
1. Introduction
Evapotranspiration (ET), an amalgam of evaporation from the soil to the atmosphere and plant transpira-
tion in the root zone, is a critical component of the hydrologic cycle. The ability to quantify ET is crucial 
to science-based predictions of an ecosystem's dynamics and health (Fath, 2018; Fisher et al., 2011); and 
the impact of droughts, precipitation patterns and snow-melt on groundwater recharge (Dezsi et al., 2018; 
Doble & Crosbie, 2017), and on plant growth (Severino & Tartakovsky, 2015). It is also of paramount im-
portance for smart agriculture (Kaur Saggi & Jain, 2020; Torres et al., 2020; Yan et al., 2019) and sustainable 
groundwater management (Jakeman et al., 2016; Loáiciga, 2017).

Satellite-based remote sensing is routinely used to estimate ET at the regional scale (Carter & Liang, 2019; 
Chen & Liu, 2020). It yields extensive data sets that inform regional-scale models and decisions informed 
by such models. Yet, this approach relies on a number of physical assumptions to convert the observables, 
such land surface temperature and wind speed, into ET measurements; consequently, their measurement 
errors can be hard to ascertain and are often biased (Long et al., 2014; Talsma et al., 2018; Weerasinghe 
et al., 2020). In addition, remote sensing-based methods often do not consider soil textures and other soil 
properties, which play key roles in ET rates (Miller & Aarstad, 1973). Moreover, the spatiotemporal reso-
lution of these ET data undermines their usefulness for freshwater resource monitoring and calibration of 
hydrologic models (Herman et al., 2018), and for other above-mentioned applications that require point-
wise information.

In parallel, several efforts have been made to estimate ET from soil moisture time-series data (Guderle & 
Hildebrandt, 2015; Hupet et al., 2002). In its simplest form, this strategy relies on the water balance ap-
proach (Breña Naranjo et al., 2011; Green & Clothier, 1995). Evaporation and root water uptake profiles 
are inferred from soil moisture time-series by solving an inverse problem, in which these phenomena are 
represented as either boundary conditions for or a source term in the (partial differential) equation of water 
flow in the vadose zone. All these approaches assume that the soil water flux to groundwater is negligible, 
which allows one to compute the source term in the Richards equation as the difference between measured 
water contents at two observation times. Recent advances in low-cost soil moisture sensors (and sensor 
networks) and real-time telemetry connections (Jackisch et al., 2020; Protim Goswami et al., 2019; Xaver 
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et al., 2020) provide an opportunity to improve ET estimation by accounting for local hydrologic conditions 
such as microtopography and soil properties.

To the best of our knowledge, these hardware advances remain decoupled from effective inverse modeling 
tools. A brute-force numerical inversion of the Richards equation, based on Monte Carlo exploration of 
the parameter space, yields accurate estimates of both total ET and root water uptake; yet it is compu-
tationally expensive and requires considerable knowledge (an accurate “informative prior”) of the mod-
el parameters (Hupet et al., 2002). Deterministic alternatives for solving this inverse problem (Guderle & 
Hildebrandt, 2015; Zuo et al., 2004) can be less expensive, but their convergence is not guaranteed and their 
robustness to measurement and model errors is questionable.

As an inverse modeling tool, Bayesian data assimilation techniques for parameter estimation proved its 
worth in various settings, including flow and transport in the vadose zone (Bauser et al., 2021, and refer-
ences therein). Computationally efficient approximations of the Bayesian update are provided by various 
flavors of Kalman filter, including ensemble Kalman filter or EnKF (Evensen, 1994; Yang et al., 2020). They 
assume the observable (e.g., the system state) to be Gaussian, which generally requires the underlying mod-
el to be linear. While they often work for nonlinear problems, for example, for estimation of soil water con-
tent and total ET rates (Pan & Wood, 2006; Reichle et al., 2008), their performance is not guaranteed. For 
example, the use of EnKF to infer the spatial distribution of root water uptake from soil moisture data had 
limited success (Hupet et al., 2002).

We develop two alternative algorithms both to estimate total ET and root water uptake profiles from soil 
moisture measurements and to quantify uncertainty inherent in such estimators. Section 2 contains our for-
mulation of this estimation problem. In Sections 3, we present our implementations of EnKF (Section 3.1) 
and maximum likelihood estimation (MLE) (Section 3.2), whose key innovation is to treat the sink term, 
rather than saturation, as a random variable to be estimated. Another innovation is the deployment of the 
Fisher information matrix to quantify uncertainty in the MLE predictions of ET and root water uptake. Nu-
merical experiments reported in Section 4 serve to investigate the accuracy and computational efficiency of 
these two parameter estimation strategies and to contrast them with those of the EnKF implementation by 
Reichle et al. (2008). Main conclusions drawn from this study are summarized in Section 5.

2. Problem Formulation
Following Guderle and Hildebrandt (2015), we consider an array of Nsen moisture sensors placed vertically 
at locations zn (n = 1, …, Nsen) throughout a soil column of length L. Each sensor takes Nobs measurements 
of the (true, yet unknowable) volumetric soil water content "̃(#, $) at times tk (k = 1, …, Nobs) separated by a 
time interval ∆tobs. These measurements, denoted by ! "#$ , differ from their “true” values "̃(#$, %&) by a random 
measurement error ! "#$ , such that

!"# = !̃(%#, &") + '"# , # = 1,… ,(sen, " = 1,… ,(obs. (1)

In the absence of measurement bias, the ensemble mean of these errors is ⟨!"# ⟩ = 0 for all n and k; and the er-
rors at different space-time locations are mutually uncorrelated, ⟨!"# !$% ⟩ = &2'#%'"$ with σ2 and δij denoting the 
noise strength (variance) and the Kronecker delta, respectively. Our goal is to estimate evaporation rate E(θ, t) 
and root water uptake (transpiration) T(θ, z, t) from the data set ! =

{
!"# ∶ # = 1,… ,$sen; " = 1,… ,$obs

}
 .

The one-dimensional Richards equation,

!"
!#

= !
!$

[
%(")

(
!&
!$

+ 1
)]

+ '(", $, #), 0 < $ < (, # > 0 , (2)

relates volumetric soil water content θ(z, t) to these two quantities of interest. Here, t is the time, z is the 
vertical coordinate from the soil surface and positive downwards, K(ψ) is the unsaturated hydraulic conduc-
tivity of the soil that varies with the pressure head ψ(z, t), and the source/sink term,

!(", #, $) = % (", #, $), (3)
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is referred to as transpiration (root water uptake function). This equation of water flow in partially 
saturated soils is closed by specifying the constitutive relations ψ  =  ψ(θ), K = K(θ) and T  =  T(θ). To 
be specific, we select the van Genuchten model for the first two expressions. We use a canonical form 
(Perrochet, 1987),

! (", #, $) = !max ($)%! (")&root(#), (4)

to relate the root water uptake function T(θ, z, t) (1/hr) to the potential transpiration rate Tmax(t) (m/hr), the 
root density (1/m) (Schenk & Jackson, 2002)

!root(") = − #
"50

(
"
"50

)#−1[
1 +

(
"
"50

)]−2
with # = 1.27875

lg("50) − lg("95)
, (5)

and the root uptake water-stress response function (Guswa et al., 2002; Porporato et al., 2003)

!" (#) =

⎧
⎪
⎪
⎨
⎪
⎪⎩

0 0 ≤ # < #$
# − #$
#∗ − #$

#$ < # ≤ #∗

1 #∗ < # ≤ #%.

 
(6)

In the expressions above, z50 and z95 represent the soil depth above which 50% and 95% of water uptake oc-
curs; θw is the saturation at the wilting point at which the uptake is zero and a plant wilts; θ* is the saturation 
at the point of stomatal closure where the uptake is equal to the demand; and θp is the field capacity that is 
generally larger than θ*. One can verify that ∫ !0 "root(#)d # = 1 . Finally, while evaporation can occur over a 
finite soil depth, we follow the standard practice by restricting it to the soil surface. That relegates E(θ, t) to 
the boundary condition at z = 0, as detailed below.

Mass conservation at the soil surface gives rise to the boundary condition

!(")
(
#$
#%

+ 1
)

= & (') − ((", '), % = 0 , ' > 0 , (7)

where P(t) is the infiltration (m/hr); and the evaporation rate is defined, in analogy to Equations 4–6, as

!("(0, #), #) = !max(#)$!("(0, #)). (8)

Here, Emax is the maximum evaporation rate, and the evaporation reduction factor γE is given by (Hale & 
Orcutt, 1987)

!"(#(0, $)) =

⎧
⎪
⎪
⎨
⎪
⎪⎩

0 0 ≤ #(0, $) < #ℎ
#(0, $) − #ℎ
#& − #ℎ

#ℎ < #(0, $) ≤ #&

1 #& < #(0, $) ≤ #',

 
(9)

where θh is the hygroscopic saturation at which evaporation diminishes. At the bottom of the soil column, 
z = L, we impose a free-drainage condition,

!"
!#

+ 1 = 0, # = $, % > 0. (10)

Finally, we assume the initial water content in the soil column, θ0, to be uniform, giving rise to the initial 
condition

!(0 ≤ " ≤ #, 0) = !0. (11)
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If all the model parameters in Equations 2–11 were known with certainty, one could compute temporal 
snapshots of the moisture profile throughout the soil column, θ(z, t), and, hence, predict the evaporation 
rate E(⋅, t) and root water uptake profile T(⋅, z, t) with a required precision. In reality, a few, if any, of these 
parameters are measured and the model predictions can be thought of as an “educated guess” that must be 
refined as relevant observations become available. In our study, the static parameters, including hydraulic 
conductivity and van Genuchten parameters, are assumed to be known or estimated in advance through 
infiltration tests. Of all the parameters in the flow model, Equations 2–11, we focus on the two, Tmax(t) and 
Emax(t), that are temporally variable. A specific goal of our study is to estimate Tmax(t) and Emax(t) from the 
measurements of water content, θn(t) ≡ θ(zn, t) with n = 1, …, Ns.

3. Efficient Strategies for Parameter Estimation
We introduce two strategies for estimating the evaporation rate E(⋅, t) and root water uptake profile  
T(⋅, z, t). Section 3.1 contains a description of our implementation of EnKF, whose key innovation is to treat 
the source function S(z, t) and driving functions at the soil surface (rather than soil water content) as state 
variables in the Bayesian update. The second strategy, presented in Section 3.2, is the MLE of these state 
variables, which is enriched by the Fisher information matrix to quantify predictive uncertainty.

To facilitate comparison between the two parameter estimation techniques, both utilize the same data pro-
cessing strategy to construct new observables, Ek and ! " #

$  , from the directly observed ! "#$ in Equation 1. We 
start by subdividing the soil column [0, L] into Nsen elements of length ∆zobs such that each element contains 
one sensor. (In general, each element can have a different length if the sensors are nonuniformly spaced; we 
assume all the elements to have the same length ∆zobs to simplify the notation). Then, the total ET rate at 
time tk, ! "#tot , is related to the observed infiltration rate Pk ≡ P(tk) and the soil moisture observations ! =

{
!"#
}
 

by water balance (Breña Naranjo et al., 2011; Wilson et al., 2001),

!"totΔ#obs = $ " −
%sen∑
&=1

'"& − '"−1&

Δ(obs
Δ#obs, " = 1,… ,%obs. (12)

Let θ⋆(z, t) denote a solution to Equations 2–11 without the ET losses, that is, with E ≡ 0 and T ≡ 0; it is com-
puted on the time interval [tk−1, tk], for the initial condition given by Equation 11 if k = 1, or by the posterior 
mean of the water content at time tk−1 if k > 1 (see below). In either case, θ⋆(z, t) is deterministic. Guderle 
and Hildebrandt (2015) also used a solution to Equations 2–11 without the ET losses within their inverse 
modeling framework. This is assuming that soil moisture changes in a unit time can be separated into the 
vertical flow and sink terms. This is a valid assumption when K(θ) does not change significantly within δt, 
and Equation 3 can be solved as a linear system. In reality, soil moisture changes rapidly during infiltration, 
but slowly during the drying period (see, e.g., Figure 2 in Guderle & Hildebrandt, 2015). Our formulation is, 
therefore, valid in the drying period.

Both θ⋆(z, t) and the full solution θ(z, t) are obtained by solving Equations 2–11 numerically on a mesh con-
sisting of Nel elements of size ∆z, with time step ∆t. (Sensor array design and the accuracy of a numerical 
solution dictate that ∆x ≪ ∆xobs and ∆t ≪ ∆tobs). Motivated by Equation 12, we approximate an uncertain 
prediction of the rate of change in water content of the nth element of the numerical mesh, [zn−1, zn] during 
the kth observational time step, [tk−1 − tk], as

!(", #) − !(", # − Δ#obs)
Δ#obs

Δ" = !⋆(", #) − !(", # − Δ#obs)
Δ#obs

Δ" − %(", #)Δ", (13)

for z ∈ [zn−1, zn] and t ∈ [tk−1, tk], with n = 1, …, Nel and k = 1, …, Nobs. In the first (n = 1) element, the source 
function represents the ET, S(z, t)∆z ≡ E(θ(0), t) + T(θ(0), t)∆z, while in the remaining (n > 1) elements, S(z, 
t) ≡ T(θ(z), t) for z ∈ [zn−1, zn]. As we are using a uniform numerical grid with size ∆z, from now on, we will 
use S(z, t) (m/hr) to represent S(z, t)∆z. Rearranging the terms yields

!(", #) = $⋆(", #) − $(", #)
Δ#obs

Δ", " ∈ ["&−1 , "&], # ∈ [#'−1 , #'], (14)
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for n = 1, …, Nel and k = 1, …, Nobs. Implicit in this calculation is an assumption that the ET does not change 
during the time interval ∆tobs between any two adjacent observation times tk−1 and tk.

3.1. Ensemble Kalman Filter
Between any two observation times tk−1 and tk, the uncertain input parameters ! " #max and ! "#max are treat-
ed as independent Gaussian random variables. Their probability density functions (PDFs) ! "#max ($#max ) and 

! "#max ($#max ) have respective means ! "#max and ! "#max and standard deviations (SDs) ! "#max and ! "#max ,

!"(#") = 1√
2$%"

exp
[
− (#" − &")2

2 %2
"

]
, " = 'max,(max. (15)

The predicted values of the sink term S(z, t) in Equation 14 are arranged into a vector !(!") = (#1 ,… ,#$el )
⊤ 

of length Nel. Although many stochastic analyses of unsaturated flow found a solution of the Richards 
Equation 2 to be non-Gaussian (Lu et al., 2002; Tartakovsky, Guadagnini, & Riva, 2003; Tartakovsky, Lu, 
et al., 2003, among others), we follow the standard practice in EnKF by treating S, at any time tk, as multi-
variate Gaussian with PDF

!!("; "#) = 1
(2$)%el∕2|#!|1∕2

&'(
[
−1
2 (" − !!)⊤#−1

! (" − !!)
]
. (16)

Monte Carlo simulations, which comprise NMCS solves of Equation 14 for NMCS realizations of Tmax and Emax 
drawn from Equation 15, are used to estimate the Nel × 1 vector of sample mean µS(tk) and the Nel × Nel 
sample covariance matrix ΣS(tk) for S(tk).

At any measurement time tk (k = 1, …, Nobs), the Nsen-dimensional vector of observed soil moisture values, dk, 
is multivariate Gaussian with mean !̄" and covariance matrix Σd. The off-diagonal terms of the latter are all 
0, and the diagonal terms are σ2. Given the data model in Equation 1, and assuming a discretized solution 
!(!)(") = (#(!)1 ,… , #(!)$el )

⊤ of Equations 2–11 in its lth Monte Carlo realization (l = 1, …, NMCS) to be a perfect 
representation of reality, !̄" and θ(l) (tk) are related by

!̄" = " "
obs!

(#). (17)

The Nsen × Nel observational matrix !!
obs ensures that the numerical solution θ(l), computed with ∆z and ∆t, 

is available at the same locations and times as the observations d collected with ∆zobs and ∆tobs, if necessary 
via interpolation; the superscript k in !!

obs indicates that this mapping is done for time tk.

Consider a linear transformation of the soil moisture data at time tk,

!! =
"!

obs!
⋆ − #!

Δ#obs
Δ$, ! = 1,… ,%obs, (18)

where the Nel × 1 vector θ⋆(t) is the discretized in space analog of θ⋆(z, t) for t ∈ [tk−1, tk]. Since dk is mul-
tivariate Gaussian, so is Yk. It follows from Equation 18 and the discretized version of Equation 14 that its 
mean, µY(tk), and covariance matrix, ΣY(tk), are given by

!!(!") = ""
obs# and $!(!") = Δ#2

Δ!2obs
$%(!"). (19)

When this conditional PDF of Yk,

!!"|"=#($; #; #") =
1

(2$)%el∕2|%!|1∕2
exp

[
−1
2 ($ − !!)⊤%−1

! ($ − !!)
]
, (20)

is treated as function of s, it is referred to as the likelihood function in the Bayesian update. The latter is used 
to update the prior PDF of S(tk), fS(s; tk) in Equation 16, with the observation Yk = yk,

!!|""=#" ($; #") ∼ !""|!=$($; #"; #")!!($; #"), (21)
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yielding the posterior PDF of S(tk), fS|Y(s; tk). This Bayesian approach to data assimilation can be computa-
tionally expensive, and often prohibitively so (Boso & Tartakovsky, 2020). EnKF assumes the posterior PDF 
fS|Y(s; tk) to be multivariate Gaussian,

!!|"(#; "#) = 1
(2$)%obs∕2|$̂!|1∕2

'()
[
−1
2 (# − !̂!)⊤$̂−1

! (# − !̂!)
]
, (22)

that is, replaces the task of computing the full PDF in Equation 21 with that of computing the posterior 
mean, !̂!("#) , and posterior covariance, !̂"("#) , of S(tk) via the Kalman update,

!̂! = !! + " (#" − $ "
obs!!), %̂! = (& − " $ "

obs)%! (23)

where I is the Nel × Nel identity matrix, and the Nel × Nsen matrix

! = "#$ !⊤
obs($ !

obs"#$ !⊤
obs + "%)

−1 (24)

is called the Kalman gain. Algorithm 1 provides our implementation of EnKF for estimation of ET from 
soil moisture data.

Our implementation of EnKF allows one to estimate an ET profile from a vertical array of soil moisture 
measurements. It is more accurate than the EnKF applied to the total water balance in Equation 12 (Pan & 
Wood, 2006; Reichle et al., 2008), which ignores the vertical soil water flux distribution. It is also significant-
ly more efficient than their EnKF, which corrects the soil moisture in the Kalman update, because it avoids 
solving the Richards equation for all ensemble members.

Like any implementation of EnKF, ours requires prior knowledge about the model inputs Tmax and Emax, 
which is fundamentally uncertain. In its standard incarnations, it is of limited validity, which can be hard to 

Algorithm 1. Estimation of Evapotranspiration Via EnKF

F or k = 1:
  1 . Read infiltration P(t1)
  2 . Obtain θ⋆(z, t1) by solving Equations 2–11 with E ≡ 0 and T ≡ 0
  3 . Post-process soil moisture data to compute y1 in Equation 18
  4 . For the lth Monte Carlo realization (l from 1 to NMCS)
   ( a) Sample ! " 1max and ! "1max from their respective PDFs in Equation 15
   ( b) Compute T(z, t1) and E(t1) from Equations 4–9, for these values of ! " 1max and ! "1max , and with the 

functionals γT(θ(t)) and γE(θ(0, t)) evaluated at θ(z, t0), abiding by the explicit scheme
   ( c) Compute the sink term S(z, t1) using Equation 3
  5 . Compute the prior mean µS(t1) and covariance ΣS(t1) of S(t1) in Equation 16
  6 . Use Equations 23 and 24 to calculate the posterior mean !̂!("1 ) and covariance !̂"("1 ) ofS(t1)
  7 . Solve Equations 2–11 with S given by !̂!("1 ) to forecast θ(z, t1)
F or k from Equation 2 to Nobs:
  1 . Read infiltration P(t) at time tk
  2 . Obtain θ⋆(z, tk) by solving Equations 2–11 with E ≡ 0 and T ≡ 0 while the initial condition in 

Equation 11 is given by θ(z, tk−1)
  3 . Post-process soil moisture data to compute yk in Equation 18
  4 . For the lth Monte Carlo realization (l from 1 to NMCS)
   ( a) Sample ! " #max and ! "#max from their respective PDFs in Equation 15
   ( b) Compute T(z, tk) and E(tk) from Equations 4–9, for these values of ! " #max and ! "#max , and with the 

functionals γT(θ(t)) and γE(θ(0, t))evaluated at θ(z, tk−1), abiding by the explicit scheme
   ( c) Compute the sink term S(z, tk) using Equation 3
  5 . Compute the prior mean µS(tk) and covariance ΣS(tk) of S(tk) in Equation 16
  6 . Use Equations 23 and 24 to calculate the posterior mean !̂!("#) and covariance !̂"("#) ofS(tk)
  7 . Solve Equations 2–11 with S given by !̂!("#) to forecast θ(z, tk)
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ascertain a priori (Bocquet et al., 2015). As an alternative strategy that is free of this requirement, we deploy 
an MLE supplemented with the Fisher information matrix to quantify predictive uncertainty.

3.2. Maximum Likelihood Estimator
As a deterministic procedure, MLE ignores (random) measurement errors, that is, sets ! "#$ ≡ 0 
in the data model Equation  1. At any time tk, the mismatch between the water content data 
! =

{
!"# ∶ # = 1,… ,$sen; " = 1,… , $obs

}
 and the water content prediction θ(z, t) obtained by solving 

Equations 2–11 can be quantified in terms of the loss function

̃" = 1
2#sen

#sen∑
$=1

[%"$− %(&$, '"; ( "max,)"max)]
2 . (25)

The notation ! "(⋅; # $max,%$max) serves to remind the reader that, in our formulation, the model prediction de-
pends on the choice of Tmax(t) and Emax(t), all the other input parameters being assumed to have been meas-
ured. As before, we define the solution of Equations 2–11 with Tmax ≡ 0 and Emax ≡ 0 by θ⋆(z, t). Then, we 
rewrite Equation 25 as

̃" = 1
2#sen

#sen∑
$=1

[(%⋆('$, (") − %('$, ("; ) "max,*"max)) − (%⋆('$, (") − %"$))]
2 . (26)

Accounting for Equation 14,

! = 1
2"sen

"sen∑
#=1

[
$(%#, &!; ' !max,(!max) −

Δ%
Δ&obs

()⋆(%#, &!) − )!#)
]2
, (27)

where ̃" = (Δ#∕Δ$obs)2" . Optimal values of ! " #max and ! "#max are those that minimize ! .

A solution of this optimization problem is obtained by setting to 0 the derivatives of ! with respect to ! " #max 
and ! "#max . For the ET model in Equations 4–8, this yields

!"

!# "max
= 0 =

$sen∑
%=1

[&"%− &('%, (")])# (&('%, ("))+̄root('%) (28a)

!"

!#"max
= 0 = [$"1 − $(0, %")]&#($(0, %")), (28b)

where "̄root = "root∕
∑#sen

$=1 "root(%$) is the normalized root distribution function at the sensor locations. It fol-
lows from Equation 28b that MLE of the parameter Emax requires a soil moisture sensor to be placed at the 
soil surface (the boundary cell of the model). Algorithm 2 provides our implementation of MLE for infer-
ence of ET from soil moisture data.

The convergence criterion is defined in terms of the normalized difference of the cost function ! in Equa-
tion 27 between two successive iterations, ν and ν − 1,

Algorithm 2. Inference of Evapotranspiration Via MLE

1 . Set Tmax = 0 and Emax = 0 at the beginning of each iteration process
2 . Compute T(z, t) and E(t) via Equations 4–9
3 . Compute θ(z, t) by solving Equations 2–11
4 . For a prescribed learning rate α, update Tmax and Emaxaccording to
     ! "max = "max − #Δ$

Δ%&'()sen

)sen∑
*=1

[
+,*− + ($*, %,)

]
-" (+ ($*, %,)) /̄0&&% ($*)

a nd
     ! "max = "max − #Δ$

Δ%obs&sen
['(1 − '(0, %()])"('(0, %())

5 . Repeat steps 2–4 until convergence
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|||||
!

(") − !
("−1)

!
("−1)

|||||
≤ #, " = 1, 2 ,… , (29)

where ϵ is a prescribed tolerance. The convergence criterion is met when the gradient descent makes very 
small changes in the loss function that is close to its optimal value. A suitable choice of the learning rate α 
can accelerate convergence without overshooting the minimum.

We use the Fisher information matrix  to quantify uncertainty in the MLE predictions of Tmax and Emax. In 
analogy with Equation 20, one defines a multivariate-Gaussian likelihood function fd|θ for the discretized 
water content !(!") = (#1 ,… , #$sen )

⊤ , such that its logarithm is

ln!!|! = " − 1
2 (!

# − !($#))⊤"−1
! (!# − !($#)), (30)

where C is the normalizing constant. As in Equation 27, we reformulate this log-likelihood function as

ln!!|! = " − 1
2

(
"(#$) − Δ%!

⋆(#$) − !$
Δ#obs

)⊤

#−1
$

(
"(#$) − Δ%!

⋆(#$) − !$
Δ#obs

)
, (31)

where !(!") = (#1 ,… #$sen )
⊤ is the discretized version of S(z, t) in Equation 14 and is a function of Tmax and 

Emax. For S(z, t; Tmax, Emax) in Equations 2–11, the 2 × 2 Hessian matrix

 =

⎡
⎢
⎢
⎢
⎢
⎢⎣

!2ln"!|!
!# 2max

!2$%"!|!
!#max!&max

!2ln"!|!
!&max!#max

!2ln"!|!
!&2max

⎤
⎥
⎥
⎥
⎥
⎥⎦

 (32a)

is computed analytically,

 =
⎡
⎢
⎢⎣

−(!!str◦"̄ #)⊤!−1
" (!!str◦"̄ #) −(!!str◦"̄ #)⊤!−1

" (!%str)

−(!%str)
⊤!−1

" (!!str◦"̄ #) −(!%str)
⊤!−1

" (!%str)

⎤
⎥
⎥⎦
. (32b)

Here, the symbol ◦ denotes the element-wise multiplication, !!str = ("#! (%̃&1 ),… , "#! (%̃&'( ))
⊤ , !!"  = [! "#$ (&̃'1 ) 0  

… 0], !̄ "   =  ["̄#($1 ) "̄#($2 ) …"̄#($%& ) ]. The ensemble mean of  is the information matrix (Lehmann & 
Casella, 1998),

 = −![]. (33)

Its inverse is the variance-covariance matrix of MLEs of Tmax and Emax (Efron & Hinkley, 1978),

⎡
⎢
⎢⎣

var(!max ) cov(!max ,"max )

cov("max , !max ) var("max )

⎤
⎥
⎥⎦
= −1 . (34)

4. Results of Numerical Experiments
We conduct synthetic experiments to test the accuracy and efficiency of the two new strategies for estima-
tion of dynamic evaporation rates and root water uptake from data recorded by an array of soil-moisture 
sensors. Section 4.1 contains a description of our experimental design. Evaluation metrics of the relative 
performance of the two methods are specified in Section 4.2. We investigate the methods' ability to es-
timate the total ET rate (Section  4.3), and the vertical distributions of root water uptake (Section  4.4) 
and soil moisture (Section 4.5). The methods' computational costs and convergence rates are reported in 
Section 4.6.



Water Resources Research

LI ET AL.

10.1029/2021WR030747

9 of 16

4.1. Design of Numerical Experiments

We consider infiltration into a homogeneous soil following a 2-h long rain event. Observations are taken 
over the time interval of 200 hr, with the rain occurring between 48th and 50th h and the observation being 
taken with time step ∆tobs = 2 hr. The soil column is homogeneous, of length 1.5 m; its hydraulic properties 
are reported in Table 1. The infiltration rate is 0.04 m/h.

We created the time series Tmax(t) and Emax(t) as the ground truth (Figure 1). We assigned a discontinuous 
function of Tmax(t) and Emax(t) to demonstrate the ability of the algorithm to capture their variability. The 
synthetic soil moisture data are then generated by solving the flow problem, Equations 2–11, with the nu-
merical code PFLOTRAN (www.pflotran.org/; executed on Dell Desktop Computer with Intel Core i7-8700 
CPU @ 3.2 GHz and 15.4 GB memory). The soil column is discretized into Ns = 30 elements of length 
∆z = 0.05 m, and the simulation horizon of 200 hr into Nt = 10, 000 time steps of duration ∆t = 0.02 hr. The 
ground truth is reported in Figure 1 in terms of water content θ(z, t), spatiotemporal distribution of ET rate 
S(⋅, z, t), and total ET rate Stot(t). During the precipitation event, the soil moisture in the top soil increases 
dramatically and water infiltrates slowly into the soil column. The soil evaporation and root water uptake 
models imply that S(z, t) is largest in the vicinity of the soil surface due to evaporation and relatively large 
root water uptake activity.

Unless specified otherwise, the water content predicted with Equations 2–11 is “measured” by an array 
of Nsen = 8 soil moisture sensors located at depths z1 = 2.5 cm, z2 = 7.5 cm, z3 = 12.5 cm, z4 = 17.5 cm, 
z5  =  32.5  cm, z6  =  47.5  cm, z7  =  62.5  cm, and z8  =  97.5  cm. The measurements at these locations, 
!! =

{
"!1 ,… , "!#sen

}
 , are generated at observation times tk (k = 1, …, Nobs = 100) in accordance with the data 

model, Equation 1 with σϵ = 0.001.

4.2. Performance Evaluation Metrics

We use several complementary metrics to quantify the performance of the alternative strategies for in-
ference of evapotransporation from soil moisture measurements. We compare the discrepancy between 
the “real” total ET rate (Stot) and its estimation (! "esttot  ) in terms of the relative bias b, the correlation 
coefficient R, and the relative measure RV. These are defines as (Guderle & Hildebrandt, 2015; Gupta 
et al., 2009)

Parameter Symbol Value Units

Porosity ϕ 0.4 -
Permeability k 1 ⋅ 10−13 m2

Residual water content θi 0.05 -
Shape factor in van Genuchten model αvG 1 ⋅ 10−3 -
Shape factor in van Genuchten model mvG 0.5 -
Saturation at the wilting point θw 0.1 -
Saturation at the point of stomatal closure θ* 0.2 -
Hygroscopic saturation θh 0.05 -
Depth above which 50% water uptake occurs z50 0.1 m
Depth above which 95% water uptake occurs z95 0.6 m
Prior mean of Tmax ! "#max 2 ⋅ 10−4 m/hr
Prior SD of Tmax ! "#max 1 ⋅ 10−4 m/hr
Prior mean of Emax ! "#max 4.17 ⋅ 10−5 m/hr
Prior SD of Emax ! "#max 2 ⋅ 10−5 m/hr

Table 1 
Known Hydraulic Soil Properties and Initial Guesses for the Statistics of Unknown Tmax and Emax
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! =
⟨"esttot ⟩ − ⟨"tot⟩

⟨"tot⟩ , # =
cov("esttot ,"tot)
$"esttot $"tot

, #% =
$"esttot
$"tot

, (35)

where 〈⋅〉, cov(⋅, ⋅), and σ indicate the ensemble mean, covariance, and 
SD, respectively. A small absolute b value, and R and RV close to 1 repre-
sent a good estimation.

The quality of estimation (̃ ) of spatially varying quantities (!, ") , that 
is, ET S and soil moisture θ, is ascertained in terms of the root mean 
square error (RMSE), (!) , and the total RMSE, tot ,

(!") =
√√√√ 1
#s

#s∑
$=1

(̃"
$− "

$)
2 ,

tot =

√√√√√ 1
#t#s

#t∑
!&=1

#s∑
$=1

(̃"
$− "

$)
2 ,  = ' () *. 

(36)

Here, ̃"
# = ̃($#, %") and !

" = (#", $!) are the estimated and true values of 
the quantity  , respectively.

We compare the performance of our Bayesian inference method, which 
is based on treating the source term S(⋅, z, t) as an observable, with the 
original approach of Guderle and Hildebrandt  (2015) that treats the 
state variable θ(z, t) as such and then computes the statistics of the 
quantities of interest at the post-processing stage. To distinguish be-
tween these two implementation of EnKF, we refer to ours as EnKF(S) 
and to the original as EnKF(θ); the MLE of S is denoted by MLE(S). 
The prior statistics of the S parameters for EnKF(θ) and EnKF(S) are 
collated in Table 1.

4.3. Total Evapotranspiration Rate
Figure 2 shows estimates of the total ET rate, ! "esttot (#) , obtained via the 
MLE, EnKF(S), and EnKF(θ). All three estimates are accompanied by 
the confidence intervals defined as ± !"esttot (#) . The two implementations 
of EnKF start with the same prior, contain 200 ensemble members, and 
estimate Stot(t) in terms of its posterior mean. EnKF(θ) first computes 

the posterior statistics of θ(z, t) and then evaluates the posterior statistics of Etot(t) from Equation 12. The 
MLE implementation has a fixed learning rate α = 0.2, and ϵ = 10−4, most of the iteration processes at 
different time steps would converge with an average of 380 iterations. The two implementations of EnKF 
yield the Stot(t) estimates that have a comparable relative bias b that is small (|b| = 1.6% and 0.4% for En-
KF(S) and EnKF(θ), respectively) and appreciably smaller than that of the MLE (|b| = 4.6%). By the other 
two metrics, R and RV, EnKF(S) slightly outperforms EnKF(θ), and both of them slightly outperform 
the MLE. Given the same prior information about S, the uncertainty bound for the EnKF(S) estimator is 
narrower than that for EnKF(θ) and is similar to that for the MLE. That is because EnKF(θ)'s reliance on 
the water balance method, Equation 12, adds up the uncertainties in the soil moisture estimators at two 
consecutive time steps. The differences in these performance metrics are relatively minor, and all three 
methods provide an arguably adequate estimation of the total ET rate Stot(t). It is therefore remarkable 
that our EnKF implementation, EnKF(S), does so two orders of magnitude faster than either EnKF(θ) 
or MLE(S).

Figure 1. Ground truth values of (a) water content θ(z, t), (b) 
evapotranspiration rate S(z, t), and (c) total evapotranspiration rate Stot(t) 
obtained as a solution of Equations 2–11 with known input parameters.
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4.4. Spatial Distribution of Root Water Uptake

By construction, the EnKF(θ) method cannot infer the spatial variability of root water uptake, that is, the 
source term S(z, t), from soil moisture data. The remaining two methods, EnKF(S) and MLE(S), can be 
used for that task (Figure 3). Visual comparison of the spatiotemporal maps of S(z, t) predicted by EnKF(S) 
and MLE(S) with the ground truth in Figure 1 shows the two methods' adequacy. Figure 3 also provides a 
quantitative assessment of their performance. At all times t, the RMSE (!) of EnKF(S) is smaller than the 
RMSE of MLE, with the total RMSE tot of EnKF(S) being half that of MLE(S).

4.5. Soil Water Content

While EnKF(θ) corrects the model's prediction of soil water content θ(z, t) in its Bayesian update, EnKF(S) 
and MLE(S) do so indirectly by updating the sink term S(z, t) instead. One, therefore, would expect EnKF(θ) 
to yield the most accurate estimates of θ(z, t), provided the soil moisture data used for the update are suffi-
ciently accurate. The predicted temporal evolution of θ(z, t) at soil depths where moisture sensors are not 
available (z = 12.5, 27.5, and 87.5 cm) demonstrates that to be the case (Figure 4). At all times, the RMSE of 
the EnKF(θ)-based prediction of soil water content, (!) , is slightly smaller than that of its EnKF(θ)-based 
counterpart. RMSEs of both EnKF implementations are smaller than that of MLE. The total RMSEs, tot , 
for all of three parameter-estimation methods are of the same order of magnitude, indicating their ability to 
predict soil water content θ(z, t) at depths where measurements are not available.

4.6. Computational Cost and Convergence Rate

The relative performance of EnKF(S) and EnKF(θ), in terms of their computational efficiency and conver-
gence rate, is summarized in Table 2. The prediction accuracy is quantified by the relative bias b, correlation 
coefficient R, and relative variability RV in the predictions of total ET rate Stot(t), and by the total RMSE tot 

Figure 2. (a) Initial guess and estimation of the total evapotranspiration rate, Stot(t), via (b) MLE, (c) EnKF(S), and (d) EnKF(θ), from an array of 8 moisture 
sensors. Whereas the initial guess serves as a prior for both implementations of EnKF, it is not used by MLE. The EnKF estimates of Stot(t) are given by the 
posterior means (solid lines). All three estimates are accompanied by the confidence intervals (shaded regions) defined as ±SD.
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of the predictions of soil moisture θ(z, t). Both EnKF implementations 
use, alternatively, ensemble size NMCS = 200, 400, 600, and 1,000. As ex-
pected, the simulation time of both model increases as (!MCS) , with 
EnKF(S) being two orders of magnitude faster than EnKF(θ). The error 
metrics for both methods are relatively insensitive to the ensemble size 
considered, suggesting that the ensemble size of NMCS = 200 is sufficient 
to achieve convergence. By all the metrics considered, EnKF(θ) is slightly 
more accurate than EnKF(S); that is likely due to additional approxima-
tions underpinning EnKF(S), for example, leading to the derivation of 
Equation 13.

Being a quintessential deterministic procedure, MLE(S) does not rely 
on ensemble of realizations; its convergence refers to the iterative solu-
tion of the underlying minimization problem. Figure  5 exhibits the 
loss function value as function of the number of iterations for several 
observation times, and the number of iterations at convergence (i.e., 
when the loss function reaches its minimum within prescribed toler-
ance) as function of observation time. These results demonstrate that 
our MLE(S) procedure with learning rate α = 0.2 requires on average 
380 iterations to converge at all-time steps. Hence, the MLE(S) is a via-
ble tool for estimation of the root water uptake profiles and evaporation 
rates when the prior knowledge of the parameters Tmax(t) and Emax(t) is 
elusive.

4.7. Impact of the Number of Sensors

Finally, we investigate the estimation accuracy and predictive uncertain-
ty of the three methods when the number of moisture sensors Nobs is re-
duced from 8 to 5. The setting of our numerical experiments remains the 
same, except for the number and locations of sensors. These sensors are 
now placed at depth z1 = 2.5 cm, z2 = 7.5 cm, z3 = 17.5 cm, z4 = 52.5 cm, 
and z5 = 97.5 cm. All three parameter estimation methods enable one 
to infer the total ET rate, Stot(t), from the observations collected by this 
sensor array (Figure 6). These estimates of Stot(t) are less accurate than 
those obtained from the eight-sensor array (Figure 2), although not by 
as much as one could have expected. The largest impact of the reduction 
in the number of sensors is on the estimation uncertainty of EnKF(θ). 
Its confidence interval, defined as ±SD, becomes much wider than those 
of EnKF(S) and MLE(S) when Nobs decreases from 8 to 5. This finding 
implies that our two new methods are advantageous in field applications 
wherein soil moisture data are scarce.

5. Conclusions
We proposed two parameter-estimation methods to infer ET rates and root water uptake profiles from 
soil-moisture sensor-array data. One, denoted by EnkF(S), is our implementation of ensemble Kalman filter 
(EnKF); it treats the ET sink term S(θ, z, t) in the Richards equation, rather than soil moisture θ(z, t), as the 
observable to update. The other is a maximum likelihood estimator (MLE) applied to the same observable 
and, hence, denoted by MLE(S); it is supplemented with the Fisher information matrix to quantify uncer-
tainty in its predictions. We used numerical experiments to ascertain the ability of our methods to infer 
total ET rate Stot(t) and root water uptake profile S(z, t) from soil moisture data collected by a sensor array. 
The performance of our methods was compared, in terms of accuracy and computational efficiency, to that 
of the original EnKF with water-content observable, EnKF(θ). Our analysis leads to the following major 
conclusions.

Figure 3. Spatiotemporal maps of root water uptake, S(z, t), estimated 
with either (a) EnKF(S) or (b) MLE(S); and (c) their respective root mean 
square errors (!) and tot .
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1.  All three methods provide accurate estimates of Stot(t) and θ(z, t). They can also capture the temporal 
dynamics and sudden changes in Stot(t) that can be attributed to diurnal cycles or plant mortality.

2.  Our EnKF implementation, EnKF(S), does so two orders of magnitude faster than either EnKF(θ) or 
MLE(S).

3.  The original EnKF implementation, EnKF(θ), cannot be used to infer S(z, t) from soil moisture data, 
while EnKF(S) and MLE(S) can. EnKF(S) is about twice more accurate and two orders of magnitude 
faster than MLE(S) in performing this task.

4.  The error metrics for both EnKF implementations are relatively insensitive to the number of forward 
solves of the Richards equation, suggesting that the ensemble size of NMCS = 200 realizations is sufficient 
to achieve convergence.

5.  Our MLE(S) procedure requires an order of magnitude fewer iterations to converge than its counterpart 
applied to θ(z, t). That renders MLE(S) a viable and practical tool for estimation of the root water uptake 
profiles and evaporation rates when the prior knowledge about ET at the site is elusive.

Figure 4. Time evolution of soil moisture at several depths predicted by (a) EnKF(S), (b) EnKF(θ), and (c) MLE(S); and (d) their respective RMSEs. Lines: 
ground truth; Dots: predictions.

EnKF(S) EnKF(θ)

NMCS b R RV tot Trun b R RV tot Trun

200 1.59 0.88 0.96 4.79 × 10−4 15s −0.42 0.8 1.04 3.02 × 10−4 1005s
400 1.43 0.89 0.96 4.82 × 10−4 16.5s −0.58 0.8 1.04 2.94 × 10−4 2009s
600 1.50 0.89 0.96 4.76 × 10−4 18s −0.57 0.8 1.04 2.93 × 10−4 3014s
1,000 1.53 0.89 0.96 4.78 × 10−4 20.5s −0.50 0.81 1.04 2.88 × 10−4 5056s

Note. The relative bias b is reported in %, and the run time Trun in seconds.

Table 2 
Accuracy (Relative Bias b, Correlation Coefficient R, and Relative Variability RV in the Predictions of Total 
Evapotranspiration Rate Stot; and Total RMSE tot of the Predictions of Soil Moisture θ) and Run Time of EnKF(S) and 
EnKF(θ) With Ensemble Size NMCS
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6.  By focusing on the direct estimation of ET rather than its indirect estimation via soil moisture, our im-
plementation of both EnKF and MLE is advantageous in field applications wherein soil moisture data 
are scarce. This finding suggests the use of these techniques in optimal design of sensor networks.

The conclusions reported above come with an important caveat. They are based on the assumption of 
unidirectional (vertical) flow in a homogeneous soil. While this assumption is often used in the inverse 
analyses of this kind, it represents a significant simplification of the vadose zone. One computationally 
efficient way of dealing with soil heterogeneity in the present context is to treat the soil as a collection 
of one-dimensional isolated flow tubes (Sinsbeck & Tartakovsky, 2015; Wang & Tartakovsky, 2011), in 
a manner consistent with the Dagan-Bresler parameterization (Dagan & Bresler, 1983). In addition, we 
assume the soil hydrologic parameters to be known with certainty. In real cases, one would estimate them 

Figure 5. (a) Dependence of the loss function in the MLE(S) on the number of iterations at several times t, and (b) the number of iteration it takes the MLE(S) 
to convergence as function of time t.

Figure 6. (a) Initial guess and estimation of the total evapotranspiration rate, Stot(t), via (b) MLE, (c) EnKF(S), and (d) EnKF(θ), from an array of five moisture 
sensors. Whereas the initial guess serves as a prior for both implementations of EnKF, it is not used by MLE. The EnKF estimates of Stot(t) are given by the 
posterior means (solid lines). All three estimates are accompanied by the confidence intervals (shaded regions) defined as ±SD.
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from infiltration tests in advance. Our data assimilation methods can be extended to include parametric 
uncertainty. We leave this and other extensions of our methods for follow-up studies.

Data Availability Statement
There are no data sharing issues since all of the numerical information is provided in the figures produced 
by solving the equations in the paper.
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