K–L modes required to capture a fixed percentage of the inte-
grated input variance varies depending on the domain size. Hence the number of prematurely truncated K–L modes for each
sub-domain varies from one realization of a to another. The combined RDD–PCM approach enables one to obtain the K–L
modes in the pre-process step. Such K–L modes are truncated when the smallest eigenvalue is less than 10% of the largest
eigenvalue, which varies between different realizations of a. Therefore, large uncertainty in a can lead to different number of
prematurely truncated K–L modes for different realizations of the same sub-domain.

5.1.2. Averaging over random a
At the last step, statistics of h are obtained by averaging its conditional statistics over realizations of the random boundary

a(x,x):
�h xð Þ ¼
Z b�h x; nað Þpa nað Þdna �

XNc;a

j¼1

#j
b�h xjaj
� �

;

r2
h xð Þ ¼

Z
r̂2

h x; nað Þpa nað Þdna �
XNc;a

j¼1

#jr̂2
h xjaj
� �

: ð20Þ
6. Accuracy of RDD–PCM approach in one dimension

To analyze the accuracy and efficiency of the combined RDD–PCM approach, we consider the one-dimensional version of
(1) with f = 0 that is defined on D ¼ fx : 0 6 x 6 Lg. The first computational example (Section 6.1) deals with a random con-
tact point a separating two sub-domains D1 ¼ fx : 0 6 x < ag and D2 ¼ fx : a 6 x 6 Lg with random log conductivities
Y1(x) and Y2(x), respectively. In the second example (Section 6.2), a randomly heterogeneous inclusion D1 ¼ fx : a�
L=6 6 x 6 aþ L=6g centered at a random point a is embedded into a randomly heterogeneous material D2 ¼ D=D1.
Fig. 1 provides a schematic representation of both examples.

In both examples, the log conductivity Yi(x) of sub-domain Di ði ¼ 1;2Þ is treated as a multivariate-Gaussian random field
with an exponential correlation function qYi

ðjx� yjÞ ¼ expð�jx� yj=liÞ and correlation length li. We assume that the random
fields Y1 and Y2 are mutually uncorrelated. Finally, in both examples the external boundary conditions:
K
dh
dx
ðx ¼ 0Þ ¼ �q0; hðx ¼ LÞ ¼ 0; ð21Þ
are supplemented with the continuity conditions (18) at the random interfaces.
The composite nature of the porous media in Fig. 1 indicates that if log conductivity Y(x) were to be measured at a few

locations throughout D and these data were to be used to compute sample statistics of the random field Y(x; x), it would
result in a bimodal nonstationary distribution. Fig. 2 in [39] demonstrates that a Gaussian cumulative distribution function
(CDF) is accurately approximated with a fifth-degree Hermite polynomial, while even a tenth-degree Hermite polynomial is
not adequate to represent a bimodal CDF. This indicates that direct applications of PCMs to systems with bimodal distribu-
tions significantly undermines their efficiency. Instead, we use the RDD to decrease the computational cost of the PCM
approach and to extend its range of applicability.

All simulations reported in this section (Figs. 2–7 below) correspond to L ¼ 6:0, �a ¼ 3:0, q0 ¼ 1, and multivariate log-
normal conductivities Y1 	 N{0,0.1} and Y2 	 N{2,0.2}, while other statistical parameters vary. The uncertain contact point
One-dimensional composites in which (a) two randomly heterogeneous materials are joined at a random location a and (b) a randomly
eneous inclusion centered around random a is embedded into another randomly heterogeneous material.



Fig. 2. Contact-point problem: (a) mean �h and (b) standard deviation rh computed with the RDD–PCM approach and the analytical solutions (AS). Gaussian
and uniform distributions of the contact point a are considered.

Fig. 3. Contact-point problem: numerical (RDD–PCM) and analytical (AS) solutions for (a) mean �h and (b) standard deviation rh corresponding to several
levels of uncertainty in the position of the contact point a.
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a is treated alternatively as either a Gaussian or a uniformly-distributed random variable, both distributions having assigned
the same mean ð�a ¼ 3:0Þ and variance r2

a.

6.1. Random contact point

Consider a one-dimensional version of (1) with f = 0 that is defined on D ¼ fx : 0 6 x 6 Lg, subject to the boundary con-
ditions (21) and the continuity conditions at a random contact point x = a separating two sub-domains D1 ¼ fx : 0 6 x < ag
and D2 ¼ fx : a 6 x 6 Lg with random log conductivities Yi(x; x) = lnKi(x; x) (i = 1, 2), respectively.

Since all realizations of the random contact point a must fall within the computational domain 0 < a < L, its mean �a and
standard deviation ra cannot be chosen independently. For example, let a be a uniformly distributed random variable with
�a ¼ L=2, and let na be a uniformly-distributed random variable, Uf�

ffiffiffi
3
p

;
ffiffiffi
3
p
g, with na ¼ 0 and rna ¼ 1. The former is

expressed in terms of the latter as 0 < a � L(0.5 + rana) < L, which yields an upper bound on ra:



Fig. 4. Contact-point problem: (a) mean �h and (b) standard deviation rh corresponding to different levels of spatial correlation of log conductivity.

Fig. 5. Inclusion problem: (a) mean �h and (b) standard deviation rh computed with the RDD–PCM approach and Monte Carlo simulations (MCS).
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ra <

ffiffiffi
3
p

6
: ð22Þ
For arbitrary statistical distributions of Y1, Y2, and a, the boundary-value problem under consideration admits an analyt-
ical solution [32]:
hðxÞ ¼ q0Hða� xÞ
Z a

x

ds
K1ðsÞ

þ
Z L

a

ds
K2ðsÞ

	 

þ q0Hðx� aÞ

Z L

x

ds
K2ðsÞ

; ð23Þ
where HðzÞ is the Heaviside function:
HðzÞ ¼
1; z P 0;
0; z 6 0:

�
ð24Þ
The ensemble statistics of h(x;K1,K2,a) can now be computed in two steps. First, we obtain conditional statistics by aver-
aging in the space of Ki(x; x) (i = 1, 2), while keeping a fixed. Then we average the conditional statistics over realizations of a.
This procedure applied to (23) leads to analytical expressions for the conditional ensemble mean of hydraulic head h:



Fig. 6. Inclusion problem: (a) mean �h and (b) standard deviation rh corresponding to several levels of uncertainty in the position of the inclusion’s center a.

Fig. 7. Inclusion problem: (a) mean �h and (b) standard deviation rh corresponding to several levels of spatial correlation of log conductivity.
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b�h ¼ q0Hða� xÞ a� x
Kh1

þ L� a
Kh2

� 
þ q0Hðx� aÞ L� x

Kh2

; ð25Þ
and the conditional hydraulic head variance r̂2
hðxÞ ¼

c
h2 � b�h2, with
c
h2 ¼ 2q2

0Hða� xÞ 1
K2

h1

Z a�x

0
ða� x� sÞer2

Y1
qY1
ðsÞdsþ ða� xÞðL� aÞ

Kh1
Kh2

þ 1
K2

h2

Z L�a

0
ðL� a� sÞer2

Y1
qY1
ðsÞds

" #

þ 2q2
0
Hðx� aÞ

K2
h2

Z L�x

0
ðL� x� sÞer2

Y1
qY1
ðsÞds: ð26Þ
Here Khi
� Kgi

expð�r2
Yi
=2Þ and Kgi

� expðYiÞ are the harmonic and geometric means of conductivities Ki(x) (i = 1, 2),
respectively. It is worthwhile pointing out that the analytical solutions (25) and (26) are exact, while their analytical coun-
terparts in [32] are first-order (in r2

Yi
) approximations.
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Averaging (25) and (26) over the random a yields the mean hydraulic head:
�h ¼
Z L

0

b�hðaÞpaðaÞda �
XNa

j¼1

#j
b�hðajÞ; ð27Þ
and the hydraulic head variance r2
hðxÞ ¼ h2 � �h2, with
h2 ¼
Z L

0

c
h2ðaÞpaðaÞda �

XNa

j¼1

#j
c
h2ðajÞ: ð28Þ
The integrals in (27) and (28) are evaluated numerically with an Na-point quadrature, wherein faj; #jgNa
j¼1 is a set of quad-

rature points and the corresponding weights. Alternatively, one can compute these integrals analytically. For example, if a is
a truncated Gaussian variable on [0,L], then regardless of the functional form of the correlation functions of Yi (i = 1, 2) the
ensemble mean of hydraulic head is given by
�h ¼
ffiffiffi
2
p

q0raffiffiffiffiffiffiffiffiffi
pW
p 1

Kh1

� 1
Kh2

� 
e�u2�e

�u2
1 � q0

�a� x
W

1
Kh1

� 1
Kh2

� 
erfðuÞ þ q0

W
�a� x
Kh1

� L� �a
Kh2

� 
erfðu1Þ �

q0

W
L� x
Kh2

erfðu0Þ; ð29Þ
where
u ¼ x� �affiffiffi
2
p

ra
; u0 ¼ �

�affiffiffi
2
p

ra
; u1 ¼

L� �affiffiffi
2
p

ra
; W ¼ erfðu1Þ � erfðu0Þ: ð30Þ
A closed-form analytical expression for r2
hðxÞ is obtained by integrating (28). Likewise, one can derive analytical expres-

sions for �h and r2
h if a is a uniformly-distributed random variable. These analytical solutions are used to verify the RDD–PCM

approach.
Figs. 2 and 3 demonstrate that the ensemble mean �hðxÞ and the standard deviation rh(x) obtained with the RDD–PCM

approach coincide with their analytical counterparts, which verifies the accuracy of the RDD–PCM algorithm. In these sim-
ulations, we set the correlation lengths of random fields Y1(x,x) and Y2(x,x) to lY1 ¼ 5:0 and lY2 ¼ 1:0, respectively. This
necessitated the use of 4 collocation points to represent realizations of each Yi(x) (i = 1, 2) and 8 collocation points for real-
izations of the interface a. Hence the total number of collocation points for the whole random composite is 4 � 4 � 8 = 128.

Fig. 2 also reveals that the mean and standard deviation of h are practically unaffected by the choice of a statistical model
for the contact point a (the curves corresponding to the Gaussian, a 	 N{0.5L, (0.03L)2}, and uniform, a 	 Ufð0:5� 0:03

ffiffiffi
3
p
ÞL;

ð0:5þ 0:03
ffiffiffi
3
p
ÞLg, distributions of a nearly overlap), as long as �a and ra remain the same. This finding is important for uncer-

tainty quantification, since available data typically allow one to provide the ‘‘best” prediction of the interface location as �a
and to quantify the predictive uncertainty in terms of ra (e.g. [36]), while estimation of the full distributions of a is more
elusive and subjective [35].

The effects of uncertainty in the position of the contact point a on the statistical moments of the system state h are ex-
plored in Fig. 3. As can be expected, larger parametric uncertainty (ra) translates into larger predictive uncertainty (rh),
although this effect is clearly nonlinear. Geometric uncertainty (as quantified by ra) impacts the predictive uncertainty
(i.e. rh) much more strongly than it does the predictions themselves (i.e. �h). This finding is in line with the observations re-
ported in [33]. Fig. 3 also demonstrates that uncertainty in the position of the contact point a smoothes the predicted (mean)
head �hðxÞ, whose spatial derivative would have a jump discontinuity at x = a if a were deterministic (i.e. known with cer-
tainty). While not shown in this figure, we found that for ra = 0.06L and 0.18L the choice between the Gaussian and uniform
distributions of a has the same negligible effect on �h and rh as that exhibited in Fig. 2 for ra = 0.03L.

Next, we explore how the ensemble mean �hðxÞ and the standard deviation rh(x) depend on the correlation lengths of log
conductivities Yi(x; x). The random (Gaussian or uniformly distributed) contact point a(x) was assigned the mean �a ¼ L=2
and the standard deviation ra = 0.03L; it was represented with 8 collocation points. As discussed in Section 3, the correlation
lengths lY1 and lY2 determine the number of points that are required to represent the random fields Y1(x; x) and Y2(x; x) with
the degree of accuracy prescribed by (8). This number also varies from one realization of a, as reflected by the ratios lY1=a and
lY2=ðL� aÞ for Y1(x; x) and Y2(x; x), respectively. For a ¼ �a, it took 4, 7, 25, and 52 collocation points to represent Y1(x; x)
with the correlation lengths lY1 ¼ 1, 5.0, 1.0, and 0.5, respectively; and 4, 25, 52, and 87 collocation points to represent Y2(x;
x) with the correlation lengths lY2 ¼ 1, 1.0, 0.5, and 0.1, respectively. The total number of collocation points used is 128 for
the lY1 ¼ lY2 ¼ 1 case, 1400 for the lY1 ¼ 5 and lY2 ¼ 1 case, 10400 for the lY1 ¼ 1 and lY2 ¼ 0:5 case, and 36192 for the
lY1 ¼ 0:5 and lY2 ¼ 0:1 case. These numbers differ somewhat for other realizations of a and are mentioned here to provide
some indication of the computational effort involved.

The results of these simulations are presented in Fig. 4. Predictions of the system state h (i.e. �h) are independent of the
correlation structure of Y(x; x), which is in full agreement with the analytical solution (29). However, the correlation of Y
does affect the predictive uncertainty (i.e. rh): smaller correlation lengths lead to higher predictive uncertainty (larger values
of rh). While not shown in this figure, we found the same level of agreement between the analytical and RDD–PCM solutions
and between the solutions corresponding to the Gaussian and uniform distributions of a as that exhibited in Fig. 2.
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6.2. Random inclusion

Consider a one-dimensional domain D ¼ fx : 0 6 x 6 Lg consisting of a random inclusion D1 ¼ fx : a� L=6 6 x 6
aþ L=6g embedded into a random material D2 ¼ D=D1 (Fig. 1(b)). The one-dimensional flow Eq. (1) with f = 0 is subject
to the boundary conditions (21) and the continuity conditions (18) at the random interfaces x = a ± L/6.

For the uniformly distributed a, the upper limit of ra is now defined from the condition 0 < a = L(0.5 + rana) ± L/6) < L,
where na is the zero-mean uniformly-distributed random variable introduced in Section 6.1. This condition yields:
Fig. 8.
heterog
stratific

Fig.
ra <

ffiffiffi
3
p

9
: ð31Þ
Both distributions have the same mean, 0.5L, and variance, (0.03L)2.
To further validate the RDD–PCM approach, we compare its estimates of the ensemble mean �hðxÞ and the standard devi-

ation rh(x) with those obtained with Monte Carlo simulations consisting of 10000 realizations. We set ra = 0.03L, and the
correlation lengths of random fields Y1(x,x) and Y2(x,x) to lY1 ¼ 5:0 and lY2 ¼ 1:0, respectively. As discussed in Section
6.1, this requires the RDD–PCM approach to employ 4 collocation points to represent realizations of Yi(x; x) for each sub-
domain, and 8 collocation points to represent realizations of a(x). The total number of collocation points is 128. Fig. 5 dem-
onstrates that the two numerical approaches yield identical solutions for �h and rh. Both statistics are relatively insensitive to
the choice of the PDF of a(x)—Gaussian or uniform—as long as they have the same mean and variance.

Fig. 6 exhibits the impact of uncertainty in the inclusion’s location on the predictive uncertainty of h. In analogy with the
contact-point problem, higher geometric uncertainty (ra) leads to higher predictive uncertainty (rh), and increasing values
of ra have a much more pronounced effect on predictive uncertainty (rh) than on predictions ð�hÞ. While the latter are limited
Two-dimensional composites in which (a) two randomly heterogeneous materials are separated by a random contact line x1 = a and (b) a randomly
eneous inclusion centered around random x1 = a is embedded into another randomly heterogeneous material. Flow is perpendicular to
ation.

9. Two-dimensional flow perpendicular to the contact line: (a) mean �h and (b) standard deviation rh computed with the RDD–PCM approach.
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to the immediate vicinity of the interfaces a ± L/6, the former manifest themselves throughout much of the flow domain,
peaking at its center. In both problems, uncertainty in the interface position and the conductivities of the sub-domains
smoothes the head predictions �hðxÞ, which otherwise would have kinks at the interfaces.
Fig. 10. Two-dimensional flow perpendicular to the inclusion: (a) mean �h and (b) standard deviation rh computed with the RDD–PCM approach.

Fig. 11. Two-dimensional composites in which (a) two random materials are separated by a random contact line x1 = a and (b) a random inclusion centered
around random x1 = a is embedded into another random material. Flow is parallel to stratification.

Fig. 12. Two-dimensional flow parallel to the contact line: (a) mean �h and (b) standard deviation rh computed with the RDD–PCM approach.
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Fig. 7 demonstrates the effects of various degrees of the spatial correlation, lYi
, of log conductivities Yi(x; x) on the sta-

tistical moments of h for (Gaussian and uniform) a with ra = 0.03L. Similar to the contact-point problem, estimates of
hydraulic head ð�hÞ are independent from the correlation lengths lYi

, while their impact on predictive uncertainty (rh) is
significant.
7. Multi-Dimensional computational examples

We proceed to demonstrate the ability of the RDD–PCM approach to handle two- and three-dimensional problems. Two-
dimensional domains with the contact line and inclusion and the corresponding boundary conditions for the two-dimen-
sional flow equation are shown in Fig. 8.

The ensemble mean �h and the standard deviation rh, computed with the PCM-RDD approach, are presented in Figs. 9 and
10 for the contact line (Fig. 8(a)) and inclusion (Fig. 8(b)) problems, respectively. In these simulations, L = 6, a(x) is modeled
as a uniform random variable Ufð0:5� 0:03

ffiffiffi
3
p
ÞL; ð0:5þ 0:03

ffiffiffi
3
p
ÞLg; Y1ðx;xÞ as a multivariate-Gaussian random field

N{0,0.01} with correlation length lY1 ¼ 5, and Y2(x; x) as a multivariate-Gaussian random field N{2,0.04} with correlation
x
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Fig. 13. Two-dimensional flow parallel to the inclusion: (a) mean �h and (b) standard deviation rh computed with the RDD–PCM approach.

Fig. 14. Three-dimensional flow perpendicular to the random contact surface x1 = a: (a) mean �h and (b) standard deviation r(h) computed with the RDD–
PCM approach.
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length lY2 ¼ 1. We used 25 and 52 collocation points to represent realizations of Y1 and Y2, respectively; and 8 collocation
points to represent a. This yields the total of 10400 collocation points.

Next, we consider two-dimensional flow parallel to stratification (Fig. 11). The mean and standard deviation of h(x; x) for
these contact line (Fig. 11(a)) and inclusion (Fig. 11(b)) problems are shown in Fig. 12 and 13, respectively. In these simu-
lations, a(x) is modeled as a uniformly-distributed random variable, Y1(x; x) as a multivariate-Gaussian field N{0,0.01} with
correlation length lY1 ¼ 5, and Y2(x; x) as a multivariate-Gaussian field N{2,0.04} with correlation length lY2 ¼ 1. We used 25
and 52 collocation points to represent realizations of Y1 and Y2, respectively; and 8 collocation points to represent realiza-
tions of a. The total number of collocation points is 10400.

Finally, the mean and standard deviation of h(x; x) for flow in a three-dimensional random composite consisting of two
materials separated by the plane x1 = a are shown in Fig. 14. In this example, a(x) is modeled as a uniform random variable
Ufð0:5� 0:03

ffiffiffi
3
p
ÞL; ð0:5þ 0:03

ffiffiffi
3
p
ÞLg; Y1ðx;xÞ as a multivariate-Gaussian field N{0,0.01} with correlation length lY1 ¼ 5, and

Y2(x; x) as a multivariate-Gaussian field N{2,0.04} with correlation length lY2 ¼ 1. We used 52 and 87 collocation points to
represent realizations of Y1 and Y2, respectively; and 8 collocation points to represent realizations of a. The total number of
collocation points is 36192.

8. Summary

Probabilistic collocation methods (PCMs) on sparse grids is an efficient numerical method to quantify uncertainty in com-
plex heterogeneous phenomena. However, for highly heterogeneous systems, e.g. random composites, probabilistic repre-
sentations of uncertainty may become highly non-Gaussian, multimodal, and nonstationary (statistically inhomogeneous),
exhibiting small spatially-varying correlation lengths (large number of random dimensions). To expand the capability of
PCMs, we have introduced a new robust and efficient framework, which combines random domain decompositions (RDDs)
and PCMs. The combined RDD–PCM approach, implemented on sparse grids, is able to handle problems with multimodal
distribution functions and small correlation lengths (large number of random dimensions).

A new set of analytical ensemble mean and standard deviation solutions have been derived to verify the RDD–PCM ap-
proach for a one-dimensional contact-point problem. Monte Carlo simulations (MCS) were used to verify the accuracy of the
RDD–PCM for a one-dimensional random inclusion problem. These comparisons demonstrate that the RDD–PCM approach
provides robust and efficient approximations for the ensemble statistics of solutions of steady-state diffusion problems in
random composites.

We systematically analyzed the effects of correlation lengths of a system parameter Y (log-hydraulic conductivity) on the
ensemble mean and standard deviation of a system state h (hydraulic head). We also investigated the impact of different
probabilistic distributions used to quantify predictive uncertainty associated with geometric uncertainty (spatial distribu-
tions of constitutive materials in a composite).

To demonstrate the robustness of the RDD–PCM approach, it was used to simulate flow in two- and three-dimensional
random composites. Different from the intrusive Galerkin projection based polynomial-chaos approach [39], the RDD–
PCM approach provides an efficient non-intrusive tool for uncertainty quantification, which is used in combination with
existing deterministic legacy codes.

The fast convergence of the sparse grid PCM approach also relies on smoothness of the solution in the random space with
the assumption of equal importance in each direction. Ultimately, adaptivity in random space is necessary for regions with
less regularity or directions with more importance. A combined RDD–PCM approach with adaptive sparse grids (similar to
the approaches in [53–56]) can greatly improve the efficiency of the method.
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Appendix A. Selection of collocation points

Two different methods for the selection of collocation point sets are discussed here: tensor products of one-dimensional
collocation point sets (Section A.1) and a sparse grid strategy for high dimensionality (Section A.2). In the present analysis,
we employ the sparse grid strategy; tensor products of one-dimensional collocation point sets are discussed here only for the
purpose of completeness.

A.1. Tensor products of one-dimensional collocation point sets

Consider the ensemble mean EðgÞ of a function g(n) that is smooth with respect to all of its random arguments n =
(n1, . . .,nM)T. Recalling (9), it is given by
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EðgÞ ¼
Z

C
g n1; . . . ; nMð Þp1ðn1Þp2ðn2Þ . . . pMðnMÞdVn: ðA:1Þ
The M-dimensional integral in (A.1) is represented by the tensor product:
EðgÞ ¼ U1 
 � � � 
 UMð ÞðgÞ; ðA:2Þ
of one-dimensional integrals:
U jðgÞ ¼
Z

Cj

gðnÞpjðnjÞdnj; j ¼ 1; . . . ;M: ðA:3Þ
Let ij 2 N specify ‘‘the degree of the integration” in the j-th random dimension, i.e. nij be the number of quadrature points
used to approximate the integral in (A.3). Then U ij

j ðgÞ is an approximation of U jðgÞ given by
U jðgÞ � U
ij
j ðgÞ ¼

Xnij

kj¼1

#
ij
kj

g n
ij
kj

� �
; ðA:4Þ
where kj 2 ½1; nij �, and n
ij
kj

is the kj-th quadrature point in the j-th random dimension, with a weight #ij
kj

. Substitution of (A.4)
into (A.2) yields:
EðgÞ � U i1
1 
 � � � 
 U

iM
M

� �
ðgÞ ¼

Xni1

k1¼1

� � �
XniM

kM¼1

#i1
k1

 � � � 
 #iM

kM

� �
g ni1

k1
; . . . ; niM

kM

� �
: ðA:5Þ
The total number of collocation (quadrature) points in (A.5) is ZM ¼ ni1 � � �niM . If the same number (say, k + 1) of colloca-
tion points is used in all random dimensions, ni1 ¼ � � � ¼ niM ¼ kþ 1, then the total number of collocation points is
Zk

M ¼ ðkþ 1ÞM . For a small number of random dimensions, e.g. M 6 4, the tensor product of one-dimensional collocation
point sets is a good choice for collocation point sets. However, since Zk

M grows exponentially with M, the efficiency of a quad-
rature using the tensor product of one-dimensional collocation point sets decreases exponentially with the number of ran-
dom dimensions M.

A.2. High dimensionality and sparse grids

The number of random dimensions needed to avoid erroneous oscillations for both mean and variance estimates in-
creases fast as the correlation length decreases. In such high-dimensional cases, the reliance on tensor products of one-
dimensional collocation points leads to a prohibitively large number of collocation points. Following [13], we use the Smol-
yak formula [30] to obtain a point set that has a significantly smaller number of points than the tensor product set does.
Resulting sparse grids do not depend as strongly on the dimensionality of the random space, which makes them more suit-
able for applications with high-dimensional random inputs.

The one-dimensional quadrature formula (A.4) serves as a building block for the Smolyak formula [30]. The latter approx-
imates the M-dimensional integral in (A.1)–(A.3) with a linear combination of tensor products as
EðgÞ � Aq;MðgÞ �
X

q�Mþ1 6 jij 6 q

ð�1Þq�jij
M � 1
q� jij

� 
U i1

1 
 � � � 
 U
iM
M

� �
ðgÞ: ðA:6Þ
Here the sparseness parameter q P M determines the order of the formula, k = q �M is called the ‘‘level” of the Smolyak
formula, and jij = i1 + i2 + � � � + iM. Next, we set nij ðj ¼ 1; . . . ;MÞ, the number of quadrature (collocation) points in (A.4), to
n1 = 1 and nk = 2k�1 + 1 for k > 1. Then, to compute Aq,M(g), we only need to evaluate g on the Smolyak ‘‘sparse grid”, i.e.
on the collocation point set HM of size M:
HM � [q�Mþ1 6 jij 6 q Hi1
1 � � � � �HiM

1

� �
; ðA:7Þ
where H
ij
1 represents a one-dimensional collocation point set in the j-th random dimension. The grid point sets obtained with

both the Smolyak formula and the tensor products of one-dimensional collocation point sets are shown in Fig. A.1 for M = 2
random dimensions. The cross and circle nodes in Fig. A.1(a) correspond to sparse grids of levels k = 5 and k = 6, respectively.
In Fig. A.1(b), the cross and circle nodes correspond to the full tensor product based on the Gauss quadrature rule with levels
10 and 11, respectively.

A convergence criterion in terms of the sparse grid level k is to require the absolute value of the difference of Aq,M(g) ob-
tained with two successive sparse grid levels be smaller than a specified threshold. See an extensive review of the adaptivity
of sparse grids for details in [53].

Below we discuss two main categories of sparse grids: nested and non-nested sparse grids corresponding to different ran-
dom distributions. In particular, for a uniform distribution, sparse collocation point sets are generated by the nested Cheby-
shev quadrature points using the Clenshaw–Curtis formulae. For beta and Gaussian distributions, sparse collocation point
sets are generated by Gaussian-quadrature points. The 2i degree of exactness is achieved by choosing M = 2i�1 + 1 quadrature
points.



Fig. A.1. Grid points for M = 2 random dimensions obtained with (a) the Smolyak formula (the cross and circle nodes correspond to sparse grids of levels
k = 5 and k = 6, respectively) and (b) the full tensor product (the cross and circle nodes correspond to the Gauss quadrature rule of levels 10 and 11,
respectively).
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A.3. Nested sparse grids

A set of sparse grid points in the j-th random dimension, H
ij
1, is called nested if H

ij
1 2 H

ijþ1
1 . As in Section A.2, we set

nij ðj ¼ 1; . . . ;MÞ, the number of quadrature (collocation) points in (A.4), to n1 = 1 and nk = 2k�1 + 1 for k > 1, which implies
that the same quadrature rule is used in all j random dimensions so that the subscript j is dropped. Among many alternatives,
we take the quadrature points ni

k in (A.4) to be the Clenshaw–Curtis points. These are defined as the extreme points of the
Chebyshev polynomials [57]:
n1
1 ¼ 0; ni

k ¼ � cos
pðk� 1Þ

ni � 1

	 

; k ¼ 2; . . . ;ni: ðA:8Þ
The corresponding weights in (A.4) are given by
#i
1 ¼ #

i
ni
¼ 1

niðni � 2Þ ; i ¼ 2; . . . ;ni � 1; ðA:9aÞ

#i
k ¼

2
ni � 1

þ 4
ni � 1

X0
ðni�1Þ=2

k¼1

1

1� 4k2 cos
2pkði� 1Þ

ni � 1

	 

; ðA:9bÞ
where the symbol
P0 indicates that the last term of the sum is halved.

The one-dimensional quadrature formula (A.4) with the Clenshaw–Curtis points (A.8)–(A.9) integrates exactly all polyno-
mials of degree less than ni. For the Smolyak Clenshaw–Curtis grid, the accuracy of the Smolyak formula is estimated as fol-
lows. Let r = floor (q/M) and let s = q mod (M). Then Aq,M has the degree of exactness [58]:
mðq;MÞ ¼
2ðq�MÞ þ 1; if q 6 4M;

2r�1ðM þ 1þ sÞ þ 2M � 1; otherwise:

(
ðA:10Þ
Additionally, the nested Clenshaw–Curtis points can greatly reduce the total number of collocation points.

A.4. Non-nested sparse grids

An alternative way for generating sparse nodal sets is to use one-dimensional Gaussian-quadrature points in (A.4) as a
building block and then employ the Smolyak formula [30] to approximate the M-dimensional integral in (A.1)–(A.3) with
a linear combination of tensor products. In this paper, the random field of Y has normal distribution. Thus, non-nested Gauss-
ian sparse grids are used to represent the random field of Y. The 2i degree of exactness is achieved by choosing 2i�1 + 1 Gauss-
ian-quadrature points. The nested property may be lost, which makes such nodal sets larger than their nested counterparts.
However, for random inputs with arbitrary PDFs, a sparse quadrature rule is constructed in a way that the weight function
coincides with the PDF. Gaussian-quadrature nodal sets for arbitrary weight functions is obtained in an efficient way [59].

For a Smolyak Gaussian grid, the accuracy of the Smolyak formula is obtained as follows. Let r = floor (q/M) and let
s = q mod M. Then Aq,M has the degree of exactness [58]:
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mðq;MÞ ¼
2ðq�MÞ þ 1; if q 6 3M;

2r�1ðM þ 1þ sÞ � 1; otherwise:

(
ðA:11Þ
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