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Dendritic growth of lithium (Li) metal is a leading cause of degradation and catastrophic failure of all-solid-state batteries (ASSBs)
with Li anode. Insertion of a buffer layer between the Li-metal and the solid electrolyte is known to ameliorate this phenomenon;
yet the identification of an optimal buffer material, and the design of ASSBs that can be manufactured at scale, remains elusive and
largely driven by trial-and-error experimentation. Our analysis seeks to accelerate the buffer-materials discovery by elucidating the
conditions under which the buffer’s presence stabilizes electrodeposition on the Li anode in ASSBs. The analysis quantifies the
interfacial instability associated with dendrite formation in terms of the battery’s operating conditions and the electrochemical and
physical properties of the buffer material and solid electrolyte. The model predicts that, among several prospective buffer materials,
Ag, Al, Sn and antiperovskite super ionic conductor, Li3S(BF4)0.5Cl0.5, are effective in stabilizing electrodeposition and
suppressing dendrite growth. Our model’s predictions of the dendrite suppression abilities of different buffer materials are
consistent with the published experimental findings. The model can be used to guide experimental and computational discovery of
new buffer materials that match a particular electrolyte.
© 2023 The Electrochemical Society (“ECS”). Published on behalf of ECS by IOP Publishing Limited. [DOI: 10.1149/1945-7111/
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All-solid-state lithium-metal batteries (ASSBs) hold the promise
of becoming the next-generation safe, high-capacity power source
for electric vehicles. In ASSBs, the flammable organic liquid
electrolyte currently used in lithium-ion and lithium-metal batteries
is replaced with either an organic solid polymer electrolyte or an
inorganic solid ceramic/glass electrolyte. Solid ceramic electrolytes,
such as the garnet-type Li7La3Zr2O12 (LLZO),

1 have attracted a lot
of attention due to their superior ionic conductivity, high mechanical
strength, and chemical stability with respect to lithium (Li) metal.
However, their widespread adoption is impeded by manufacturing
challenges and poor electrode/electrolyte interfacial contact.
Crucially, formation and growth of Li dendrites are the leading
causes of ASSB degradation,2,3 just as they are for Li-metal
batteries.

Proposed strategies for suppression of Li-dendrite growth in
ASSBs include use of single-crystal solid ceramic electrolytes,
fabrication of pallets with high density and few defects, development
of composites combining a solid ceramic electrolyte with a self-
healing polymer, and optimization of the Li-metal (Table I in Ref.
4). Our study focuses on arresting the Li-dendrite initiation by
stabilizing the Li-metal/electrolyte interface.4 This goal is accom-
plished by introducing a buffer layer between the Li-metal electrode
and the solid ceramic electrolyte. For example, the placement of an
aluminum (Al), silicon (Si), germanium (Ge), aluminum oxide
(Al2O3), lithium nitride (Li3N), or Li-rich anti-perovskite (Li3OCl)
buffer layer between Li-metal and garnet electrolyte has been shown
experimentally to prevent dendrite growth.4 In the same vein, an
electronic-insulating lithium fluoride (LiF) interfacial layer has been
shown to facilitate the physical contact between Li-metal and
LLZTO (Li6.4La3Zr1.4Ta0.6O12) electrolyte and promote uniform
Li-plating/stripping.5 The same positive outcome is achieved by
either screen-printing silver (Ag) on the garnet electrolyte of an
ASSLB,6 or silver-coating the Li-metal surface of a Li-metal
battery.7 Both approaches result in stable Li-plating/stripping
profiles at different current densities.

Most of the experimental exploration of potential buffer materials
is chemistry-driven and uninformed by quantitative predictions of
Li-ion (Li+) transport and electrochemical transformations in the
solid ceramic electrolyte and the buffer. Theoretical and computa-
tional work on this subject is scarce.8,9 It includes a physics-based
model of the electrochemical potential in an ASSB, which accounts

for mixed ionic and electronic conduction through the solid
electrolyte and buffer layer, but neglects interface resistances and
resulting electrode overpotentials.10 An example of statistical
models is a computational screening of over 12,000 inorganic solids,
in which machine learning techniques are used to correlate the
stability of electrodeposition to various mechanical properties of
solid electrolytes.11 Statistical studies of this kind provide little
physical insight that can inform materials or battery design.

We fill this void by presenting a mathematical model of
electrodeposition on the Li anode in ASSBs with a buffer layer
between the Li anode and the solid ceramic electrolyte. The model
describes Li+ transport in the electrolyte and the buffer, in the
presence of an interfacial charge-transfer reaction. We analyze two
kinds of buffer material: electronic conductors (e.g., Al and Ag) and
electronic insulators (e.g., Al2O3, Li3N, Li3OCl and LiF); buffers
composed of semiconductors (e.g., Si and Ge) are left for future
study. Conditions favorable to the onset of dendritic growth or,
conversely, to its suppression are established by means of a linear
stability analysis of this model.

Our analysis leads to analytical expressions that relate the
dendrite growth rate to measurable characteristics such as buffer’s
thickness and surface morphology, current density, transport proper-
ties (Li+ diffusivity, ionic conductivity) of the electrolyte and the
buffer, and the interfacial energy between the Li-metal and the solid
electrolyte or buffer layer. This analysis identifies effective buffer
materials, which can have either high electronic conductivity (Ag,
Al, and tin Sn) or low electronic conductivity (anti-perovskite,
Li2.99Ba0.005OCl

12 and Li3S(BF4)0.5Cl0.5,
13 both of which are super

ionic conductors). Such results provide a useful screening tool to
narrow down the space of plausible candidates for an optimal
dendrite-suppression buffer material. Ultimate selection of the ideal
candidate would be determined by additional factors (e.g., elastic
properties and geographic scarcity) absent from our model, such as
the mode of a material’s application (e.g., coating or construction of
a composite) and economic cost.

Mathematical Formulation

We consider electrodeposition on the Li-metal anode, Ωan, that is
separated from the solid electrolyte, Ωel, by the thin buffer layer
Ωb; our model of an ASSB is two-dimensional and deals with the
half-cell domain in Fig. 1. A negative electrostatic potential, φe, is
maintained on the Li-metal electrode surface, Γ(t), at all time t; the
electric potential at the outer edge of the electrolyte (x= L) is fixed
at 0. The Li-metal electrode surface, Γ(t), is initially (at time t= 0)
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flat and coincides with the plane x= 0, i.e.,
Γ( ) = { = ( ) = ⩽ ⩽ }⊤x y x y Bx0 , : 0, 0 .

Temporal evolution of the Li-metal surface Γ(t) is a result of
electrodeposition that involves a Faradaic reaction between cations
(Li+) and electrons (e−), Li+ + e− → Li, which results in the
formation of Li atoms that are subsequently deposited on Γ.
Depending on the ratio between the buffer electronic conductivity,
σ −e , and the ionic conductivity for Li+, σ +Li , this reaction takes place
on either the anode-buffer interface Γ(t) or the buffer-electrolyte
interface Γ1 (Fig. 1). For buffer materials with σ σ≫− +e Li (Scenario
1), the Faradaic reaction takes place on Γ1 and the resultant Li atoms
are transported to Γ(t) by diffusion; for buffer materials with
σ σ≪− +e Li (Scenario 2), the Faradaic reaction occurs on Γ(t). We
consider both scenarios.

We ignore mechanical effects, e.g., solid electrolyte fracture,
rupture of the coated layer, etc., and explore Li diffusion in the
buffer layer as a possible dendrite-stabilization mechanism.

Governing equations.—We use a two-dimensional Cartesian
coordinate system spanned by the orthogonal unit-vectors ex and
ey, and represent the anode surface with dendrites, Γ(t), by a single-
valued function h(y, t) such that h(y, 0)= 0 (Fig. 1). The unit-normal
vector, n(y, t), and mean curvature, κ(y, t), of the anode surface Γ(t)
are computed as14
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We analyze the stability of electrodeposition in order to identify the
conditions under which a small perturbation of h(y, t) dissipates
(rather than grows) with time t.

The rate of change of Γ(t) or, equivalently, h(y, t) is given by the
normal component of the mass flux of Li atoms, ( )tJ x,Li

b (mol/m2/s),
across the buffer/anode interface:

ω· ∂
∂ = − · ∈ Γ( ) [ ]h
t

e n n J x, t , 2x Li
b

where ω is the molar volume of Li-metal (m3 mol−1). The flux
( )tJ x,Li

b is computed from the mass and charge conservation laws
for both the buffer and the electrolyte.

Solid electrolyte.—The Li cations, Li+, are the only mobile
species in the solid electrolyte, Ωel = {x: L1 < x< L, 0 ⩽ y ⩽ B}.
Experimental evidence suggests that these cations are distributed
almost uniformly throughout the electrolyte so that their concentra-
tion +cLi

el is approximately constant and equal to the initial concen-
tration in the electrolyte, ( ) ≈+c t cx, ;Li

el
0 hence, its gradient is

∇ ≈+c 0Li
el and their diffusion flux is negligible.15,16 Consequently,

in our model, the movement of Li+ is entirely due to electromigra-
tion. The Nernst-Planck expression for the Li+ flux in the electrolyte
reduces to φ= − ∇+ zFu cJLi

el
el 0 el, where z is number of proton

charges carried by Li+, F is the Faraday constant (s · A/mol),
φel(x) is the electric potential in the electrolyte (V), and uel is the
mobility of Li+ in the electrolyte due to the potential gradient ∇φel.
In the absence of an externally imposed magnetic field, the current
density iel(x) is related to the ionic flux ( )+J xLi

el by15 = +zFi Jel Li
el .

This gives rise to Ohm’s law and charge conservation in the solid
electrolyte,17,18

σ φ= − ∇ ∇ · =
∈ Ω [ ]

i i
x
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el el el el
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where σel = z2F2uelc0 is the electrolyte’s ionic conductivity for Li+

(S m−1).
Equation 3 are subject to the boundary conditions
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the last two of which represent the electrically insulated vertical
surfaces, y= 0 and B. The boundary conditions on the electrolyte/
buffer interface Γ1= {x: x= L1, 0 ⩽ y ⩽ B} are determined by the
material properties of the buffer, as detailed below.

Buffer layer.—The thin buffer, initially of uniform thickness L1,
is represented by the domain Ωb(t)= {x: h(y, t)< x< L1,
0< y< B}. The buffer is characterized by its conductivities for
electrons (σ −e ) and Li+ (σ +Li ). We consider two limiting cases
defined by the magnitude of the ratio σ σ− +e Li .

Scenario 1: Buffer with high electronic conductivity. In
buffers with σ σ≫− +e Li (e.g., Al and Ag), the electron concentration
is high and approximately constant throughout the buffer, so that the
electric potential in the buffer, φb, is constant as well. Consequently,
the Li+ ions undergo the Faradaic reaction at the buffer/electrolyte
interface, x= L1, and reduce to the Li atoms that subsequently

Figure 1. Schematic representation of an ASSB (Left) and the two-dimensional half-cell domain considered in this study (Right). The half cell consists of the Li-
metal anode, Ωan, that is separated from the solid electrolyte, Ωel, by the buffer layer Ωb. The anode’s surface Γ(t) evolves with time t due to electrodeposition,
while the interface Γ1 between Ωel and Ωb remains fixed.
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diffuse in Ωb and are deposited on the anode surface Γ(t). The
spatiotemporal evolution of the molar concentration of Li atoms,

( )c tx,Li
b (mol m−3), is described by the diffusion equation

∂
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where DLi
b is the diffusion coefficient (m2 s−1) for Li in the buffer.

Equation 5 is subject to the initial condition

( ) = ∈ Ω [ ]c x x, 0 0, , 6Li
b

b

and the boundary conditions on Γ(t) and Γ1. In addition to the
kinematic condition in Eq. 2, these conditions are
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b
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They encode mass conservation across the interfaces bounding the
buffer Ωb. Specifically, Eq. 8 specifies that the normal component of
JLi

b across the buffer/electrolyte interface Γ1 is proportional to the net
reaction rate, R1, of the Faradaic reaction Li+ + e− → Li; this rate is
given by the Butler-Volmer equation,
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Here, k0 is the reaction rate constant (mol/m2/s); R is the universal
gas constant (J/mol/K); γts is the activity coefficient of the transition
state for the Faradaic reaction (−); ae, aO and aR are the activities of
electrons and oxidant (e.g., Li+) and reductant (e.g., Li atom),
respectively; αan and αcat are the anodic and cathodic charge-transfer
coefficients, respectively (−); γ1 is the isotropic surface energy at
the interface Γ1 (J m−2); and the activation overpotential ηα is
defined as

η φ φ= − ( ) − [ ]α
ΘL y t E, , , 9be b 1

where EΘ is the standard electrode potential.1 Since Γ1 is a straight
line, its curvature is κ= 0. Finally, = ( ) Θa c L y t c, ,R Li

b
1 , where cΘ is

the standard concentration.
By the same token, Eq. 7 signifies that the normal mass flux of Li

atoms across Γ(t), ·n JLi
b , is supplied by the Li deposition rate, RΓ.

The latter is driven by the difference in the chemical potentials of Li
across the Li-metal/buffer interface, for which we adopt the Butler-
Volmer form,
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where γ is the isotropic surface energy (J m−2) at the interface Γ. To
be specific, we set the reaction rate constant kΓ = k0.

The boundary value problem comprising Eqs. 1–10 requires the
knowledge of ( )c L y t, ,Li

b
1 and φb(L1, y, t) ≡ φ(t). These boundary

functions are computed from the continuity conditions at the
interface Γ1 separating the buffer and the electrolyte. Thus, the
normal component of the current density, = ( )⊤

i ii ,x yel el, el, , entering
the buffer from the electrolyte at the interface Γ1 is proportional to
the net reaction rate of the Faradaic reaction Li+ + e− → Li:

( ) = [ ]i L y t zFR, , . 11xel, 1 Li

That is because, at the flat electrolyte/buffer interface,
= =+J J Rx xLi,

b
Li ,
b

Li.
Scenario 2: Buffer with low electronic conductivity. Buffers

with σ σ≪ +e Li are electronic insulators with high ionic conductivity;
examples include i) solid electrolyte materials whose properties
differ from those of the solid electrolyte used in a given ASSLB and
ii) compositions of the solid electrolyte interface (SEI) formed in an
organic liquid electrolyte. Such a buffer, Ωb, acts as a single-ion
conductor with a constant Li+ concentration +cLi

b .15,19,20 The ions
Li+ undergo the Faradaic reaction, reducing to Li atoms, on the
anode surface Γ(t).

The spatial distribution of electric potential φb(x, t) within the
buffer Ωb is governed by the Laplace equation,

σ φ∇ · = = − ∇ ∈ Ω [ ]i i x0, , , 12b b b b b

where σb is the ionic conductivity for Li+ in the buffer (S m−1), and
ib(x, t) is the current density in the buffer (m2 s−1). Equation 12 is
subject to boundary conditions on Γ(t) and Γ1. On the moving
surface Γ(t), we supplement the kinematic boundary condition in
Eq. 2 with the mass balance relation

· = ∈ Γ( ) [ ]zFR tn i x, . 13b Li

The production rate of Li atoms, RLi, is now given by
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The activation overpotential ηα is now defined as
ηα = φe − φb(x ∈ Γ(t), t)− EΘ.

At the buffer/electrolyte interface, Γ1, we ensure the continuity of
electric potential and normal components of the charge flux:

φ φ( ) = ( )
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In the Butler-Volmer expressions 9, 10 and 14, the surface energy
terms 2ωγ1κ/(RT), 2ωγκ/(RT) and ωγ κ ( )RT2 Li

b are included to
account for the effect of the surface curvature on the reactions’
energy barrier.21 They act to flatten the electrode surface, since the
creation of additional surface area results in a surface energy
penalty.14

Stability Analysis

Linear stability analysis is performed by applying a small
perturbation, ε ( + )wt ikyexp , to a one-dimensional steady-state
base state, defined by the flat electrode surface h(0)(t) ≡ Ut moving
with the constant velocity ω= = −( ) ( )U h t Rd d0

Li
0 and by the

corresponding electric potential φ(0)(x) and Li+ concentration
c(0)(x). (The spatial profiles of φ(0) are shown in Fig. A·1 in
Appendix A). Here, ε is the dimensionless small parameter

1In all numerical experiments reported below, we set γts = 1, ae = 1,
αan = 1 − αcat, and EΘ = 0. We also set aR = 1 and aO = 1 in our simulations of
ASSBs without a buffer, i.e., when the Li-metal anode and the solid electrolyte are
in direct contact.
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(ε= L1/L= 1), w is the growth rate (1/s), k is the wavenumber (1/
m), and i2 =−1. The electrodeposition process is unstable if the
perturbations grow with time, i.e., if w> 0. The goal of a stability
analysis is to express w in terms of the physical properties of the
solid electrolyte, buffer and anode.

The mathematical details of this analysis are provided in
Appendices A and B. The results are reported below in terms of
dimensionless growth rate, wavenumber, and current density,

σ

σ

˜ = ˜ =

˜ = =
˜

[ ]

w
wF c L

RT
k kL
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zRT
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2
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2
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Li

Results and Discussion

The parameter values used in our stability analysis are presented
in Table I. For illustration purposes, we choose lithium lanthanum
zirconium oxide (Li7La3Zr2O12, LLZO) as the solid electrolyte. To
ensure that the standard electrode potential, EΘ is 0 for Scenarios 1
and 2, we define the standard concentration cΘ to be either the Li
concentration in the lithium metal, cΘ = cLi, in Scenario 1 or the Li+

concentration in the solid electrolyte, cΘ = c0, in Scenario 2.
Figures 2 and 3 exhibit the dispersion relations, ˜ = ˜ ( ˜)w w k , and

the corresponding stability regimes for ASSBs with and without a
buffer. Only the results for high-conductivity buffers (Scenario 1)
are shown. That is because their counterparts for low-conductivity
buffers (Scenario 2) overlap with the solutions in the absence of a
buffer when σb/σel = 1, according to Eq. B·8. These results are
obtained by solving the boundary-value problems in Appendix A
numerically and, under certain approximations, analytically
(Appendix B). Figure 2 demonstrates that the numerical and
analytical solutions are virtually indistinguishable; thus, the subse-
quent figures display only analytical results. In Fig. 2, the range of
wavenumbers k̃ corresponding to the positive growth rate w̃
identifies the conditions under which the surface growth is unstable
and dendrites develop; the maximum value ˜ = ˜ ( ˜ )w w kmax max indicates
the regime wherein the electrode surface growth is maximally
unstable, while the regime with k̃cr corresponds to the marginally
stable electrode surface. Both w̃max and k̃cr increase with the applied
potential φe. When ˜ > ˜k kcr, the surface is stable because ˜ <w 0 due
to the surface energy penalty on the creation of additional surface
area. This penalty is quantified by the terms proportional to capillary
numbers for the electrolyte and buffer, CaLi

el and CaLi
b , in Eqs. B·3a

and B·6.

In the absence of a buffer, the growth rate w̃ is maximal at k̃ = 0
as the electric potential gradient always acts as a destabilization
source and no stabilization mechanism is involved (Fig. 2). That is in
contrast to the high-conductivity buffer, for which the dispersion
relation ˜ = ˜ ( ˜)w w k is non-monotonic: w̃ increases from a small
positive value at k̃ = 0 to its maximum value w̃max, after which it
decreases and eventually becomes negative. Diffusion of Li in the
buffer has a stabilizing effect by reducing the growth rate w̃ at all
wavenumbers k̃ . A proper selection of the transport properties of the
buffer material (D̃b and Ca CaLi

b
Li
el ) would allow one to reduce both

the maximal growth rate w̃max and the critical wavenumber k̃cr, i.e.,
to extend the operational range over which the electrodeposition on
the Li anode remains stable.

The stability of electrodeposition, encapsulated in the dispersion
relation ˜ = ˜ ( ˜)w w k , depends on both the materials properties and the
battery operating conditions (the applied electric potential φe or the
current density I). Figure 3 identifies the stability regimes,
˜ = ˜ ( ˜ ˜ )( )w w k I; 0 given by Eqs. B·8 and B·3a, for ASSBs without a
buffer and with a highly conductive buffer, respectively. Defining
the critical wavenumber k̃cr as the wavenumber at which w= 0,
yields the curve ˜ = ˜ ( ˜ )( ) ( )I I k0 0

cr that separates the stable (w< 0) and
unstable (w> 0) regimes. The presence of a high-conductivity buffer
(with ˜ =D 1b and =Ca CaLi

b
Li
el ) significantly expands the stability of

electrodeposition at any current density, i.e., the size of the blue
region in which w< 0. In the absence of a buffer, Li deposition
becomes progressively unstable as I increases. The stability dia-
grams in Fig. 3 provide a blueprint for the electrode-morphology
design: they suggest that deploying Li-metal anodes whose surface
roughness wavelength λ is smaller than the critical wavelength
λ π= k̃2cr cr would ameliorate dendritic growth. Such surfaces can
be manufactured with, e.g., nano-structuring.27

Dependence of the dispersion relations ˜ = ˜ ( ˜)w w k on the electro-
chemical characteristics of the electrolyte and buffer suggests the use
of these relations as a screening tool for materials selection. To this
end, we investigate three metal materials as candidates for a highly
conductive buffer: silver (Ag), aluminum (Al) and tin (Sn). Their
transport properties (Li diffusivity, electronic conductivity) and
interfacial energies at room temperature, T= 298.15 K are collated
in Table II. The Li-metal/buffer interfacial energies are computed
as33 γ γ γ γ γ= + − 0.5Li

b
Li b Li b , where γLi and γb are the surface

energies of the Li and coating materials reported in Ref. 31. The
dimensionless electronic conductivity σ̃e of these metals is at least
seven orders of magnitude larger than the dimensionless Li
diffusivity, D̃b. Thus, the assumption of high and constant electron
concentration in the buffer is valid, and the Faradaic reaction

Table I. Model parameters used in the stability analysis.

Parameter Value References

Half-cell length, L (μm) 10 22
Buffer layer thickness, L1 (nm) 20
Ionic conductivity for Li+ in solid electrolyte, σel
(S m−1)

0.1 23

Temperature, T (K) 298.15
Molecular weight of lithium metal, M (g mol−1) 6.941 24
Density of lithium metal, ρ (g cm−3) 0.534 24
Li concentration in lithium metal, cLi (mol m−3) 76,934 24
Concentration of Li+ in solid electrolyte, c0 (mol m−3) 18,012 3
Standard concentration, cΘ (mol m−3) cLi, c0
Standard electrode potential, EΘ (V) 0
Reaction rate constant, k0 (mol/(m2s)) 1 · 10−2 25
Surface energy of Li/LLZO interface, γLi/el (J m

−2) 0.85 26
Activity coefficient of the transition state, γts (—) 1
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Li+ + e− → Li takes place at the buffer/electrolyte interface. The
dispersion relations ˜ = ˜ ( ˜)w w k for Ag, Al and Sn buffers at
φe =−1.5 V are shown in Fig. 4. The use of Ag as a buffer material
yields the negative growth rate w̃ for wavenumber k̃ that is slightly
larger than 0. For Al and Sn buffers, w̃ is positive for small k̃ and
negative for a wide range of ˜ > ˜k kcr. All three buffer materials
dramatically expand the stable regime relative to that of an ASSB
without a buffer. Our results confirm the experimental findings6,7

according to which the use of Ag buffers mitigates dendritic growth

because the dimensionless diffusivity of Li in Ag is larger than the
dimensionless Li+ conductivity in the solid electrolyte. Another
reason is that the interfacial energy between Ag and Li-metal is
higher than that between the solid electrolyte and Li-metal. While
somewhat less efficient in dendrite suppression, Al and Sn are
plausible buffer materials, especially considering their lower cost.

Next, we apply our analysis to buffer materials with low
electronic conductivity, specifically, two antiperovskite super ionic
conductors, Li2.99Ba0.005OCl

12 and Li3S(BF4)0.5Cl0.5.
13 Table III

Figure 2. Dispersion relations ˜ = ˜ ( ˜)w w k for ASSBs without a buffer and with the high-conductivity buffer ( ˜ =D 1b and =Ca CaLi
el

Li
b ), for φe = −0.5 V and −1.5

V. The solid and dashed lines are the numerical and analytical solutions, respectively.

Figure 3. Stability regimes predicted by Eqs. B·8 and B·3a for ASSBs without a buffer (Left) and with a high-conductivity buffer ( ˜ =D 1b and =Ca CaLi
b

Li
el )

(Right). The solid/dashed lines denote the critical wavenumber k̃cr for each current density ˜( )I ;0 these lines, along which w = 0, separate the stable (w < 0, blue)
and unstable (w > 0, red) regions.

Table II. Transport properties and interfacial energies for buffer materials with high electronic conductivity at room temperature, T = 298.15 K.

Ag Al Sn

Property Value References Value References Value References

Li diffusion coefficient, Db (m
2 s−1) 1 · 10−10 28 8.43 · 10−12 29 4.15 · 10−12 30

Dimensionless Li diffusivity, D̃b 67.64 5.71 2.81

Interfacial energy, γLi
b (J m−2) 1.36 31 1.28 31 0.93 31

Ratio Ca CaLi
b

Li
el 1.6 1.5 1.1

Electronic conductivity, σe (S m−1) 6.67 · 107 32 4.08·107 32 8.7 · 106 32
Dimensionless e− conductivity, σ̃e 6.67 · 108 4.08 · 108 8.7 · 107
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reports their ionic conductivity and interfacial energy at room
temperature, T= 298.15 K; in the absence of the interfacial energies
for electrolyte/buffer systems, we use the interfacial energy of an
antiperovskite super ionic conductor, Li3OCl.

34 For both materials,
the dimensionless electronic conductivity σ̃e is many orders of
magnitude smaller than the dimensionless Li+ conductivity and,
thus, Li+ ions undergo the Faradaic reaction with e− and reduce to
Li atoms at the anode/buffer interface, x= L1. Figure 5 suggests that
buffers made of materials with low electronic conductivity and ionic
conductivity for Li+ higher than that in the solid electrolyte (LLZO),

such as the antiperovskite super ionic conductors, Li3S(BF4)0.5Cl0.5
and Li2.99Ba0.005OCl, suppress dendrite growth.

One might expect the buffer thickness, L1, to affect the buffer’s
ability to suppress dendrite growth and, thus, to act as another design
variable. According to Eqs. B·4 and B·7, at any given current density
I(0), the critical wavenumber kcr is independent of L1, regardless of
whether the buffer has high or low electronic conductivity. However,
L1 does impact the maximum growth rate wmax, with the nonlinear
dependence of the growth rate on the buffer thickness, w= w(L1),
given by Eq. B·3a for buffers with high electronic conductivity and

Figure 4. Dispersion relations ˜ = ˜ ( ˜)w w k at φe = −1.5 V (Left) and stability regimes ˜ = ˜ ( ˜ ˜ )( )w w k I; 0 (Right), for ASSBs without a buffer and with Ag, Al and Sn
buffers. The lines in the right graph, along which w = 0 and ˜ = ˜k kcr, separate the stable (w < 0) and unstable (w > 0) regions.

Table III. Transport properties and interfacial energies for coating materials with low electronic conductivity at room temperature, T = 298.15 K.

Li3S(BF4)0.5Cl0.5 Li2.99Ba0.005OCl

Property Value References Value References

Ionic conductivity for Li+, σb (S m−1) 10 13 1 12
Dimensionless Li+ conductivity, σ̃b 100 10
Li+ concentration, cLi

b (mol m−3) 26,629 13 93,531 12

Dimensionless Li+ concentration, c̃Li
b 1.45 5.19

Interfacial energy, γb
Li (J m−2) 0.65 34 0.65 34

Ratio Ca CaLi
b

Li
el 0.76 0.76

Electronic conductivity, σe (S m−1) negligible 13 negligible 12

Figure 5. Dispersion relations ˜ = ˜ ( ˜)w w k at φe = −1.5 V (Left) and stability regimes ˜ = ˜ ( ˜ ˜ )( )w w k I; 0 (Right), for ASSBs without a buffer and with the
Li3S(BF4)0.5Cl0.5 and Li2.99Ba0.005OCl buffers. The lines in the right graph, along which w = 0 and ˜ = ˜k kcr, separate the stable (w < 0) and unstable (w > 0)
regions.
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by Eq. B·6 for low-conductivity buffers. These equations point to the
complex interplay between the buffer’s size and transport properties.
For example, according to Eq. B·6, w decreases or increases with L1
depending on whether σb > σel or σb < σel.

Finally, we validate our analysis by comparing its predictions
with the previously published experiments. This task proved to be
challenging because many experimental studies do not report all the
relevant material properties and even fewer studies report negative
results. With these caveats, all the experimental results we are aware
of conform to our stability diagrams (Fig. 6). For buffer materials
with high electronic conductivity and positive interfacial energies,
γ > 0Li

el and γ > 0Li
b , the stability diagram is presented in the

( ˜ ˜D ICa Ca ,Li
b

b Li
el ) phase space. For low-conductivity buffers with

γ > 0Li
el and γ > 0Li

b , the phase space is spanned by the material
properties σ̃b and Ca CaLi

b
Li
el . In both cases, the solid line represents

critical wavenumbers k̃cr for ASSBs without a buffer, such that the
insertion of a buffer with given material properties is predicted to
have either destabilizing (red region to the left of the solid line) or
stabilizing (blue region to the right of the solid line) effect on the Li
dendrites. Using the same material properties and operating condi-
tions as in the experiments,6,35–37 our model confirms that high-
conductivity buffers made of Ag, Al, Sn or magnesium (Mg)
suppress dendrite growth. For buffers with low electronic conduc-
tivity, our model predictions are consistent with the experimental
results38,39 that Al2O3 and Li3N stabilize the electrodeposition on the
Li anode, while lithium carbonate (Li2CO3) fails to suppress dendrite
growth due to its relatively low ionic conductivity and interfacial
energy with Li-metal.

The stability diagrams in Fig. 6 do not include buffers and solid
electrolytes that have negative interfacial energies with Li-metal,
γ < 0Li

el and/or γ < 0Li
b . That is because, according to our predictions

based on Eqs. B·3a and B·6, negative values of the capillary numbers
CaLi

el or CaLi
b always yield positive growth rate w, which signifies that

the electrode surface growth is unconditionally unstable. This
conclusion is in line with the experimental study,40 which found
γ < 0Li

el to indicate an intrinsically unstable interface between the
solid electrolyte (e.g., LPS) and the Li-metal, and suggested the
potential dendrite suppression abilities of buffer materials with
γ > 0Li

el .

Conclusions

The insertion of a buffer layer between the Li-metal anode and
the solid (ceramic) electrolyte has been proposed as a possible
strategy to suppress Li dendrite formation in ASSBs. We investi-
gated this possibility by presenting a mathematical model of
electrodeposition on the Li anode of ASSBs with and without such
a buffer layer, with focus on the stability of the evolving anode
surface in response to a small perturbation. Our key result is
analytical expressions that relate the instability growth-rate to both
material properties (transport properties of the electrolyte and buffer
and interfacial energy) and battery operating conditions (current
density or applied electric potential). Our analysis leads to the
following major conclusions.

• Our stability diagrams correctly identify buffer materials that
are experimentally shown to suppress/mitigate dendrite growth in
ASSBs. These materials can have either high (e.g., Ag, Al, Sn, Mg)
or low (e.g., Al2O3 and Li3N) electronic conductivity, provided they
have positive interfacial energy.

• Our analysis correctly identifies buffer materials that, in
experiments, failed to impact dendrite growth. These materials
have either low ionic conductivity and interfacial energy with Li-
metal (e.g., Li2CO3) or have negative interfacial energy with Li-
metal (e.g., LPS).

• Our stability diagrams suggest that prospective buffer materials
should have either high electronic conductivity and high Li diffusion
coefficient or low electronic conductivity and high ionic conduc-
tivity for Li+; materials with high interfacial energy with Li-metal
are preferred.

• Candidates for buffer materials with low electronic conduc-
tivity include antiperovskite super ionic conductors,
Li2.99Ba0.005OCl and Li3S(BF4)0.5Cl0.5, because their Li diffusivity
is higher than that of most currently proposed solid electrolytes.

• Our analysis demonstrates that the buffer thickness has no
impact on the critical surface roughness wavelength, below which
the interface is stable and no dendrites initiate.

Our findings suggest new strategies for the design of interfacial
buffers, i.e., for the optimal selection of buffer material and the solid
electrolyte pair based on their electrochemical and physical proper-
ties. Our model enables a quantitative evaluation of the buffer
materials and, when combined with experimental and computational

Figure 6. Stability diagrams in the phase space spanned by dimensionless parameters ( ˜ ˜)D ICa Ca ,Li
b

b Li
el and σ( ˜ ), Ca Cab Li

b
Li
el for buffer materials with high and low

electronic conductivity, respectively. In both cases, the interfacial energies are positive, γ > 0Li
el and γ > 0Li

b . The solid line represents critical wavenumbers k̃cr for
ASSBs without a buffer, such that the insertion of a buffer with given material properties is predicted to have either destabilizing (red region to the left of the
solid line) or stabilizing (blue region to the right of the solid line) effect on the Li dendrites. The experimental data for Ag, Al, Sn, Mg, Al2O3, Li3N, and Li2CO3
are from Refs. 6, 35–39.
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approaches that provide improved characterization of the material
properties, would accelerate the discovery of new buffer materials.

In future work, we will extend our model to handle buffer
materials with intermediate electronic and ionic conductivities and
couple ion transport and mechanical behaviors in ASSBs. We will
also investigate the effects of operating conditions and aging on
dendrite suppression by changing the ionic conductivity and Li
concentration in the solid electrolyte or buffer materials.

Finally, our analysis points to the possibility of using Li-metal
anodes with randomly rough surfaces as a means to suppress or
mitigate dendrite initiation. Such a strategy has proved to be
beneficial in other applications, e.g., Ref. 41; its mathematical
treatment would necessitate the adoption of a probabilistic
framework.42,43
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Appendix A. Perturbation Analysis

We introduce dimensionless variables

σ

φ φ κ κ

˜ = ˜ = ˜ = ˜ =
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We also define the capillary numbers

ωγ ωγ
= = [ · ]

RTL RTL
Ca , Ca A 1cLi

el Li
el

Li
b Li

b

and the normalized rate of Li production R̃Li and the interfacial
current density Ĩ as

σ σ
˜ = ˜ = =

˜
[ · ]R

LF R
RT

I
LFI

zRT
R
z

, . A 1dLi

2
Li

el el

Li

Unless specified otherwise, all the quantities below are dimen-
sionless, even though we drop the tildes to simplify the notation.

The electrode surface height, h(y, t), and the state variables φ(x, t)
and c(x, t) are written as

ε φ φ εφ
ε ε ε

= ( ) + ˆ = ( ) + ˆ
= ( ) + ˆ ˆ = [ · ]
( ) ( ) ( ) ( )

( ) ( ) +
h h t h x

c c x c

, ,

, e , A 2wt iky

0 1 0 1

0 1

where the constant h(1) and the functions φ(1)(x) and c(1)(x) are first-
order (in ε) corrections to the base state denoted by the superscript (0).
The evolving electrode surface Γ(t), which consists of points

( ( ))⊤y h y t, , , is a perturbation around the base state
Γ = { = ( ) = ⩽ ⩽ }( ) ⊤ ( )x y x h y B Lx , : , 00 0 . It follows from
Eq. 1 that first-order approximations of its unit normal vector,

 ε= + ( )( )n n 0 2 , and curvature, κ κ εκ= + ˆ( ) ( )0 1 , are given by

κ κ= − = = [ · ]( ) ( ) ( ) ( )⎛⎝ ⎞⎠ k
hn 1

0
, 0,

2
. A 30 0 1

2
1

It follows from Eq. 2 that the interface h(0)(t) is moving with velocity
U= dh(0)/dt. Depending on the buffer type, this velocity is given by
either ω= − Γ

( )U R 0 (Eq. 7, Scenario 1) or ω= − ( )U RLi
0 (Eq. 13,

Scenario 2).
In this formulation, the buffer is represented by the domain

Ω̃ = {˜ ˜ ( ) < ˜ < ˜ }( ) ( )x h t x L:b
0 0

1 and the solid electrolyte by the domain

Ω̃ = {˜ ˜ < ˜ < }( ) x L x: 1el
0

1 , where ˜ =L L L1 1 . As mentioned above, we
drop the tilde to simplify the notation.

A.1. Solid electrolyte.—Substituting Eq. A·2 into the dimen-
sionless form of Eqs. 3 and 4, and collecting the terms of order ε0

and ε leads to the PDEs for φ ( )( ) xn
el ,

σ
φ

= = −
= < < [ · ]

( )
( )

( )i

x
i

x
n L x

d

d
0,

d

d
,

0, 1, 1, A 4

n
n

i
el

el el
el

1

where iel = ∣iel∣ and = ( )( ) ( ) ⊤ii , 0n n
el el for n= 0,1. These two equations

are subject to the boundary conditions φ ( ) =( ) 1 0n
el and the continuity

conditions at the electrolyte/buffer interface x= L1. Integrating these
equations once yields

σ
φ

φ= − = ( ) = = [ · ]( )
( )

( )i
x

a n
d

d
, 1 0, 0, 1. A 5n

i

n
n

el el
el

el

The constants of integration a0 and a1 are determined from the
interfacial conditions at x= L1. These conditions depend on the type
of buffer material. In Scenario 1, this condition follows from Eqs. 11
and A·1d,

( ) = = [ · ]( ) ( )i L I n, 0, 1, A 6n n
el 1 Li

which specifies these constants as = ( )a In
n

Li for n= 0,1. In Scenario
2, this condition is provided by Eq. 15,

φ φ( ) = ( ) = [ · ]( ) ( )L L n, 0, 1. A 7n n
el 1 b 1

In accordance with Eq. 14, the interfacial current density depends on
the electric potential in the buffer, ILi = ILi(φb). Hence, in either
scenario, the electric potentials in the electrolyte and the buffer are
coupled in any approximation order n.

A.2. Scenario 1: High-conductivity buffer.—Substituting
Eq. A·2 into the dimensionless form of Eqs. 5–8, and collecting
the terms of order ε0 and ε leads to the BVPs for c(n)(x) used in the
approximation of the Li concentration in the buffer,

ε( ) ≈ ( ) + ˆ( ) ( )( ) ( )c t c x y t c xx, ,Li
b 0 1 :

= −

= =
( + ) =

< < [ · ]

( )
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J D

n
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,
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2

subject to the boundary conditions A·6 and

− = =
− = = [ · ]
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Γ
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In these BVPs, according to Eqs. 9 and 10,
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where η φ φ= − −α
( ) ( ) ΘE0

e b
0 . It follows from Eqs. 2, A·2 and A·3

that
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1

The derivation of the boundary condition on the evolving electrode
surface Γ(t), whose points are represented as ( ( ))⊤y h y t, , , requires
us to expand ( ∈ Γ )c tx ,Li

b and its gradient in Taylor series around
the base state Γ = { = ( ) = ⩽ ⩽ }( ) ⊤ ( )x y x h y B Lx , : , 00 0 such
that

ε( ∈ Γ ) ≈ ( ) + ˆˆ ( ) [ · ]( ) ( ) ( ) ( )c t c h c hx , A 13aLi
b 0 0 1 0
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A.3. Scenario 2: Low-conductivity buffer.—Substituting
Eq. A·2 into the dimensionless form of Eqs. 12–14, and collecting
the terms of order ε0 and ε leads to the BVPs for φ ( )( ) xn

b :
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The above expression is obtained, similarly to Eq. A·13a, by
expanding φb(x ∈ Γ, t) and its gradient in Taylor series around the
base state Γ(0), and by defining φ̂ ( )

b
1 as

φ
φ

φˆ = + [ · ]( ) ( )
( )

( )h
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d

d
. A 17b

1 1 b
0

b
1

A.4. Battery without a buffer.—The linear stability analysis of
ASSBs without a buffer is identical to Scenario 2, in which the
transport properties of the buffer are equal to those in the solid
electrolyte and the interface x= L1 is absent. Thus, Eqs. A·4–A·7 are
replaced with Eq. A·4 defined for the whole domain h(0)<x< 1, on
which Eqs. A·14–A·17 (minus the interfacial condition at x= L1 and
with =Ca CaLi

b
Li
el ) are also defined.

A.5. Base-state solutions.—Analytical solutions of the base-
state BVPs, i.e., Eqs. A·4–A·16 for n= 0, yields the spatial
distribution of the electric potential throughout the half cell in
Scenario 1,
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These solutions are written in the moving coordinate system
ξ= x− Ut, with ˆ = −L L Ut1 1 . The linear stability analysis is valid
for early stages of the dendrite formation, during which Ut= L1 and
(since L1 = 1) Ut= 1. For these early times, φ(0)(ξ; t) in Eqs A·18
and A·19 loose their explicit dependence on t, reducing to
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in Scenario 2.
These solutions are implicit because of the nonlinear dependence

of ( )RLi
0 and Γ

( )R 0 on φ(0)(ξ) and, in Scenario 1, on
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In other words, for any given φe, these solutions take the form
φ ξ φ ξ( ) = [ ( )]( ) ( )0 0 , where the functional [·] is defined by either

Eq. A·20 or Eq. A·21. This root-finding problem is solved
numerically with the Matlab function fzero.

Figure A·1 exhibits the spatial distribution of the base-state
electric potential, φ(0)(ξ), in ASSBs without a buffer and with the
highly conductive buffer (Scenario 1 with Db = 1 and ˜ =Ca 1). We
do not show the solutions for the low-conductivity buffer because
they overlap with the buffer-free expressions when σb = 1. The
electric potential increases linearly with distance from the evolving
anode, ξ, with higher values of the applied potential φe inducing
larger potential gradients in the electrolyte. In Scenario 1, the
Faradaic reaction Li+ + e− → Li takes place at the the buffer/
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electrolyte interface and the electric potential in the buffer is
constant.

The solutions for φ(0)(ξ) and c(0)(ξ), and their first- and second-
order derivatives, serve as coefficients in the perturbed-state BVPs,
i.e., in Eqs. A·4–A·16 with n= 1. The latter are solved numerically14

by employing a second-order finite-difference scheme and solving
the resulting generalized eigenvalue problem with the Matlab
function eigs to compute the dispersion relation w= w(k).
Alternatively, under certain assumptions, the perturbed-state BVPs
for φ(1)(ξ) and the dispersion relations from Eq. A·12 are solved
analytically in Appendix B.

Appendix B. Analytical Dispersion Relations

B.1. Scenario 1: High-conductivity buffer.—Let us assume
that w= Dk2 in A·8 with n= 1, i.e., that the temporal fluctuations of
the first-order perturbation c(1)(ξ) are negligible. This yields a PDE
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Substituting this solution into Eq. A·12, and recalling that
=( ) ( )zR ILi

0 0 , we obtain the dispersion relation

ω α= − ( + )
− [ · ]

( ) Θ ( )
w

c
z

I c D I k z k
D k B
Ca

, B 3a0
0

b Li
b

cat
0

0
2

b 0

where

= − =

= [ · ]

α η( − ) +
−

−
+

αΘ
( )

Θ

a A

B

e , e ,

. B 3b

k
c

z a D k
a D k

kL

c k
A
A

1 2

1 1
1

0 cat
0 b

b

1

The critical wavenumber, kcr, is a wavenumber k for which w= 0. It
follows from Eq. B·3a that
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B.2. Scenario 2: Low-conductivity buffer.—The solution of
BVPs A·4–A·7 and A·14–A·17 is
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Substituting Eq. B·5a into Eq. A·12, and recalling that
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0 0 , yields the dispersion relation,
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In the absence of a buffer, L1 = 0, σb = σel, and σb = σel. Hence,
for ASSBs without a buffer, Eqs. B·6 and B·7 reduce to
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