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for heterogeneous reactions
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Abstract. A probability density function (pdf) formulation is applied to a
heterogeneous chemical reaction involving an aqueous solution reacting with a
solid phase in a batch. This system is described by a stochastic differential
equation with multiplicative noise. Both linear and nonlinear kinetic rate laws are
considered. An effective rate constant for the mean field approximation
describing the change in mean concentration with time is derived. The effective
rate constant decreases with increasing time eventually approaching zero as the
system approaches equilibrium. This behavior suggests that a possible
explanation for the observed discrepancy between laboratory measured rate
constants on uniform grain sizes and field measurements may in part be caused
by the heterogeneous distribution of grain sizes in natural systems.
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1
Introduction
Within the geochemical community a controversy arose over the use of labora-
tory determined kinetic rate constants to describe field weathering rates. Early
studies found a discrepancy of several orders of magnitude between field and
laboratory estimated rate constants (Paces, 1983; Vebel, 1986). Since these
studies, Lichtner (1993) and Sverdrup and Warfvinge (1995) and others, pointed
out a number of flaws in the early rate estimates of field weathering rates
involving the failure to properly account for various factors in the chemical rate
laws that were used. An aspect that has not been thoroughly investigated, how-
ever, is the role of heterogeneous distributions of mineral grain sizes on weath-
ering rates. The purpose of this study is to consider the implications of a
heterogeneous grain size distribution on the governing equations for reactive
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transport. Time and scale dependent effective retardation factors have been re-
ported in the literature (e.g. Rajaram, 1997), and there is no reason not to expect
similar behavior for effective kinetic rate constants.

It is not at all obvious that conventional continuum-based reactive transport
formulations can provide an adequate description of reactions involving heter-
ogeneous mineral grain size distributions. These models are developed from a
phenomenological formulation involving macroscale properties obtained by
averaging over a control volume. Kinetic reaction rates for mineral precipitation/
dissolution reactions are related to an average mineral grain size associated with
each control volume. Obviously, the conventional continuum approach does not
account for effects that may be caused by a distribution of different grain sizes,
and resulting surface areas, within a control volume.

Unfortunately our ability to upscale reactive transport processes involving
complex multicomponent systems in a rigorous fashion is still in an early
developmental stage. This is due to several reasons, but perhaps the most
important is the inherent nonlinearity in the governing equations. This nonlin-
earity arises through kinetic rate laws describing precipitation/dissolution of
solids and kinetic sorption/desorption rates, as well as through incorporation of
local equilibrium relations derived from the law of mass action for homogeneous
and heterogeneous reactions. Characteristic of the constitutive relations repre-
senting these processes is the appearance of products of species activities raised
to integral and nonintegral powers (Lichtner, 1996). These nonlinear terms render
conventional upscaling techniques such as volume averaging (Kechagia et al.,
2002; Wood et al., 2000) and stochastic methods (Dagan and Indelman, 1999;
Espinoza and Valocchi, 1997; Miralles-Wilhelm and Gelhar, 2000; Reichle et al.,
1998) difficult to implement. Generally these approaches require expanding the
nonlinear terms about the local mean concentration of the system retaining only
linear terms. As a consequence such approaches only apply to small deviations
from the mean – an approach that is inadequate for most natural geochemical
systems.

In general, one would expect a heterogeneous distribution of minerals to result
in time and space dependent effective rate parameters caused by progressively
increased statistical sampling of the heterogeneous distribution over time. This
stochastic induced space-time dependence of the effective parameters implies that
these parameters cannot be treated as constants as is often done in conventional
reactive transport models. Heterogeneous porous media composed of an aggre-
gate of mineral grains involve a distribution of grain sizes, typically over a wide
range of values. For such media the usual continuum approach based on a mean
surface area for each reacting mineral may not be adequate. The discussion which
follows is restricted to a simple batch system involving precipitation and disso-
lution of a single component phase with linear and nonlinear kinetics. This
system corresponds to reaction of quartz, for example, involving a known initial
distribution of grain sizes. The change in concentration is described by a sto-
chastic differential equation with multiplicative noise. Such an equation has been
considered in the past by a number of authors including Kubo (1962), Risken
(1989), and van Kampen (1992).

2
Problem formulation
Consider a heterogeneous reaction taking place in a closed container of the form

aAÐAðsÞ ; ð1Þ
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between a dissolved species A with concentration c and a solid AðsÞ with stoi-
chiometric coefficient a. The aqueous solution and solid are assumed to be well
mixed, eliminating possible concentration gradients within the container. The
solid phase consists of a mixture of different grain sizes resulting in a probability
distribution pk for the effective rate constant k. The latter is defined as
k ¼ k0AC1�a

eq , a product of the specific solid surface area A, the laboratory mea-
sured rate constant k0 for reaction Eq. (1), and the power of the equilibrium
concentration Ceq associated with reaction Eq. (1). The change in aqueous con-
centration is described by the stochastic differential equation

dc

dt
¼ �akðca � Ca

eqÞ : ð2Þ

The equilibrium concentration Ceq is assumed to be deterministic as determined
from thermodynamic considerations. Equation. (2) is subject to the initial con-
dition

cð0Þ ¼ C0 ; ð3Þ

where the initial concentration C0 is assumed to be deterministic for simplicity.
The initial concentration may be greater or less than the equilibrium concen-
tration resulting in precipitation or dissolution of the solid, respectively. The
change in solid concentration is considered to be negligible. The notation used in
the following reserves upper case names for deterministic variables and constants
and lower case for random variables.

Equation (2) applies to a length scale that is much larger than the separation
between solid grains, but smaller than the dimensions of the container. Thus
Eq. (2) refers to a macroscale continuum formulation but involving a random
variable for the effective rate constant. This equation breaks down when the
reaction rate becomes large enough to produce gradients on the scale of the
separation between solid grains. In such cases it is necessary to explicitly account
for diffusion-controlled reaction at the surface of the solid grains. In addition, k is
assumed to be independent of time. For the case of dissolution, as reaction
proceeds the surface may in fact increase with time due to the formation of etch
pits on the mineral surface. As individual grains completely dissolve the associ-
ated surface area would tend to zero. For the system considered here, it is as-
sumed that equilibrium is reached before appreciable changes in grain surface
can occur. For the case of precipitation it is assumed that the precipitating solid
nucleates on the existing mineral surface although this need not necessarily be the
case in general. Surface armoring effects, not considered here, could also result in
a time-dependent surface area. Although simplistic, Eq. (2) has the distinct
advantage of possessing an analytical solution, thus enabling one to discern
properties of upscaled effective rate constant in detail. The case of time-depen-
dent k is left for future investigation.

The single point pdf pk, representing the stochastic rate constant, kðxÞ is
usually obtained indirectly from the grain size distribution pl. The two distri-
butions are related through the assumption made for the relation between surface
and grain size. For example, for cubical grains with side l, the specific surface area
a is given by

a ¼ 6k/s

l
; ð4Þ
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where /s is the fraction of volume occupied by the solid, and k represents a
roughness factor. It follows that with k ¼ k0a,

pkðkÞ ¼ plðlÞ
dl

dk
¼ 6k/sk0

k2
pl

6k/sk0

k

� �
: ð5aÞ

Other assumptions, of course, are also possible such as spherical grains. The pdf
for the grain size distribution is assumed to follow a log normal distribution
(Clausnitzer and Hopmans, 1999; Tuli et al., 2001).

plðlÞ ¼
1

lr2
l

ffiffiffiffiffi
2p
p e�ðln l�llÞ2=ð2r2

l
Þ : ð5bÞ

Figure 1 shows the distribution pk in Eq. (5), for ll ¼ 1 and r2
l ¼ 1. Both k and pk

are normalized with 6k/sk0. Multi-point correlation structure is required to
complete the description of a random field kðxÞ. However, since flow is absent in the
batch system described by Eq. (2), the upscaled effective reaction rate is inde-
pendent of a correlation function and is specified fully by the single-point pdf pk.

In the presence of flow, Eq. (2) provides a Lagrangian description of reactive
transport. In this case, to make the analyses below applicable, it is necessary to
assume that the correlation length, kk, of the random field kðxÞ is much larger
than the characteristic length of the batch system. This corresponds to setting
kk ¼ 1, i.e., treating the effective reaction rate k as a random constant. Each
realization of the column consists of a uniform grain size (effective rate constant)
sampled from the grain size (rate constant) distribution.

Equation (2) represents a stochastic first order ordinary differential equation
with multiplicative noise. The concentration cðtÞ obtained as the solution of
Eq. (2) is a random field determined implicitly as a formal solution of the equation

ZcðtÞ

C0

dc0

c0a � Ca
eq

¼ �akt : ð6Þ

The integral can be expressed in terms of the hypergeometric function

2F1ða; b; c; xÞ to give

Fig. 1. Probability density function for the effective rate
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c

Ca
eq

 !
2F1

1

a
; 1; 1þ 1

a
;

c

Ceq

� �a� �
� C0

Ca
eq

 !
2F1

1

a
; 1; 1þ 1

a
;

C0

Ceq

� �a� �
¼ akt :

ð7Þ

From this result explicit solutions are obtained for the linear reaction case
ða ¼ 1Þ,

cðtÞ ¼ ðC0 � CeqÞe�kt þ Ceq ð8Þ

and for the nonlinear reaction case (a ¼ 2),

cðtÞ
Ceq
¼ 2 1� C0 � Ceq

C0 þ Ceq
e�2kt

� ��1

�1 : ð9Þ

For sufficiently long times, kt�1, in either case the concentration approaches the
deterministic equilibrium concentration Ceq.

3
PDF solution
Formulation of the partial differential equation for the pdf equivalent to the
stochastic differential equation Eq. (2) is based on the observation that the
ensemble mean of the function

Pðc;C; tÞ � dðcðtÞ � CÞ ð10Þ

where dð�Þ denotes the Dirac delta function, is the one-point pdf for concentra-
tion,

pcðC; tÞ ¼ hPðc;C; tÞi : ð11Þ

In these expressions c denotes a random variable, whereas C is a real non-
negative number. The partial differential equation satisfied by pc is derived by
noting that

oP
ot
¼ oP

oc

dc

dt
¼ � oP

oC

dc

dt
¼ akðca � Ca

eqÞ
oP
oC

; ð12aÞ

taking into account Eq. (2), and

ðca�Ca
eqÞ

oP
oC
¼ o

oC
½ðca�Ca

eqÞP�¼
o

oC
½ðca�Ca

eqÞdðc�CÞ�¼ o

oC
½ðCa�Ca

eqÞP� :

ð12bÞ

Hence the following equation for P is obtained

oP
ot
¼ �ak

o

oC
½ðCa � Ca

eqÞP� : ð13Þ

Taking the ensemble mean yields the equation
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opc

ot
¼ �a

o

oC
½ðCa � Ca

eqÞhkPi� ; ð14Þ

involving pc. Using the Reynolds decomposition, k ¼ hki þ k0 and P ¼ pc þP0

with hk0i ¼ hP0i ¼ 0, gives

opc

ot
þ ahki o

oC
½ðCa � Ca

eqÞpc� ¼ �a
o

oC
½ðCa � Ca

eqÞhk0P0i� : ð15Þ

In order to solve the pdf equation for pc it is necessary to know the correlation
hkPi in terms of the pdf pc.

An exact solution to the pdf equation for pc, Eq. (14) or Eq. (15), can be obtained
through the coordinate transformation from C to KaðC; tÞ where Ka is obtained
from the relation

KaðC; tÞ ¼ �
1

at

ZC

C0

dC0

C0a � Ca
eq

: ð16Þ

Thus it is possible to relate pc and pk through the transformation

pcðC; tÞdC ¼ pkðKaÞdKa ; ð17Þ

or

pcðC; tÞ ¼ pkðKaÞ
oKa

oC

����
���� ¼ pk½KaðC; tÞ�

at Ca � Ca
eq

��� ��� : ð18Þ

where from Eq. (16)

oKa

oC
¼ � 1

atðCa � Ca
eqÞ

: ð19Þ

An explicit form for Ka can be obtained from Eq. (7) in terms of the hypergeo-
metric function.

An explicit expression for the correlation hkPi is obtained by substituting the
expression for pc given by Eq. (18) into the partial differential equation, Eq. (14).
This yields

hkPi ¼ KaðC; tÞpcðC; tÞ : ð20Þ

Similarly, higher order correlations have the explicit form

hðk0ÞnPi ¼
�
KaðC; tÞ � hki

�n
pcðC; tÞ : ð21Þ

With this result the pdf for pc is closed providing the partial differential equation

opc

ot
¼ �a

o

oC

�
KaðC; tÞðCa � Ca

eqÞpcðC; tÞ
�
: ð22Þ
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It can be verified by direct substitution that the expression for pc given in Eq. (18)
satisfies Eq. (22).

In the limit t!1, it follows that pcðC; tÞ!dðC � CeqÞ as the reacting system
approaches its final equilibrium state determined by the well-defined determin-
istic equilibrium concentration Ceq. Formally, this can be seen from the defining
equations from the following argument. For any test function f ðCÞ

lim
t!1

Z
f ðCÞpcðC; tÞdC ¼ lim

t!1

Z
f ðCÞpk½KaðC; tÞ�

dKa

dC

����
����dC;

¼ lim
t!1

Z
f ½CðtÞ�pkðKaÞdKa;

¼
Z

f ðCeqÞpkðKaÞdKa ¼ f ðCeqÞ ; ð23Þ

where limt!1 CðtÞ ! Ceq is used. Thus

lim
t!1

pcðC; tÞ ! dðC � CeqÞ : ð24Þ

In addition, for t ¼ 0, pcðC; 0Þ ¼ dðC � C0Þ as required by the initial condition
with deterministic C0.

The time evolution of pc corresponding to a gaussian distribution pk is plotted
in Fig. 2 as a function of C for different times. The initial concentration C0 ¼ 0:05
and the equilibrium concentration Ceq ¼ 1. As can be seen from the figure, ini-
tially pc corresponds to the delta function dðC � C0Þ and evolves with increasing
time in the delta function dðC � CeqÞ.

4
Upscaled effective rate constant
The usual continuum formulation of the transport equation is based on an
ensemble average of Eq. (2),

Fig. 2. Distribution pcðC; tÞ plotted as a function of time showing the time evolution from
its initial distribution represented by the delta function dðC � C0Þ centered at C0 ¼ 0:05
to the final delta function dðC � CeqÞ centered at Ceq ¼ 1
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dhci
dt
¼ �akeffðtÞ

	
hcia � Ca

eq



: ð25Þ

To derive an expression for the upscaled effective rate, keff , we note that

hcðtÞi ¼
Z

CpcðC; tÞdC : ð26Þ

Taking the time derivative, while accounting for Eq. (22), yields

dhci
dt
¼
Z

C
opc

ot
dC

¼ a
Z

C
o

oC

�
KaðC; tÞðCa � Ca

eqÞpc

�
dC : ð27Þ

Integrating by parts gives

dhci
dt
¼ �a

Z
KaðC; tÞðCa � Ca

eqÞpc dC : ð28Þ

Comparing Eqs. (25) and (28) defines the upscaled effective rate as

keffðtÞ ¼
1

hcia � Ca
eq

Z
KaðC; tÞðCa � Ca

eqÞpc dC

¼ 1

hcia � Ca
eq

Z
Ka½CaðKa; tÞ � Ca

eq�pkðKaÞdKa : ð29Þ

From this result it is apparent that the upscaled effective rate varies in time. This
finding is in line with earlier results that demonstrated a time dependence of the
upscaled hydraulic conductivity for transient saturated flow (e.g., Tartakovsky
and Neuman, 1998). It is easy to see that the effective rate has as initial value the
mean value of k,

keffð0Þ ¼ hki : ð30Þ

Our expression for the upscaled effective reaction rate given in Eq. (29) allows for
statistical inhomogeneity of the random field kðxÞ. It is important to point out
however that it is independent of the correlation structure of kðxÞ.

We now proceed to explore the behavior of keff ðtÞ for two special cases: a ¼ 1
and a ¼ 2. In both cases, the random field kðxÞ is assumed to be stationary, so
that keff is independent of location x.

For the linear rate law ða ¼ 1Þ, substituting Eq. (8) into Eq. (26) one obtains
for the mean concentration

hci ¼ ðC0 � CeqÞ
Z

e�KtpkðKÞdK þ Ceq : ð31Þ

Thus for the linear case the expectation value of the concentration is directly
proportional to the Laplace transform of the distribution pk. The expression for
keff in this case reduces to
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keffðtÞ ¼
R

Ke�KtpkðKÞdKR
e�KtpkðKÞdK

¼ � d

dt
lnhe�kti : ð32Þ

For kt�1, keff ðtÞ’hki. Asymptotically, for kt�1, keff!0.
For the nonlinear rate law with a ¼ 2, substituting Eq. (9) into Eq. (26) one

obtains for the mean concentration

hci
Ceq
¼ 2

Z
1� C0 � Ceq

C0 þ Ceq
e�2Kt

� ��1

pkðKÞdK � 1 : ð33Þ

Substituting Eqs. (9) and (33) and Eq. (4) into yields the corresponding expres-
sion for keff . Note that keff for the linear reaction rate law is a property of the
porous medium only. This is not the case for the nonlinear reactions, where it also
depends on the initial and equilibrium concentrations.

Figure 3 shows the upscaled effective reaction rate keff for a ¼ 1 and a ¼ 2
corresponding to the distribution pk in Eq. (5). In these calculations, we used the
parameters: ll ¼ 1:0, rl ¼ 1:0 and C0 ¼ 3Ceq. With increasing time, the upscaled
effective rate constant decreases approaching zero asymptotically, albeit slowly.
This behavior is to be expected since as time increases the integrands in the
numerator and denominator of Eq. (32) only contribute for K ! 0, which is
equivalent to large grain size (l!1). Thus the larger grain sizes become sam-
pled statistically with greater weight. For the sharp distribution pk¼dðK � K0Þ, it
follows that keff¼K0 becomes constant.

This result also sheds light on the controversy over laboratory and field
determined rate constants (Velbel, 1986). Field estimated mineral kinetic rate
constants are found to differ sometimes by as much as several orders of mag-
nitude from laboratory measured rate constants. While some of this discrepancy
can be explained by the simplistic use of models (e.g. neglect of affinity factor in
the rate expression, difficulty in estimating effective field surface area, etc.), the
behavior of the effective rate constant derived in this work is consistent with such
observations.

Fig. 3. The upscaled effective rate constant keff for the linear (solid line) and nonlinear with
a ¼ 2 (dotted line) reaction laws
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5
Conclusion
The effect of a stochastic rate parameter for reaction of a solute involving
precipitation and dissolution with linear and nonlinear kinetic rate laws was
investigated for a batch system. It was demonstrated that for a single
component system containing a distribution of mineral grain sizes, the effec-
tive rate constant that appears in the differential equation for the change in
mean concentration is a decreasing function of time. It can be expected that
this same behavior will be present in more complex, multicomponent, systems
involving fluid flow. The result is consistent with the observed discrepancy
between field and laboratory based measurements of mineral kinetic rate
constants.
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