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Active cathode material and graphite anode material are routinely mixed with conductor and binder to improve the electric
conductivity and mechanical stability of electrodes. Despite its benefits, this carbon binder domain (CBD) impedes ionic
transport and reduces the active surface area, thus impacting the battery performance. We consider a composite spherical
particle, whose active-material core is coated with CBD, and its homogeneous counterpart, for which we derived equivalent
electrical conductivity, ionic diffusivity, and reaction parameters in the Butler-Volmer equation. These equivalent
characteristics are defined to ensure that the same mass and charge enter the composite and homogenized spheres. They are
expressed in terms of the volume fraction of the active material and transport properties of the active material and CBD. In
general, the equivalent effective diffusion coefficient and reaction parameters are time-dependent and exhibit two-stage
behavior characterized by the reaction delay time. At later times, these characteristics are time-independent and given explicitly
by closed-form formulae. The simplicity of these expressions facilitates their use in single- and multi-particle representations of
Li-ion and Li-metal batteries.
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Rechargeable Li-ion and Li-metal batteries are among the most
effective and promising energy storage devices for portable electro-
nics and electric vehicles. While their anode materials differ
(graphite and Li metal in the case of Li-ion and Li-metal batteries,
respectively), both battery types use the same lithium intercalation
cathode materials,1 such as lithium cobalt oxide, lithium nickel
manganese cobalt oxide, lithium manganese oxide, or lithium iron
phosphate. Continued improvement of porous cathodes requires the
ability to model both microscopic (pore-scale) electrochemical
processes and their impact on battery performance.

Active cathode material particles, as well as graphite anode
material particles, are often mixed with conducting material (e.g.,
carbon black) and binder to improve the electric conductivity and
mechanical stability of electrodes.2–5 During the manufacturing
process, conductive additive and binder form the so-called carbon
binder domain (CBD), a mixed phase surrounding active particles.
Despite its benefits, CBD impedes ionic transport in the electrode by
increasing the tortuosity of diffusion pathways and reducing the
active surface area, thus impacting the battery performance.6–8

Advances in imaging techniques have enabled one to resolve the
spatial extent of CBD in a composite electrode.6,8–11 This, in turn,
made it possible to assess the impact of CBD on effective transport
properties either via direct tortuosity7,11 and impedance12 measure-
ments, or via microstructure-resolving simulations of Li-ion trans-
port and electrochemical transformations.9 Although such pore-scale
models accurately capture the relevant processes in tiny volumes
comprising a few CBD-coated active particles and electrolyte, they
are too computationally expensive to be used at the device scale.
This motivated the development of their macroscopic counterparts
such as the single particle models (SPMs),13–16 the Doyle-Fuller-
Newman (DFN) model17 or homogenized models.18–20 These and
similar macroscopic models seldom account for the presence of
CBD. A notable exception is the study21 that used charge transfer
resistance measurements to relate changes in the reaction rate
constant to changes in the volume fractions of active material and
CBD in the cathode, although ionic transport in CBD was ignored.

Yet, the latter is of paramount importance to battery performance.
For example, the overall electrode ionic conductivity is more
strongly tied to the volume fraction and ionic conductivity of CBD
than to its overall porosity.6 This suggests the need for a mathema-
tical model that relates measurable characteristics of active particles
and CBD, such as their volume fractions and transport properties

(diffusion coefficients, ionic conductivities, etc.) to the bulk properties
of the composite electrode material (effective diffusion coefficients,
ionic conductivities, etc.).

Complex microstructures of composite materials can be repre-
sented via an assemblage of coated spheres.22 This strategy can be
used to model the composite electrode as a collection of spherical
grains of active material coated by CBD, with resulting pores filled
by electrolyte. For linear systems, the Hashin-Shtrikman bounds
provide the effective conductivity bounds for an isotropic two-
component material composed of coated spheres,23 while the Wiener
arithmetic and harmonic means give the upper and lower bounds for
the effective conductivity of anisotropic media with multiple
components.22 These theoretical results have impacted a wide range
of linear and nonlinear problems,24–26 but are of limited use in
battery modeling, since they do not guarantee the mass and charge
conservation in the presence of ion intercalation into active particles.

Our study fills this void by presenting an equivalent/homoge-
nized model of ion transport and intercalation for a spherical active
particle coated by CBD and immersed into electrolyte under
galvanostatic condition. The model conserves mass and charge,
and results in semi-analytical expressions for equivalent ionic
conductivity, diffusion coefficient, and reaction rate of the composite
(active material/CBD) particle. These equivalent characteristics are
expressed in terms of the volume fractions and transport properties
of the constitutive phases; they take a closed form at large times. Our
results for a CBD-coated LiNi0.6Mn0.2Co0.2O2 (NMC622) active
particle with the volume fraction of 0.8, 0.85, and 0.9 exhibit the
relative error in Li ion accumulation of less than 1% for C rates
ranging from 0.1 C to 10 C.

Our effective model is important in its own right when used in
the single-particle models. It also can serve as input for the DFN
model and homogenized macroscopic dual-continua models. Hence,
it is of direct relevance to cell-level performance simulation and
optimization.

Problem Formulation

Continuum or Darcy-scale treatments of porous media represent
irregular grains and complex pore structures as ordered assemblages
of regular shaped objects, e.g., periodic arrangements of spheres or
ellipses.20,22,27 That is because any structural irregularity averages
out over a representative elementary volume that contains thousands
or millions of grains. With that in mind, we consider a spherical
active particle of radius r1 that is coated with the CBD layer, giving
rise to the composite sphere of radius r2 (Fig. 1). The active material
has diffusion coefficient D1 (m2 s−1) and ionic conductivity K1zE-mail: tartakovsky@stanford.edu
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(S m−1); the corresponding quantities for CBD are denoted by D2
and K2. Li-ion intercalation takes place at the active particle’s
surface, i.e., at r = r1. The sphere is immersed into the electrolyte
with Li-ion concentration ce and electric potential φe; a uniform
electric field E in the x direction represents the electric field in a
working battery’s electrode. Indeed, visualization of the electric
potential distribution across working devices shows the electric
potential profile in the porous electrode has an approximately linear
slope, which corresponds to a uniform electric field, E = −∇ φe.

28

The single particle model13 predicts a similar linear electric potential
distribution in the electrode.

An equivalent representation of this composite particle is a
homogeneous sphere of radius r2 that has diffusion coefficient D*,
ionic conductivity K*, and ion intercalation at its surface. These
characteristics are such that the two spheres have the same current
density and ion flux through their respective surfaces. Our goal is to
express these equivalent parameters in terms of the volume fractions
( =V r r1 1

3
2
3 and V2 = 1 − V1) and transport properties of each phase.

Transport in active core and CBD coating.—Given the geo-
metry of the composite particles, we use the spherical coordinate
system θ φ= ( )⊤rr , , . Spatiotemporal evolution of the molar con-
centrations of Li ions (mol m−3) in the active material, c1(r, t) with 0
⩽ r ⩽ r1, and the CBD coating, c2(r, t) with r1 ⩽ r ⩽ r2, is described
by the diffusion equations12

∂
∂ = −∇· = − ∇ = [ ]c
t

D c iJ J, , 1, 2. 1i
i idif,i dif,i

The corresponding electrical potentials (V) in each phase, φ1(r, t)
with 0 ⩽ r ⩽ r1 and φ2(r, t) with r1 ⩽ r ⩽ r2, are governed by the
Laplace equations

ϕ∇· = = − ∇ = [ ]K iJ J0, , 1, 2. 2i iel,i el,i

These two sets of equations are defined on 0 < r < r1 for i = 1, and
on r1 < r < r2 for i = 2; both for time t > 0. They are coupled by
enforcing the continuity of the radial components of the mass fluxes,
Jdif,i, and current densities, Jel,i, at the interface r = r1:

29

∂
∂ = ∂

∂ = [ ]D
c
r

D
c
r

R 31
1

2
2

int

and

ϕ ϕ∂
∂ = ∂

∂ = [ ]K
r

K
r

FR . 41
1

2
2

int

The Butler-Volmer equation with the charge transfer coefficient of
0.5 describes the ion intercalation on the active particle surface,
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where k1 is the reaction rate constant of the active material (m/s),
c1,max is the maximum Li concentration that could be stored in the
active particle (mol m−3), U is the open circuit potential (V) that
depends on the Li filling fraction c c1 1,max, F is the Faraday constant
(s·A/mol), R is the gas constant (J/mol/K), and T is the temperature
(K).

At the interface between the composite particle and liquid
electrolyte, r = r2, we assume charge neutrality and the electrolyte
to be dilute.29 This gives rise to the boundary conditions at r = r2,
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where ce(r) and φe(r) are respectively the Li ion concentration
(mol m−3) and electrical potential (V) in the electrolyte, r ⩾ r2; and
De, Ke, and t+ denote the interdiffusion coefficient (m2 s−1), the
ionic conductivity (S m−1), and the transfer coefficient (−) of Li ions
in the electrolyte, respectively. μ = ( )RT fcln ,e e is the chemical
potential of Li ions in the electrolyte, where f is the activity
coefficient. The interfacial electric potential in the electrolyte (at r =
r2) varies with the angle θ, in response to the uniform electrical
current imposed in the x1 direction far away from the sphere (Fig. 1).

The problem formulation is completed by specifying the
boundary and initial conditions

ϕ( = ) < ∞ ( = ) < ∞
( ) = = [ ]

c r t r t
c c ir

0, ; 0, ;
, 0 , 1, 2. 9i

1 1

in

Transport in equivalent particle.—The equivalent model treats
the composite particle as a homogeneous material with equivalent
diffusion coefficient D* and equivalent ionic conductivity K*

(Fig. 1). Equations 1 and 2 are replaced with

Figure 1. Left: Spherical composite particle of radius r2 comprising an active material core of radius r1 coated with a CBD layer. The active material has
diffusion coefficient D1 and ionic conductivity K1; the corresponding quantities for CBD are denoted by D2 and K2. Right: Its homogeneous counterpart with
equivalent diffusion coefficient D* and ionic conductivity K*. The red lines denote locations of the intercalation surface. The sphere is immersed in the electrolyte
with Li-ion concentration ce, electric potential φe, and uniform electric field E = −∇φe.
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and describe the spatiotemporal evolution of Li concentration, c(r, t),
and electric potential, φ(r, t), in the whole particle, i.e., for 0 < r <
r2. To ensure that the same Li ion flux and the same current density
enter the composite particle and its equivalent counterpart, we
replace the interfacial and boundary conditions 3–7 with the
boundary conditions at r = r2,
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k* is the equivalent reaction rate constant, and cmax is the maximum
Li concentration that can be stored in the homogenized particle. In
analogy with 9, we also require
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c r t r t
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, 0 . 14in

The interfacial conditions 6–8 and 11–13 should hold for all
interfacial values of (gradients of) ion concentration, ce(r2, · ), and
electric potential, φe(r2, · ), in the liquid electrolyte. Consequently,
for the purpose of homogenization, we treat them as given rather
than computed as solutions of the Nernst-Planck equations. That is
in contrast to fully-resolved pore-scale simulations that comprise a
couple system of equations for the active particle, CBD, and the
electrolyte-filled pore space.

Equivalent Models of Solid Phase

The equivalent representation of the composite particle in Fig. 1
shifts the intercalation surface from r = r1 to r = r2. To ensure that
this procedure results in global conservation of mass and charge, we
introduce the following relations on the respective intercalation
surfaces:
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where  (·) is the Heaviside function. The reaction delay time
τ = ( − )r r D2 1

2
2 accounts for the shift of the reaction interface

from the inner radius r = r1 to the outer radius r = r2. Due to the
boundary conditions 3, 4, 11, 12 and the Butler-Volmer relations 5
and 13, the two interfacial conditions 15 and 16 collapse into one:
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This definition of the equivalent Butler-Volmer rate is automatically
satisfied by imposing the following relations on the respective
intercalation surfaces:
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These relations define the equivalent parameters cmax and k*.

Equivalent ionic conductivity.—Our derivation of the equivalent
ionic conductivity K* follows that of the coated sphere model.22 The
key difference between our problem and the model22 is that the
interface between the two materials is now reactive. Consequently,
we replace the continuity of electric potential at r = r1 with the
potential-drop condition 18a and enforce the charge conservation
condition 16.

Assuming the azimuthal symmetry, we rewrite the Laplace Eqs. 2
and 10 in polar coordinates θ= ( )⊤rr , and look for their solutions,
φi(r) with i = 1, 2 and φ*(r), in the form ϕ θ= a r cos1 1 for 0 ⩽ r ⩽
r1; ϕ θ= ( + )a r b r cos2 2 2

2 for r1 ⩽ r ⩽ r2; and ϕ θ* = a r cos for
0 < r < r2; where a1, a2, b2, and a are the constants of integration.
These are obtained from the conditions of continuity of the radial
components of the current densities Jel,1 and Jel,2 at r = r1 in Eq. 4,

= ( − ) [ ]K a K a b r2 ; 191 1 2 2 2 1
3

and of the radial components of the current densities Jel,2 and *Jel at r
= r2 in Eqs. 7 and 12,

* = ( − ) [ ]K a K a b r2 . 202 2 2 2
3

The remaining two equations arise from the conservation of charge,
Eq. 16,

* = [ ]r K a r K a ; 212
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and the drop of the electrical potential across the reaction interfaces,
Eqs. 18a and 8,
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The system of linear algebraic Eqs. 19–22 has a nontrivial solution if
and only if
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If the sphere consists entirely of the active material, i.e., if V1 = 1,
then this expression reduces to K* = K1, as it should.

Equivalent diffusion coefficient.—The subsequent analysis is
facilitated by considering galvanostatic conditions, under which a
constant current Ia (corresponding to the current density π= ( )J I r4a 2

2

is applied at the sphere’s surface, r = r2. Then, the boundary
conditions 6 and 11 are replaced with
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and the solutions to the corresponding boundary value problems are
independent from the azimuth and polar angles, ci = ci(r, t) with
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i = 1, 2, and c = c(r, t). Without loss of generality, we set the initial
concentration to cin = 0 (otherwise, one can repeat our analysis for ci
− cin and c − cin). Then, the Laplace-transformed solutions of the
diffusion Eq. 1, written in the spherical coordinates and subject to
the auxiliary conditions 3, 9, 15 and 24 are (see Appendix for detail)
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We compute the inverse Laplace transforms, c1(r1, t) and c2(r2, t),
either numerically via the subroutine INVLAP30 from the MATLAB
File Exchange or analytically for large times t and steady state, as
described below.

Diffusivity of an equivalent medium is known to be time-
dependent, at least at early times.31 We account for this possibility
by treating D* = D*(t). We show in the Appendix that the Laplace-
transformed Li-ion concentration λˆ ( )c r, T is given by
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We define D*(t) as the diffusion coefficient of the homogenized
sphere that, under galvanostatic conditions 24, results in the surface
Li-ion concentration c(r2, T) that equals the weighted average of the
Li-ion concentrations on the surfaces r = r1 and r = r2 of the
composite sphere, i.e.,
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This yields a nonlinear integral equation for D*(t),
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which is solved numerically using Algorithm 1 in the Appendix.

Equivalent rate and maximum concentration.—Combining
Eqs. 18b and 18c with Eq. 28 we obtain expressions for the
remaining homogenized parameters, * ( )c tmax and k*(t),
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Closed-form asymptotic expressions.—For large t, the time-
dependent equivalent diffusion coefficient D* reaches its constant
value. We show in the Appendix that it is given by the weighted
harmonic mean of D1 and D2,
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We also show that
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Results and Discussion

Figure 2 exhibits the equivalent ionic conductivity K*, given by
Eq. 23, for different values of K1 and K2 and several volume
fractions V1 of the active material. As V1 decreases, the composite
material contains more CBD and K* becomes progressively smaller
than the ionic conductivity of the active material, K1. For example, if
CBD has ionic conductivity K2 = 1 S m−1 and its volume fraction in
the mixture is V2 = 0.3, then the equivalent ionic K* is about half of
the ionic conductivity of the active material, K1 = 10 S m−1.

We use Algorithm 1 to solve Eq. 29, i.e., to compute the
dimensionless equivalent diffusivity ˜*(˜) = *D t D D1 as function of
the dimensionless time ˜ =t tD r1 2

2. In this calculation, we use the
time step Δ˜ = −t 10 3, ˜ = Δ˜t k tk , and MATLAB’s subroutine fsolve
with termination tolerance 10−6 to find the root of Eq. 29; the Li-ion
concentrations are normalized with the maximum Li concentration
in active particle c1,max such that ˜ =c c c1,max and ˜ =c c ci i 1,max with
i = 1, 2; and the dimensionless current density ˜ = ( )J Jr FD c2 1 1,max

serves as the sole input. A value of the applied current density J̃ does
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not affect the magnitude of the equivalent parameters, it only alters
the values of the concentrations c̃i and c̃ and, thus, the time it takes
the sphere to reach its maximum Li-storing capacity. To be specific,
we set ˜ =J 1 in the simulation results presented below.

The results of this calculation, ˜* = ˜*(˜)D D t , are shown in Fig. 3 for
several combinations of the active material’s volume fraction V1 and
the diffusion coefficient ratios D2/D1. (Unless specified otherwise, we
use D2/D1 = 0.0178 as a reference value12.) The equivalent diffusivity
˜*(˜)D t increases at times preceding the intercalation delay time

τ̃ = ( − ) ( )r r D D r ;2 1
2

1 2 2
2 drops appreciably at τ˜ = ˜t ; and then

increases a bit to reach its steady-state value. The time to steady state
decreases with V1 (Fig. 3a); for V1 = 0.99, CBD’s volume fraction is
so small that ˜* ≈D 1, as expected. The chemical composition of CBD,
as encapsulated in the value of the diffusion coefficient D2, affects the
transitional behavior and the steady state value of D* (Fig. 3b).

We found a close agreement between the steady-state values of
the equivalent diffusion coefficient ˜*D computed numerically with
Eq. 29 and analytically via the closed-form expression 31 (see Fig. 7
in the Appendix). For the latter to be useful in battery-scale models,

it must provide an accurate approximation of the Li-ion flux through
the composite sphere’s surface, Jdif(r2, t) = −D2∂rc2(r2, t), i.e., it
must conserve mass. Note that the effective model with time-
dependent D*(t) in Eq. 29 is mass-conservative by construction, so
that the replacement of D*(t) with its steady-state counterpart D* in
Eq. 31 is the only source of error. Let * ( ) = − *∂ ( )J r t D c r t, ,rdif 2 2
denote the Li-ion flux through the surface of a homogeneous sphere
whose diffusion coefficient D* is given by Eq. 31. The ratio *J Jdif dif

is shown in Fig. 4a as function of dimensionless time t̃ , for several
values of V1. The discrepancy between *Jdif and Jdif is confined to
early times t̃ ; it becomes smaller but more persistent as the active
material’s volume fraction decreases.

Another measure of discrepancy is the relative error in Li-ion
accumulation,

�
∫ ∫

∫
*

=
−J J

J

dt dt

dt
,

t t

ttot
0 dif 0 dif

0 dif

max max

max

Figure 2. Equivalent ionic conductivity of the composite material composed of the active material and CBD with ionic conductivities K1 and K2, respectively.
The active material’s volume fraction in the mixture, V1, is (a) 0.7 and (b) 0.9.

Figure 3. Temporal evolution of the normalized equivalent diffusivity ˜*(˜)D t for (a) several volume fractions of the active material, V1, and D2/D1 = 0.0178;
and (b) several diffusion coefficient ratios D2/D1 and V1 = 0.8. The elevated tick marks indicate the dimensionless intercalation delay time
τ̃ = ( − ) ( ) =r r D D r 0.7062 1

2
1 2 2

2 , 0.289 and 0.067 for V1 = 0.7, 0.8 and 0.9, respectively.
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where tmax is the total discharge (charge) time, i.e., the time to
achieve the maximum Li-ion concentrations c1,max and *cmax in both
the active particle and its equivalent counterpart. Figure 4b displays
� tot as function of C rate, for the active material LiNi0.6Mn0.2Co0.2O2
(NMC622) whose properties are32 D1 = 4.3032 · 10−14 m2 s−1,

=c 50451 mol1,max m−3, D2 = 7.66 · 10−16 m2 s−1 and r2 = 5 μm.
For these parameter values and for V1 = 0.8, 0.85 and 0.9, 1C rate
corresponds to the current density J = 1.8728 A m−2, 1.9458 A
m−2 and 2.0298 A m−2, respectively. (These values of J are
obtained from Eq. 49 with t = 1 h and =c c1 1,max.) The
corresponding delay times are τ = t0.0466 max, t0.0252 max, and

t0.0108 ;max in words, the delay time τ is orders of magnitude
smaller than the charging/discharging time tmax. This result
demonstrates the adequacy of our asymptotic (for large t) expres-
sion in Eqs. 31–33, since the early time transient stage is negligible
in the total charging/discharging process. For C rates varying from
0.1 C to 10 C, the relative error in Li ion accumulation is below 1%,
which shows that the constant value of D* in Eq. 31 is valid for a
wide range of C rates.

The remaining equivalent parameters, ˜*(˜) = *(˜)k t k t k1 and
˜* (˜) = * (˜)c t c t cmax max 1,max, computed numerically with Eq. 30 are
displayed in Fig. 5 for several volume fractions V1. At early times,

τ˜ < ˜t , Li ions diffuse from the electrolyte into the inactive material,
causing their concentration ˜ ( ˜)c r t,2 to increase at both r = r1 and r =
r2, while the Li concentration in the active particle remains
unchanged, ˜ ( ˜) =c r t, 01 . Starting at the delay time τ˜ = ˜t , Li ions
intercalate into the active material, increasing ˜ ( ˜)c r t,1 1 linearly with
time, while ˜ ( ˜)c r t,2 1 decreases and ˜ ( ˜)c r t,2 2 increases slowly until
reaching their steady-state values. This two-stage behavior translates
into the concomitant behavior of ˜*(˜)k t and ˜* (˜)c tmax (Fig. 5). The time it
takes these two parameters to reach their asymptotes decreases with
V1. For V1 = 0.99, the volume fraction of the CBD phase is so small
that * ≈c cmax 1,max, as expected; at the same time, k* ≠ k1 because the
intercalation surface r = r1, which separates the active material and
CBD in the composite sphere, is shifted to r = r2 and becomes an
interface between the equivalent homogeneous particle and the
electrolyte.

Figure 4. (a) Temporal evolution of the ratio between the Li-ion fluxes through the surface, r = r2, of the composite sphere and its homogenized counterpart
with D* in Eq. 31, *J Jdif dif , for several volume fractions V1 and D2/D1 = 0.0178. The elevated tick marks indicate the dimensionless intercalation delay time
τ̃ = ( − ) ( ) =r r D D r 0.7062 1

2
1 2 2

2 , 0.289 and 0.067 for V1 = 0.7, 0.8 and 0.9, respectively. (b) The relative error in the prediction of Li-ion accumulation, � tot,
obtained via our homogenized solution. The error is plotted as function of C rate, for the active material LiNi0.6Mn0.2Co0.2O2 (NMC622) with parameters32 D1 =
4.3032 · 10−14 m2 s−1, =c 50451 mol1,max m−3, D2 = 7.66 · 10−16 m2 s−1 and r2 = 5 μm; and several values of the volume fraction V1.

Figure 5. Temporal evolution of (a) maximum Li concentration ˜* (˜) = * (˜)c t c t cmax max 1,max and (b) reaction rate constant ˜*(˜) = *(˜)k t k t k1, for several volume
fractions of the active material, V1. The ratio between the diffusion coefficients of the inactive and inactive materials is set to12 D2/D1 = 0.0178. The elevated tick
marks indicate the dimensionless intercalation delay time τ̃ = ( − ) ( ) =r r D D r 0.7062 1

2
1 2 2

2 , 0.289 and 0.067 for V1 = 0.7, 0.8 and 0.9, respectively.
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The choice of a CBD material, as quantified by the value of its
diffusion coefficient D2, affects the intercalation delay time τ̃ , e.g.,
for V1 = 0.8, τ̃ = 0.289, 0.029 and 0.003 if D2/D1 = 0.0178, 0.178
and 1.78, respectively. Thus, the time it takes both * ( )c tmax and k*(t)
to reach their steady state decreases with D2 (Fig. 6). At the same
time, the steady-state values of these equivalent parameters are
independent of D2. Instead, in accordance with Eqs. 32 and 33, the
steady-state limit of *cmax varies linearly with V1 and that of k* as the
power of V1.

Conclusions

Our study provides a quantitative assessment of the impact of
CBD on overall ionic transport in a composite electrode. The latter
was represented by a spherical particle whose active-material core is
coated with CBD. This composite sphere is replaced with its
homogeneous counterpart, for which we derived equivalent elec-
trical conductivity, ionic diffusivity, and reaction parameters in the
Butler-Volmer equation. These equivalent characteristics are defined
to ensure that the same mass and charge enter the composite and
homogenized spheres. They are expressed in terms of the volume
fraction of the active material and transport properties of the active
material and CBD. In general, the equivalent effective diffusion
coefficient and reaction parameters are time-dependent and exhibit
the two-stage behavior characterized by the reaction delay time; their
determination requires numerical evaluation of the inverse Laplace
transforms. At later times, these characteristics are time-independent
and given explicitly by closed-form formulae. Our analysis leads to
the following major conclusions.

• Our model can be used to quantitatively assess the effects of
CBD on ion transport. For example, for a composite electrode with
CBD’s volume fraction of 0.2 and the ratio between the diffusion
coefficients of CBD and the active material of 0.0178, ignoring the
presence of CBD would overestimate the composite’s diffusion
coefficient by 163%.

• Our closed-form expressions for the equivalent diffusion
coefficient and reaction parameters yield accurate approximations
of the key quantities of interest. For example, when used to model an
NMC622 active particle coated with CBD, they yield predictions of
the Li-ion accumulation whose relative error is about 1%, for C rates
ranging from 0.1 C to 10 C.

• The simplicity of these expressions facilitates their use in
single- and multi-particle representations of Li-ion and Li-metal

batteries. This enables one to use these cell-level models, while
accounting for the presence of CBD and the physicochemical
characteristics of composite electrodes. That, in turn, facilitates the
electrode design without resolving the complicated microstructure at
high computational cost.

In follow-up studies, we will conduct experimental validation of
our model for various active materials, incorporate it into cell-level
simulations, and assess its accuracy in predicting cell voltage during
discharge. Future extensions of our model will incorporate the
volume expansion of active particles and the transport properties of
gradient Li-rich oxide cathodes mixed with CBD.
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Appendix. Effective Diffusivity

Solution for composite sphere.—Given the azimuth and polar
symmetry, Eq. 1 take the form

⎜ ⎟⎛
⎝

⎞
⎠

∂
∂ = ∂

∂
∂
∂ = [ ]c

t
D
r r

r
c
r

i, 1, 2. 34i i i
2

2

The transformation ui(r, t) = rci(r, t) turns Eq. 34 into

∂
∂ = ∂

∂ = [ ]u
t

D
u

r
i, 1, 2. 35i

i
i

2

2

Accounting for the initial and boundary conditions 9 with cin = 0,
the Laplace-transformed solutions of Eq. 35 are

λˆ ( ) = ( − ) ⩽ ⩽ [ ]λ λ−u r A r r, e e , 0 , 36D r D r
1 1 11 1

and

λˆ ( ) = + ⩽ ⩽ [ ]−u r A B r r r, e e , , 37s r s r
2 2 2 1 2

where λ is the Laplace variable, and s = λ/D2. The constants of
integration A1, A2, and B2 are obtained from the Laplace transforms
of the auxiliary conditions 3, 15, and 24,

Figure 6. Temporal evolution of (a) maximum Li concentration ˜* (˜) = * (˜)c t c t cmax max 1,max and (b) reaction rate constant ˜*(˜) = *(˜)k t k t k1, for several values of
D2/D1. Volume fraction of the active material is set to V1 = 0.8. The elevated tick marks indicate the dimensionless intercalation delay time
τ̃ = ( − ) ( ) =r r D D r 0.2892 1

2
1 2 2

2 , 0.029 and 0.003 for D2/D1 = 0.0178, 0.178 and 1.78, respectively.
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We rewrite Eqs. 36–41 as Eq. 25.

Solution for equivalent sphere.—Introducing the new dependent
variable u(r, t) = rc(r, t) and the rescaled time

∫ *= ( ′) ′ [ ]T D t dt , 42
t

0

we transform Eq. 10 into

∂
∂ = ∂

∂ < < [ ]u
T

u
r

r r, 0 . 43
2

2 2

Accounting for the boundary and initial conditions 14 with cin = 0,
the Laplace-transformed (with respect to T) solution of this equation
is

λˆ ( ) = ( − ) [ ]λ λ−u r A, e e . 44T
r rT T

where λT is the Laplace-transform variable. The constant of
integration A is obtained from the Laplace transform of the boundary
condition 24,

∫ *
( ˆ ) ( ) = ( ( )) [ ]

λ∞ −u r
r

r t
J
F D h T

d
d

,
e

dT. 45
T

2
0

T

where t = h(T) is given implicitly by Eq. 42. This step leads to

∫ *

λ
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− − ( + )
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λ λ λ λ
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J
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T T T T

T
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and, ultimately, to Eq. 26.

Numerical algorithm for solving D*(t).—Rewrite Eq. (29) in
terms of t:

∫ ∫ * ν( ( ′) ′) ′
= ( ) + ( − ) ( ) [ ]

′

Jr
F

w r D t t

V c r t V c r t

, d d

, 1 , 47

t

v t

2

0
2

1 1 1 1 2 2

Algorithm 1. Numerical algorithm for computing *( )D t

Asymptotic expressions for large time.—For large t, i.e., for
small λ, the interfacial Li-ion concentrations in the composite
sphere, Eq. 25, behaves asymptotically as
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Its inverse Laplace transform is
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Similarly, for the homogenized sphere with constant diffusion
coefficient D*, the large-time approximation of Eq. 27 is

For k = 1:
1. Take the inverse Laplace transform of Eq. 25 to obtain ( )c r t,1 1 1

and ( )c r t,2 2 1

2. Compute ( )c r t,2 1 in Eq. 28

3. Solve equation ( ) = ( *( ))ΔΔc r t w r D t t, ,Jr
F

t
2 1 2 2 1

2 for *( )D t1 , where w

is given by Eq. 27b
For k = 2 to Nt:
1. Take the inverse Laplace transform of Eqs. 25 to obtain ( )c r t, k1 1

and ( )c r t, k2 2

2. Compute ( )c r t, k2 in Eq. 28
3. Solve for *( )D tk from equation:

( ) = ∑ ( ∑ *( )Δ · )Δ= = − +c r t w r D t t l t, , ,k
Jr
F j

k
i
j

k i2 1 2 1 1
2

⎧⎨⎩= =
≠l
i j

i j
1 2, if
1, if

where w is given by Eq. 27b

3. Stop at the kth iteration if τ>tk and ⩽*( ) − *( )
*( )

−−
−

10D t D t
D t

6k k

k

1

1
as D*

reaches steady state
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Substitution of Eqs. 49 and 50 into Eq. 28 leads to
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Expressing this relation in terms of the volume fraction V1 gives
Eq. 31. Figure 7 shows that this analytical expression for ˜*D is in
close agreement with the numerical solution of Eq. 29 for the
volume fraction V1 ranging from 0.1 to 1.0. The close agreement
between the two solutions serves to verify the accuracy of the
numerical solution of Eq. 29. It also suggests the possibility of using
the readily computable expression 31 as the value of the equivalent
diffusivity of composite spheres in battery-scale models.

It is worthwhile to compare our analytical expression for ˜*D in
Eq. 31 with the Wiener lower bound,

* = ( + ) [ ]−D V D V D . 53W 1 1 2 2
1

Both are weighted harmonic means of D1 and D2, but with different
weights. The weights in the Wiener bound are the volume fractions
of the two materials, while those in our expression are more evolved
because they account for Li-ion intercalation. Figure 7 shows that
our expression for the equivalent diffusivity given by Eq. 31 is
considerably more accurate than its counterpart predicted by the
Wiener bound in Eq. 53 for the full range of the active material’s

volume fraction V1 (Fig. 7). The latter’s error is highest when 0.8 <
V1 < 0.95, which is a typical range for the volume fraction of active
material in most electrodes. This result highlights the advantage of
using Eq. 31 for battery modeling as a means to guarantee the mass
and charge conservation in the presence of ion intercalation in active
particles.

Substitution of Eqs. 49 into Eq. 30 gives
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Since t ? τ and V1 ? V2, we obtain approximations 32 and 33.
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