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We introduce the concept of a Graph-Informed Neural Network (GINN), a hybrid approach 
combining deep learning with probabilistic graphical models (PGMs) that acts as a sur-
rogate for physics-based representations of multiscale and multiphysics systems. GINNs 
address the twin challenges of removing intrinsic computational bottlenecks in physics-
based models and generating large data sets for estimating probability distributions of 
quantities of interest (QoIs) with a high degree of confidence. Both the selection of the 
complex physics learned by the NN and its supervised learning/prediction are informed 
by a PGM, which includes the formulation of structured priors for tunable control vari-
ables (CVs) to account for their mutual correlations and ensure physically sound CV and 
QoI distributions. GINNs accelerate the prediction of QoIs essential for simulation-based 
decision-making where generating sufficient sample data using physics-based models alone 
is often prohibitively expensive. Using applications grounded in energy storage, we de-
scribe the construction of GINNs for a domain-aware Bayesian network that embeds a 
homogenized model of supercapacitor dynamics and a data-driven Bayesian network for 
a Langmuir adsorption model. Both examples demonstrate the ability of GINNs to produce 
kernel density estimates of relevant non-Gaussian, skewed QoIs with tight confidence in-
tervals.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction: decision-making using physics-based models and surrogates

Modeling and simulation of complex nonlinear multiscale and multiphysics systems requires the inclusion and charac-
terization of uncertainties and errors that enter at various stages of the computational workflow. Typically this requires 
casting the original deterministic physics-based model into a probabilistic framework where inputs or control variables (CVs) 
are treated as random variables with probability distributions derived from available experimental data, manufacturing con-
straints, design criteria, expert judgment, and/or other domain knowledge (e.g., see [1]). Running the physics-based model 
with CVs sampled according to these distributions yields corresponding realizations of the system response as characterized 
by quantities of interest (QoIs). Analysis of the uncertainty propagation from the CVs to the QoIs informs decision-making, 
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e.g., it informs engineering decisions aimed at improving the quality and reliability of designed products and helps identify 
potential risks at early stages in the design and manufacturing process.

Quantitatively assessing uncertainty propagation presents a fundamental challenge due to the computational cost of the 
underlying physics-based model. Even for a low number of CVs and QoIs, uncertainty quantification (UQ) for, e.g., acceler-
ating the simulation-aided design of multiscale systems and data-centric engineering tasks more generally [2], requires a 
large number of repeated observations of QoIs to achieve a high degree of confidence in such an analysis. The sampling cost 
is further exacerbated in real-world applications where distributions on QoIs are typically non-Gaussian, skewed, and/or 
mutually correlated, and therefore need to be characterized by their full probability density function (PDF) rather than 
through summary statistics such as mean and variance. The computational cost of nonparametric methods to estimate these 
densities can become prohibitively high when using a fully-featured physics-based model to compute each sample.

One approach to alleviate the computational burden is to derive a cheaper-to-compute surrogate for the physics-based 
model’s response enabling much faster generation of output data and thus overcoming computational bottlenecks. Also 
known as metamodels, emulators, or response surfaces/hypersurfaces, such data-driven surrogate models are statistical 
models emulating the system response (e.g., [3,4]). Their accuracy and fidelity depends on a number of factors includ-
ing the amount of physics-based model run data available for “training” and how the corresponding inputs are selected 
in the parameter space; they differ from reduced-order model and model hierarchy surrogates which attempt to capture 
a simplified or lower-fidelity representation of the physical system. However, all surrogates are unified in their aim: com-
putationally cheaper predictions of the response. The use of surrogates in lieu of physics-based representations paves the 
way for data-driven UQ including sensitivity studies or model calibration with tight confidence intervals for the estimated 
metrics.

A plethora of surrogate modeling techniques has been developed for physics-based modeling and simulation including 
statistical learning of coarse-grained models [5–7], radial basis function networks [8,9], space mapping [9], kriging [8–
14], polynomial chaos [15–17], and neural networks (NNs) (including early works [18–21] and more recent works that 
take advantage of modern advances in computing, e.g., [22–25]). Machine learning approaches such as NNs and deep NNs, 
i.e., NNs that contain multiple hidden layers between their input and output layers, have received significant attention in 
recent years thanks to, in part, the advent of off-the-shelf software like TensorFlow [26] and PyTorch [27], which automate 
the computation of the training loss function gradient via backpropagation [28] (a special case of reverse mode automatic 
differentiation) and tremendously simplify NN design and implementation.

We establish a framework for constructing domain-aware surrogate models, built via deep learning, to support 
simulation-based decision-making in complex multiscale systems. A fundamental difference between simulation-based 
decision-making and other scenarios where deep learning is typically used is that in the former setting the user drives 
the data generation process. With this insight, we deploy a deep learning approach that incorporates well-known strategies 
from stochastic and predictive modeling in the following way. First, we embed a probabilistic graphical model (PGM) into 
the physics-based representation to encode complex dependencies among model variables that arise from domain-specific 
information and to enable the generation of physically sound distributions. Second, from the embedded PGM we iden-
tify computational bottlenecks intrinsic to the underlying physics-based model and replace them with a NN. The graph, 
i.e., PGM, informs (i) the selection of the complex physics that the NN learns, (ii) the supervised learning of the NN, and 
(iii) the predictions made by the trained NN. These last two features are facilitated through the use of structured priors on 
CVs that serve as inputs to the NN, as highlighted in Fig. 3, and that differ from the typical use of independent input layer 
nodes. We refer to the resulting hybrid PGM/NN surrogate as a “Graph-Informed Neural Network” (GINN), in which both the 
supervised learning and the resulting model predictions are informed by structured graphical models. The PGM-embedded 
physics-based model yields a domain-aware surrogate and also lends interpretation to the GINN’s predictions.

Related to but different from our GINN approach, two main paradigms have emerged with respect to the use of deep 
NNs for building surrogates of physics-based models described by partial differential equations (PDEs): physics-informed 
NNs (PINNs) [25,29,30] and “data-free” physics-constrained NNs [24,31–33]. Both approaches drive supervised learning by 
enforcing physical constraints. While PINNs include both the governing PDE and its initial/boundary conditions in the train-
ing loss function, physics-constrained NNs enforce the initial/boundary conditions through a bespoke NN architecture while 
encoding the PDE in the training loss. In contrast, GINNs use simulation data from a domain-aware model without modifying 
the training loss function. This facilitates their deployment in complex problems that involve a system of PDEs or differen-
tial equations and additional constraints of various types. Overfitting in a GINN is controlled using standard non-intrusive 
and readily available techniques, such as testing the NN on unseen data (i.e., data independent of the training samples) 
and using �1 (lasso regression) or �2 (ridge regression) regularization [34]. Application of machine learning to PDEs is an 
active research area that engendered a number of other approaches, e.g., [24,35,36], that construct deep NN surrogates for 
evolution operators of PDEs from solution data. The GINN framework can accommodate these and other machine learning 
approaches for modeling PDEs.

While GINNs are informed by a graph (e.g., a PGM), they are not simply graph NNs (e.g., [37,38]). A typical application of 
graph NNs is to use a NN for node classification tasks, i.e., for deciding how to label nodes of a given graph from available 
labeled data on the remaining nodes. In our approach, the PGM is used to build a domain-aware physics-based model, thus 
synthesizing stochastic and multiscale modeling. Then computational bottlenecks in the PGM are identified and replaced by 
a NN whose supervised learning and prediction are further informed by the PGM, e.g., through structured priors on CVs.
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Our methods are general and can be applied to a wide range of complex models with intrinsic computational bottlenecks. 
We showcase the GINN approach on two applications of interest in energy storage. The first extended example, through 
which we outline the details of the GINN framework in Sections 2 to 4, deals with supercapacitor design. The optimal and 
robust design of electrical double layer (EDL) supercapacitors for use in long-term energy storage devices critically relies on 
the multiscale modeling of novel nanoporous metamaterials. The presence of nonlinear multiscale physics in this complex 
system translates into nontrivial correlations both across and within problem scales and necessitates the use of structured 
probabilistic models (like PGMs) to describe the dependencies among the model variables in order to maintain physically 
sound distributions. Using a homogenized model of an EDL supercapacitor [39] as a computational testbed, we derive a 
domain-aware physics-based model following the Bayesian Network (BN) PDE framework developed in [16]. The BN PDE 
model2 for supercapacitor dynamics, formulated in Section 2, is then used to train a GINN surrogate in Section 3. The GINN 
replaces the expensive computation of intermediate variables by learned features in its hidden layers. Hence, the GINN 
replaces random PDE mappings from CVs to QoIs with a NN surrogate model that is domain-aware and physics-informed. 
The GINN surrogate can then be leveraged to make sufficiently many predictions to quantify uncertainties with a high 
degree of statistical confidence, as described in Section 4 for nonparametric kernel density estimation of QoIs. In Section 5
we present a second example highlighting a data-driven GINN for the Langmuir adsorption model. Conceptually simple and 
with a closed-form equilibrium solution, this example focuses on the construction of a Bayesian network from simulated 
data mimicking experimental observations. Finally, Section 6 is reserved for conclusions and follow-up work.

2. Domain-aware physics-based models: the BN PDE

2.1. Motivation for the use of structured probabilistic models

The rigorous homogenization in [39] enables the derivation of macroscopic quantities from microscale counterparts 
with clearly defined limits of applicability, in contrast to relying on phenomenological relations. While it may be possi-
ble to minimize the computational burden with an appropriately chosen simulation technique, such as a multilevel Monte 
Carlo method [40], the homogenization and solution of the corresponding closure equations are an integral feature of this 
multiscale physics-based model and thus the associated computational bottleneck is intrinsic. Moreover, the complicated 
dependencies among the components, some of which are viewed as CVs for the QoIs, demand specialized tools, such as 
PGMs, to recast the physics-based model into a probabilistic framework.

Since their introduction, PGMs have proven to be a fundamental mathematical concept for modeling uncertainty in 
artificial intelligence [41,42] and machine learning [43]. BNs are a class of PGMs that can be represented by a directed acyclic 
graph with nodes representing random variables and edges representing conditional dependencies. The directed nature 
of BNs makes describing dependencies intuitive and is therefore well-suited to physics-based modeling. Such structured 
probabilistic models are necessary in the context of complex systems as, e.g., independent selection of CVs will often lead 
to non-physical predictions. In [16], a stochastic modeling framework is presented for embedding BNs into physics-based 
models. The resulting BN PDEs are random PDEs that incorporate a BN, thereby encoding correlations into stochastic models 
and providing a platform for uncertainty propagation. More specifically, BN PDEs use the hierarchical structure of BNs 
to bring together both statistical and multiscale mathematical modeling in a systematic way by informing the physics-
based model with domain knowledge including available data, which are typically sparse or incomplete, along with expert 
opinion, engineering design constraints, and dependencies between CVs. For the problem of interest, a BN encoding the 
supercapacitor dynamics is shown in Fig. 1.

2.2. Formal definition of a BN

The BN PDE framework centers around constructing a structured probabilistic model for the joint probability density 
function (PDF) of model variables that captures correlations and constraints among variables in a systematic way. Formally, 
a BN is defined as a probability model, i.e., probability distribution,

P (Z | θ) =
n∏

i=1

P (Zi | PaZi , θZi |PaZi
) , (1)

for random variables Z = {Z1, . . . , Zn} where PaZi is the set of parents of each Zi and θ = {θZi |PaZi
}i=1,...,n are statistical 

model hyperparameters for each conditional probability distribution (CPD) P (Zi | PaZi ). Here, we assume without loss of 
generality that the hyperparameters are independent (if not, they can instead be treated as variables). BNs enable the 
modeling of large and complex joint distributions containing correlations, and the identification of conditionally independent 
variables significantly reduces the overall dimensionality of (1) thus making parameter inferences from data feasible.

2 We refer to our derived model as a BN PDE since the principal variables involved in the computational bottlenecks are governed by random PDEs.
3



E.J. Hall, S. Taverniers, M.A. Katsoulakis et al. Journal of Computational Physics 433 (2021) 110192
Fig. 1. A Bayesian Network (BN), a particular type of PGM, describing supercapacitor dynamics in a nanoporous material encodes conditional relationships 
for key variables (see Appendix A and Fig. A.11). The BN enables the systematic and intuitive inclusion of domain knowledge into the stochastic multi-
scale model and ensures the resulting BN PDE makes physically sound predictions. PGMs guide the supervised learning of GINNs to overcome intrinsic 
computational bottlenecks in the physics-based model (cf. see Fig. 3 and Fig. 4).

2.3. Choice of tunable control variables and identification of computational bottlenecks

We begin by recalling the physical parameters of interest, and their roles, for the dynamics of an EDL supercapacitor 
described in [39]; for reproducibility and to provide a self-contained work, the model equations are detailed in Appendix A. 
At the macro or continuum scale, the effective ion diffusion coefficients Deff+ and Deff− —scalar quantities in (A.7) arising 
from (A.1)—are used to compute the effective electrolyte conductivity κeff in (A.9) and transference number t+ in (A.10). 
Ultimately, these four QoIs are used to inform the state of EDL cells in (A.11). The macroscale QoIs depend on microscale 
parameters, including the solid radius r and pore throat size lpor of the nanoporous structure (that are also related to the 
material porosity ω, see Fig. A.11), via a deterministic homogenization (upscaling) with closure χ± in (A.3). Additionally, 
the QoIs depend on the temperature T , initial ion concentration cin, fluid-solid interface potential ϕ� in (A.6), Debye length 
λD in (A.5), and EDL potential ϕEDL in (A.4).

Based on the aforementioned parameters (i.e., (A.1) to (A.6) and (A.8) to (A.10)), we select thirteen variables,

Z := {X, Y } = {Xϕ�, Xcin , XT , Xω, Xlpor , Xr, XϕEDL , XλD , Xχ± , Y Deff+ , Y Deff− , Yκeff , Yt+} , (2)

where for simplicity of notation we will use labels instead of indices as in (1) when no confusion arises. The variables

Y := {Y Deff+ , Y Deff− , Yκeff , Yt+} (3)

represent QoIs that correspond to macroscopic diffusion quantities that parametrize models characterizing the behavior of 
EDLC cells (cf. Appendix A.3). The variables

X := {Xϕ�, Xcin , XT , Xω, Xlpor , Xr, XλD , Xχ±,XϕEDL
} , (4)

associated, respectively, with electrode surface (fluid-solid interface) potential, initial ion concentration, temperature, poros-
ity, (half) pore throat size, solid radius, Debye length, (upscaling) closure variables, and EDL potential, correspond to both 
independent and dependent inputs as well as solutions to physical model equations. In particular, the variables

Xb := {Xχ , XϕEDL} ⊂ X (5)
±

4
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Table 1
Independent CVs distributed according to (7) over the physically relevant ranges, i.e., the hyperpa-
rameters θmin and θmax, that are selected using expert knowledge and available experimental data 
(cf. dependent inputs in (8) and in Fig. 5).

Variable label θmin θmax Mean/Baseline Variation Units

T 208 432 320 ±35% K
cin 0.52 1.08 0.80 ±35% mol/l
r 1.05 1.75 1.40 ±25% nm
ω 0.5025 0.8375 0.6700 ±25% -

represent solutions to random PDEs, i.e., the PDEs in (A.3) and (A.4) with random coefficients and/or boundary conditions. 
These variables correspond to computationally intensive portions of the physics-based model and therefore constitute a 
computational bottleneck for UQ. We investigate the remaining seven variables in (4) as tunable CVs,

Xc := {Xϕ�, Xcin , XT , Xω, Xlpor , Xr, XλD } ⊂ X , (6)

related to the engineering design process and experimental conditions.
We cast the (originally deterministic) homogenized problem into a probabilistic framework by modeling the CVs X c as 

random variables, see e.g., the approach followed for a similar problem in [40]. The type and support of the distributions 
placed on Xc need to reflect a combination of expert opinion, available data, physical and design constraints, and other 
domain knowledge, in order to ensure the generation of physically meaningful distributions on the QoIs Y . While equally 
valid alternative choices can be made, we select the CVs XT , Xcin , Xr , and Xω to be independent and assume their prior 
distributions to be uniform on an interval of ±35% (for XT and Xcin ) or ±25% (for Xr and Xω) around a physically relevant 
baseline value (see Table 1). That is, each of these variables is uniform,

Xi | θi ∼ Uniform([θmin
i , θmax

i ]) , (7)

where the hyperparameters θi = {θmin
i , θmax

i } represent the minimum and maximum values that are endpoints of the sup-
port intervals.

The distributions of the CVs XλD , Xϕ�
, and Xlpor are then determined by their relation to these independent inputs, 

captured by (A.5), (A.6), and (A.8), and the uniform distributions (7). It follows that the conditional distributions on these 
variables,

P (XλD | XT , Xcin , θT , θcin) , (8a)

P (Xϕ� | XT , Xcin , θT , θcin) , (8b)

P (Xlpor | Xω, Xr, θω, θr) , (8c)

are nontrivial. For example, Xϕ�
in (8b) depends on both XT and Xcin as the transcendental equation for ϕ� ,

ϕ� = V

2
− ϕecm − σ

CH
,

σ =
√

4ERT z2cin

√
cosh

(
eϕ�

kBT

)
− cosh

(
eϕmin

kBT

)
,

(9)

which, in turn, depends on both T and cin (we refer to (A.6) in Appendix A for a detailed discussion of (9)). Fig. 2 displays 
slices (averages) from the empirical conditional PDF corresponding to (8b) based on M = 107 observations.

These conditional dependencies do not necessarily represent causal relationships. For example, while ω is an emergent 
property of r and lpor, we treat ω and r as independent CVs, which forces us to make lpor a dependent input (Fig. A.11). 
Inspired by the recent work [44], this choice allows us to explore numerically a broad range of porosities that was guided 
by, but not limited to, values in the literature based on prior experiments. In more general terms, such an approach allows 
parameters for which data are missing over certain ranges to be systematically incorporated and combined with real data 
through the priors. This being said, investigating the additional inclusion of causal reasoning and its implications for causal 
inference [45] are a natural extension of this line of research.

Finally, we divide the CVs into subgroups associated with environmental conditions {XT }, operating conditions {Xϕ�
} (as

(A.6) depends on the externally applied voltage), structural constraints {Xlpor , Xω, Xr}, EDL formation {XϕEDL , XλD , Xcin}, and 
upscaling/homogenization {Xχ±}. Along with the macroscopic diffusion QoIs Y , these groupings attach additional layers of 
significance to the underlying probabilistic model that aid in interpretation and are not necessarily unique. The BN in Fig. 1
encodes conditional relationships both between problem scales, via the rigorous pore-to-Darcy scale homogenization (e.g., 
between macroscopic variables, closure variables, and microscopic structural features), and within single problem scales, 
such as the geometry and topology of the pore structure.
5
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Fig. 2. Estimated conditional PDFs, based on M = 107 samples using kernel density estimation techniques (see (10)), for the dependent CV Xϕ�
in (8b) that 

is constrained by the nonlinear transcendental equation (9) describing its relation to other CVs. From left to right, we show a view of two-dimensional 
slices of the conditional PDFs, in this case a function of three variables, along T ∗ , the mean value of XT , and along cin

∗ , the mean value of Xcin . The 
conditional densities (8a) and (8c) can be estimated similarly.

2.4. BN PDE for supercapacitor dynamics

The joint PDF on all model variables in (2) represents the underlying probabilistic model for our application of interest. 
Using the distributions on the CVs (7) and (8), which we refer to as structured priors, we decompose the probabilistic model 
according to (1) to arrive at the BN for supercapacitor dynamics, visualized in Fig. 1. This allows us to formally propagate 
uncertainty from Xc via Xb to Y following the relationships in Fig. 1. For our application of interest this involves solving 
a chain of transcendental and algebraic equations, to obtain the dependent CV values, and BN PDEs, associated with the 
computational bottleneck Xb in our physics-based model. A visual representation of these steps (to model and propagate 
uncertainty using the BN and BN PDE) is included in the flowchart for the global GINN algorithm (Fig. 4). We shall observe, 
in Fig. 6 in Section 4, that the marginal densities of QoIs Y are skewed and non-Gaussian. Moreover, continuous densities 
are required for downstream computations related to the EDLC cell state model in (A.11). Therefore density estimation 
is the appropriate tool for a corresponding UQ analysis. However, as this requires a large volume of simulations of the 
physics-based model, in the next section we develop an appropriate surrogate model to accomplish this task.

3. GINN surrogates for complex systems

Predicting macroscopic QoIs with confidence requires repeated solves of the physics-based model. On the one hand, 
mathematical homogenization is a central feature of the multiscale model that enables the rigorous propagation of uncer-
tainty using the framework in Section 2. On the other hand, this upscaling is associated with computational bottlenecks 
that limit our ability to generate sufficiently many realizations of the physics-based model and therefore to carry out a 
subsequent UQ analysis. Arguably, upscaled models represent the “best-case scenario” as direct simulation of the microscale 
physics is even more computationally demanding in most applications. To address this challenge, we formulate a domain-
aware GINN surrogate model suitable for complex systems.

A GINN is essentially a hybrid PGM/NN model that replaces nodes in the PGM associated with computationally expensive 
solves, e.g., corresponding to the homogenization procedure and closure problem, with a deep NN. In the application of 
interest, rather than solving the computational bottleneck Xb (5) directly using the physics-based model, the GINN learns 
these intermediate variables as hidden layer features (see Fig. 3) which, at least conceptually, mirror the boxed nodes of 
the BN highlighted in Fig. 1. While replacing nodes in the BN with learned features removes the possibility of making 
interventions on them, importantly the CVs X c serve as inputs to the GINN rather than being learned features and therefore 
can still be tuned. As expressed through the structured priors of the graphical model in Fig. 1, some of these CVs are 
mutually correlated, while typically the input layer nodes of NNs are independent. Failure to account for these dependencies 
would lead to nonphysical distributions for the CVs and hence also for the QoIs.

In lieu of replacing XϕEDL and Xχ± in Fig. 1 with a single NN surrogate, our PGM-based representation also accommodates 
the use of separate PINNs for each of these computational bottlenecks. Likewise, other deep learning approaches, e.g., [24,
46,47], might also be integrated if appropriate for problems where the stochastic dimension is high. While recent work 
on benchmark problems showed that PINNs can be incorporated into a multifidelity framework where they are trained on 
both high- and low-fidelity data (“multifidelity PINNs” in [30]), it remains an open question whether replacing multiple 
systems of PDEs with PINNs in our application yields a tractable multifidelity approach. By retaining the domain knowledge 
and correlations between CVs in the input layer of the NN, GINNs decouple optimization of the training loss function from 
encoding relevant physics into the NN and therefore can be easily cast into a multifidelity framework such as the one 
proposed in [48].
6
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Fig. 3. The GINN surrogate for the multiscale model of supercapacitor dynamics. Trained using data simulated with the BN PDE (see Section 2 and Fig. 4), 
the GINN takes domain-aware graphs as inputs (i.e., structured priors on CVs in Fig. 1) and predicts output QoIs that bypass computational bottlenecks 
(highlighted in Fig. 1) using a deep NN.

A modeling choice was made to have the GINN predict all four QoIs simultaneously (compare the “flattened” output 
layer in Fig. 3 with the nontrivial dependencies in Fig. 1) rather than through a separate post-processing step, however 
the original structure could also be retained. The discrepancy between the learned samples of Yκeff and Yt+ and their 
counterparts computed by post-processing appears typically to be of O(10−3), which is small compared to other errors and 
uncertainties considered.

To train the GINN, we obtain simulation data (X c, Y ) comprised of input-output (io) pairs of CVs X c and the resultant 
QoIs Y using the framework in Section 2. The CVs for our training data are sampled according to the structured prior 
distributions in (7) and (8) (see also BN in Fig. 1). These io pairs are then used to train the GINN, depicted in Fig. 3, using 
supervised learning. The workflow to construct the GINN consists of the following steps which correspond to the numbered 
boxes in the flowchart for the global GINN algorithm (Fig. 4).

1. Generating data (BN PDE): We draw Nsam = 104 input samples from the structured priors on CVs X c in (6) (see Fig. 1) 
and produce Nsam corresponding samples of the QoIs Y in (3) using the BN PDE model. These simulations are performed 
using a co-simulation framework of COMSOL Multiphysics® and MATLAB

®. This procedure results in Nsam io pairs (Xc, Y )

of simulated data, which we then divide into training and test sets of size Ntrain = 0.8Nsam and Ntest = 0.2Nsam, respec-
tively.

2. Training: We train the GINN on the training data set through supervised learning. First, we normalize the inputs and 
outputs to lie on the interval [−1, 1] (for the independent CVs) or [0, 1] (for the dependent CVs and the outputs) as this 
increases the rate of decay of the training loss function (mean squared error) as a function of the number of Epochs (one 
Epoch corresponds to seeing all the training data once). Next, we define a fully connected NN using Google’s TensorFlow 
2 software [26] consisting of

(i) an input layer comprised of the 7 CVs,
(ii) two hidden layers each comprised of 100 neurons, and

(iii) an output layer comprised of the 4 QoIs,

where all neurons are activated using the ReLU (Rectified Linear Unit) activation function. The structure of the GINN 
specified above is visualized in Fig. 3. Finally, we train the GINN on the Ntrain io pairs using 50 Epochs, which was 
sufficient to yield a training loss Errtrain below a prespecified tolerance TOL of O(10−4).
7
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Fig. 4. An overview of the global algorithm for the GINN surrogate. (1) Generation of input-output samples using the BN PDE is expensive because of 
computationally intensive solves for intermediate variables using physics-based model simulation methods. (2) Training a GINN on a small amount of 
physics-based model data computed with the BN PDE removes this computational bottleneck by replacing the intermediate variables with learned fea-
tures (hidden layers). (3) Testing the learned GINN on unseen data avoids overfitting and reduces its generalization error. (4) The resulting trained GINN 
accelerates the prediction of output data at a much reduced computational cost, thus enabling accurate yet computationally efficient data-driven UQ.

3. Testing: This step deals with improving the generalization capability of the model, i.e., avoiding overfitting, by verifying 
that it makes suitable predictions on unseen test data. This is done by computing the test loss function (also mean 
squared error) using the Ntest test io pairs. If the test loss Errtest is comparable to the training loss, then we proceed to 
use the trained GINN to predict new io sample pairs.

4. Predicting: We generate Npred
sam inputs for the GINN by sampling from the structured priors, i.e., the same distributions 

as those used to generate the training and test samples. Using the trained GINN, we obtain Npred
sam output samples, 

each consisting of (normalized) values for the four output quantities, which are then de-normalized to obtain the final 
predicted QoIs.

Simulation of Nsam = 104 io pairs with the BN PDE model using the co-simulation framework (described in Appendix A) 
on an Ubuntu system with 8 cores (16 hyperthreads) running at 2.60 GHz and having 64 GB of RAM, given a typical time 
of 20 seconds per run, takes 3326.4 minutes. Learning the optimal parameter values of the GINN using Ntrain = 8 × 103

training io pairs and Ntest = 2 × 103 test io pairs, and generating Npred
sam = 107 new io pairs using the trained GINN takes 

about 5 minutes on a 16-inch MacBook Pro (MBP) with 8 cores running at a little under 4 GHz and having 64 GB of RAM. 
Accounting for the 50% faster clock speed of the MBP compared to the Ubuntu workstation, predicting 107 sample pairs 
with the GINN takes 2222.6 minutes on the MBP (i.e., including the time needed to generate the training/test data and to 
learn the GINN’s parameters). Generation of the same amount of data would take 2.2176 × 106 minutes on the MBP. We 
conclude that the cost of generating data with the GINN is almost three orders of magnitude lower than that of generating the data 
8
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with direct simulation methods, basically amounting to the ratio between the required number of training/test sample pairs 
and the number of predicted sample pairs.

Given new values of the CVs sampled according to the structured prior distributions, the learned GINN predicts corre-
sponding samples of the QoIs much faster than would be possible with direct simulation using the physics-based model. 
This enables the generation of io data sets that are orders of magnitude larger, which drives uncertainty propagation in the 
next section.

4. GINN accelerated uncertainty propagation for supercapacitor dynamics

By replacing the intrinsic computational bottlenecks of the homogenized model for supercapacitor dynamics by a NN, 
while retaining domain knowledge and correlations between input nodes, GINNs accelerate the prediction of relevant QoIs 
and thereby enable data-driven UQ and data-centric engineering approaches to simulation-based decision-making, e.g., de-
sign of novel metamaterials. A challenge in replacing a well-understood physics-based model with a black-box surrogate 
lies in interpreting and explaining surrogate model predictions. Although we replace the co-simulation framework with a 
more computationally advantageous surrogate, the complementary BN PDE serves as an anchor for interpreting surrogate 
predictions. The structured priors on CVs, which encode domain knowledge and constraints, ensure that the inputs to the 
GINN and hence the resulting output QoIs are physically sound.

Given the possibility of fast generation of sample data using the GINN, we estimate marginal and joint densities for QoIs 
with appropriate confidence intervals. Density estimates form the basic elements for understanding uncertainty propagation 
between and within scales and are used as building blocks for other UQ tasks such as sensitivity analysis. As the QoIs 
considered here inform a wide array of phenomena including the three-equation state model for EDLC cells (A.11), it is 
crucial to retain the continuous nature of these variables for downstream computations. Also, as we will demonstrate below, 
the QoIs for the application of interest are non-Gaussian and skewed. Therefore, density estimates, as opposed to summary 
statistics, are crucial to provide a complete picture of macroscopic QoIs and their complex interactions.

Kernel density estimation is a nonparametric statistical procedure for estimating probability density functions from sam-
ples of a given (univariate) random variable or (multivariate) random vector (see, e.g., [49]). For d-dimensional identically 
distributed random vectors Z(1), . . . , Z(m) , a kernel density estimator (KDE) for the unknown d-variate probability density f
is given by

f̂ (ζ ;B) = 1

M|B|1/2

M∑
m=1

K
(

B−1/2(ζ − Z(m))
)

,

where K : Rd → R is a smooth multivariate kernel function and B is a d × d symmetric and positive definite bandwidth 
matrix. As selection of the kernel shape does not play an important role, we select the widely used Gaussian kernel KG,

KG(ζ ) := exp(−ζ�ζ/2)

νd
, νd :=

∫
e−ζ�ζ/2dζ = (2π)d/2.

The choice of the bandwidth matrix B however is crucial to the performance of f̂ , and we choose B to be diagonal with 
Bij = δi jb2

i , for i, j = 1, . . . , d, with bandwidths bi > 0. With these selections of kernel and bandwidth matrix, and defining 
b = (b1, . . . , bd)

� , the above yields

f̂ Z (ζ ;b) = (2π)−d/2

M
∏d

j=1 b j

M∑
m=1

d∏
j=1

exp

⎡⎢⎣−
(
ζ j − Z (m)

j

)2

2b2
j

⎤⎥⎦ . (10)

To automate the computation of bandwidths, we utilize the Improved Sheather–Jones method, a direct plug-in bandwidth 
selector from [50].

As for any estimated quantity, confidence regions can, and should, be given for KDEs. The asymptotic normality of the 
pointwise error enables one to define a 1 − α confidence interval pointwise for f̂ Z (ζ ; b),

C1−α(ζ ) =
⎡⎣ f̂ Z (ζ ;b) − zα/2

√√√√μK ,d f̂ Z (ζ ;b)

M
∏d

j=1 b j

, f̂ Z (ζ ;b) + zα/2

√√√√μK ,d f̂ Z (ζ ;b)

M
∏d

j=1 b j

⎤⎦ , (11)

where zα/2 is defined through �(zα/2) = 1 − α/2 with � denoting the standard normal cumulative distribution function 
(e.g., [51]). The parameter μK ,d is a constant that depends on the kernel K and dimension d; e.g., for a Gaussian kernel KG

and d = 1, μKG,1 = (2
√

π)−1 (and for d = 2, μKG,2 = (4π)−1). C1−α(ζ ) is an easy to compute random interval such that

P
(
E[ f̂ Z (ζ ;b)] ∈ C1−α(ζ )

) ≥ 1 − α ,

that is, the confidence interval holds pointwise for ζ .
9
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Fig. 5. The reliability of KDEs depends on the amount of data available, as illustrated for the marginal PDFs on dependent CVs in (8) by the spurious features 
with loose confidence intervals resulting from M = 8 × 103 (solid/blue) observations. These are compared to the smooth densities with tight confidence 
intervals resulting from M = 107 (dashed/red) observations. A large volume of observations is computationally feasible as the structured priors on CVs, (7)
and (8) and Table 1, precede the computational bottleneck in the BN Fig. 1. (For interpretation of the colors in the figure(s), the reader is referred to the 
web version of this article.)

KDEs for the marginal distributions, (10) with d = 1, associated with the CVs Xlpor , XλD , and Xϕ�
are displayed in Fig. 5

together with appropriate confidence intervals (11), based on both M = 8 × 103 and M = 107 observations. The reliability of 
the KDEs, i.e., absence of spurious features, and the tightness of the confidence intervals very much depend on the amount 
of available data. As sampling the structured priors for the CVs is relatively inexpensive, the density estimates in Fig. 5 can 
be obtained with arbitrarily high confidence by making additional observations a priori. In contrast, QoIs, as child nodes of 
the highlighted bottleneck in Fig. 1, are expensive to sample using simulation of the physics-based model, such as direct 
computation of the BN PDE nodes Xb . Instead, we can use our GINN surrogate model to construct KDEs for the marginal 
and joint densities of the QoIs with a high degree of statistical confidence.

Density estimates (10), together with appropriate confidence intervals, provide a great deal of insight into the prop-
agation of uncertainties that is lacking in summary statistics. This is especially true here because of the skewed and 
non-Gaussian nature of the QoIs (Figs. 6 and 7). In Fig. 6, we plot a KDE for each QoI based on M = 8 × 103 samples 
simulated using the BN PDE with the co-simulation forward model framework and on M = 107 samples using the GINN. 
For each KDE, optimal kernel bandwidths are chosen using the Improved Sheather–Jones method. The structured priors over 
broad ranges in Table 1 produce a wide landscape of effective macroscopic dynamics observed in Figs. 6 and 7. A qualitative 
comparison of the densities in Fig. 6 reveals that the GINN is making faithful predictions that do not include spurious fea-
tures observed with cost-limited data obtained from the physics-based model simulation. Moreover, we can report the KDE 
with significantly increased confidence. That is, the confidence interval for the KDE based on the large number of samples 
enabled by the GINN is vanishingly small. In Fig. 7, we again observe the highly skewed and non-Gaussian nature of the 
joint densities for all combinations of QoIs based on M = 107 samples from the GINN. Likewise (although it is not displayed 
in the plot), the confidence intervals for each corresponding density are vanishingly small. As the surrogate model enables 
us to generate a large amount of io sample pairs, we do not require bootstrapping techniques to construct these KDEs or 
their corresponding confidence intervals.

5. Data-driven GINNs: Langmuir adsorption model

To highlight a data-driven GINN while recapitulating the key points of the modeling framework, we consider a Langmuir 
biomolecular adsorption model. It is widely used to describe competitive dissociative adsorption of two species on a catalyst 
surface [52] in, e.g., hydrogen oxidation in fuel cells and batteries [53–56]. The coverage dynamics ϑA and ϑB of species A
and B , respectively, are described by the system of nonlinear ODEs,

dϑA

dt
= kads

A P A(1 − ϑA − ϑB)2 − kdes
A ϑ2

A, ϑA(0) = ϑ0
A, (12a)

dϑB = kads
B P B(1 − ϑA − ϑB)2 − kdes

B ϑ2
B , ϑB(0) = ϑ0

B , (12b)

dt

10
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Fig. 6. The estimated marginal densities for the QoI variables (3), each based on M = 8 × 103 samples computed with the BN PDE (solid/blue) or M = 107

samples computed with the GINN (dashed/red), are non-Gaussian and skewed. The higher number of samples that can be generated with the GINN 
surrogate enables tighter estimates that omit spurious features, thereby enabling data-driven UQ analysis.

where kads and kdes are the adsorption and desorption rate constants, and P A and P B are the partial pressures of the species 
A and B . Coverages at equilibrium are calculated by solving (12) with long-time integrators, but the steady-state solution of 
(12) is also expressed analytically,

ϑA = (K A P A)
1
2

1 + (K A P A)
1
2 + (K B P B)

1
2

, ϑB = (K B P B)
1
2

1 + (K A P A)
1
2 + (K B P B)

1
2

, (13)

where K = kads/kdes is the equilibrium constant.
We study uncertainty in prediction of coverages at equilibrium,

ϑA = ϑA(E A, E B) and ϑB = ϑB(E A, E B) , (14)

as functions of E A and E B , the changes in the adsorption energy of each species. In this context, the equilibrium constants 
K A and K B are expressed in terms of the changes in adsorption energy by Arrhenius law,

K A = exp

(
− G A

kB T

)
(P A + P B)−1, (15a)

K B = exp

(
− G B

kB T

)
(P A + P B)−1, (15b)

where kB is the Boltzmann constant and T is the temperature. According to density functional theory (DFT), the Gibbs free 
energy of adsorption,

G A ∝ −2E A and G B ∝ −2E B , (16)

is given by changes in the adsorption energy plus additional components that are not a function of the catalyst surface. Thus, 
the QoIs (14) are highly nonlinear functions of the adsorption energy changes. The latter can be measured experimentally 
for a variety of metal catalyst surfaces. In [57], where competitive dissociative adsorption of H2 and O2 is considered using 
real DFT data (quantum computations for actual metals), the energy changes are observed to be correlated according to a 
linear model; the inclusion of these correlated priors is demonstrated to reduce the overall variance in predicted coverages 
at equilibrium. Therefore, we model the correlations between E A and E B via

E B = β0 + β1 E A, (17)
11
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Fig. 7. Estimated joint densities for all combinations of the QoI variables (3), based on M = 107 samples of each respective output computed with the GINN, 
exhibit complex relationships that are non-Gaussian and skewed. The generation of faithful multivariate densities for uncertainty propagation requires 
surrogate modeling to produce a sufficient number of samples.

where β0 and β1 are to be inferred from experimental data; that is the correlation structure of the CVs is data-driven.
Given the observed correlation in adsorption energy changes, it is natural to consider a random ODE corresponding to

(12) with key variables Z = {XE A , XE B , XK A , XK B , YϑA , YϑB } depicted in the Bayesian network in Fig. 8. The control variables 
are Xc = {XE A , XE B }, and corresponding QoIs are Y = {YϑA , YϑB }. We identify the computation of both the Arrhenius law 
and the equilibrium coverages as possible computational bottlenecks. Fig. 9 exhibits 80 simulated data points that mimic 
experimental observations of changes in adsorption energy for species A and B using different catalyst surfaces. The ob-
served correlation between XE A and XE B is indicated by the directed line between E A and E B in Fig. 8, denoting that the 
joint distribution of XE A and XE B is written as

P (XE A , XE B ) = P (XE B | XE A )P (XE A ). (18)

We assume for simplicity that no additional uncertainty or error enters (15) and (16) or the calculation of the steady-state 
solution (13), i.e.,

�(YϑA , YϑB , XK A , XK B | XE A , XE B ) = δ(YϑA − YϑB )δ(XK A − XK B ),

where δ is the Dirac delta function. Then, using (18), the joint density of the target QoIs is given by
12
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Fig. 8. A BN representing conditional relationships among key quantities in the Langmuir model (12) with data-driven correlation between input variables 
modeled by (17). The computation of the Arrhenius laws K A and K B in (15) and equilibrium coverages ϑA and ϑB by long-time integrators (or via (13) in 
this special case), pose a potential computational bottleneck.

Fig. 9. Simulated data points that mimic experimental observations of changes in adsorption energy for species using different catalyst surfaces (cf. Fig. 2 
in [57]) exhibit a correlated structure modeled by (17). These 80 correlated data points are used to train the GINN used to make the predictions shown in 
Fig. 10.

P (YϑA , YϑB ) =
∫

�(YϑA , YϑB , XK A , XK B | XE A , XE B )P (XE B | XE A )P (XE A )d(XE A , XE B ) . (19)

The data-driven BN ODE for the Langmuir model above parallels the development of the domain-aware BN PDE for super-
capacitor diffusion in Section 2.
13
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Fig. 10. (Top left) KDE for the joint density (YϑA , YϑB ) where the QoIs are computed using the simple Arrhenius laws (20) based on the corpus of 80
simulated data points in Fig. 9. (Top right) A higher-resolution kernel density estimator (on 128 points compared to 32) for (YϑA , YϑB ) based on 105

predicted samples generated using a GINN trained on the same corpus. The GINN-based density captures essential features of the QoIs while bypassing the 
computation of the Arrhenius laws and the equilibrium coverages; the latter are known in the present context, but would otherwise need to be obtained 
by solving (12) with long-time integrators. Thus, the trained GINN can be used to accurately and efficiently generate samples for further UQ and sensitivity 
analysis. (Bottom row) KDEs (on 128 points in each direction) for the same QoI based on Nsam = 104 training data points (left) and corresponding 107

GINN-based surrogate predictions (right).

We follow the workflow in Section 3 (see also Fig. 4) to build a GINN surrogate. To simplify the exposition, we consider 
a Langmuir model with a simplified Arrhenius law,

G A = −2E A + 5 , G B = −2E B + 10 ,

K A = exp(−G A/2)(P A + P B)−1 , K B = exp(−G B/2)(P A + P B)−1 ,

P A = 1 , P B = 1 .

(20)

We generate a corpus of Nsam = 100 i/o data points (XE A , XE B , YϑA , YϑB ) by computing the outputs (ϑA , ϑB) using (13)
and (20) for each of Nsam simulated input pairs (E A, E B). Next, we construct a GINN whose hidden layers (two with 50 
nodes each) bypass the calculation of the Arrhenius law and equilibrium coverage. Following the training and testing proce-
dure outlined in Section 3 (see also Fig. 4), we train a GINN on Ntrain = 80 = 0.8Nsam data points achieving a training loss 
of Errtrain = 8.69 × 10−4 with a corresponding test loss of Errtest = 9.51 × 10−4. Fig. 10 illustrates that the GINN-predicted 
KDEs for the QoI capture essential features based on this sparse training data; in the top row of this figure, the GINN-based 
KDE representing 105 predictions (right) is in close agreement with the KDE representing the Nsam training data points (left) 
(note the resolution of the KDE differs across the two plots due to the small sample size Nsam). The trained GINN makes 
accurate and efficient predictions that bypass the calculation of the Arrhenius law (20) and the equilibrium solution (13). 
The bottom row of Fig. 10 depicts a second GINN trained using a moderately sized sample of Nsam = 104 simulated training 
points. The KDE constructed from 107 GINN-based surrogate predictions (right) demonstrates close agreement with the KDE 
based on the Nsam data points alone (left).

6. Conclusions and future work

We developed a domain-aware surrogate model for simulation-based decision-making in complex multiscale and mul-
tiphysics systems that leverages well-known tools from deep learning and stochastic/predictive modeling. By embedding a 
probabilistic graphical model, specifically, a Bayesian network (BN), into a deterministic homogenized (i.e., physics-based) 
model for effective ion diffusion in an electrical double layer (EDL) supercapacitor, we distilled a Graph-Informed Neural 
Network (GINN) surrogate that incorporates domain knowledge via structured priors on tunable, possibly correlated, con-
trol variables (CVs) and bypasses computational bottlenecks in the physics-based model by replacing them with a NN. The 
complementary BN partial differential equation (BN PDE) model provided a context for interpreting the GINN’s predictions. 
A second example, dealing with the Langmuir adsorption model, illustrated a data-driven GINN where the structure in the 
14
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CVs is built from observed correlations in experimental data, thereby arriving at a suitable BN ordinary differential equation 
(BN ODE) model.

Our analysis yields the following major conclusions.

1. Both the correlated CVs and output quantities of interest (QoIs) have non-Gaussian and skewed probability distributions, 
necessitating their characterization using probability density functions (PDFs) rather than via summary statistics.

2. GINNs are able to leverage a “sparse data investment” to yield “big data returns”: training on a small set of expensive-
to-compute physics-based input-output (io) data, GINNs can cheaply generate a large set of output data to predict QoIs 
with confidence. This yields several orders of magnitude in computational cost savings compared to using physics-based 
models alone.

3. Because GINNs generate io data fast, they can be deployed to estimate the marginal and joint distributions of mutually 
correlated QoIs with tight confidence intervals.

In a follow-up study, we plan to use the surrogate-based KDEs in Fig. 6 and Fig. 7 to perform data-driven UQ tasks 
including differential mutual information-based sensitivity studies according to the framework in [16], as opposed to 
variance-based approaches (e.g., [15]), given the non-Gaussian nature of the QoIs.

The weights and biases of the GINN were determined based on a single run of the entire algorithm including generation 
of training data with the BN PDE, fitting the GINN with the training set and evaluating its test (generalization) error on an 
independent test data set. Instead, we could perform, say, Nreal realizations of the overall procedure, each with a different 
(but same size) training set with inputs stemming from another set of CV realizations. Then a different set of GINN param-
eters would be learned, and testing the resulting network would yield a different value for the test loss for the same set of 
test data. This way, we could build up a PDF for the test loss, which would facilitate comparison of test set predictability 
for different complexities of the GINN (e.g., using a different number of hidden layers or neurons per hidden layer), to find 
the GINN configuration that has the smallest Nreal-averaged test loss. A similar reasoning was followed in [5] in the context 
of a PDE based surrogate for the two-dimensional nearest-neighbor kinetic Ising model.
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Appendix A. Physics-based model for supercapacitor dynamics

EDL capacitors or EDLCs, as opposed to electrochemical pseudocapacitors, are supercapacitors that rely on the large 
capacitance of the EDL formed around the surface of their electrodes, typically comprised of a carbon-based hierarchical 
nanoporous material, for their energy storage capabilities [58]. State models for EDLC cells governing the EDL behavior 
can be parametrized by effective constants obtained through rigorous mathematical homogenization [39] and related to the 
diffusion of ions in the cell’s electrolyte. Rather than relying on phenomenological relations between microscopic parameters 
and their macroscopic counterparts, such homogenization or upscaling techniques [59,60] comprise an ab initio approach 
for deriving macroscopic descriptors which allows them to establish the limits of applicability of the resulting macroscale 
model.

We consider a supercapacitor with electrodes consisting of a hierarchical nanoporous material V with characteristic 
length L that is composed of a pore space P and impermeable (typically carbon) structure S , i.e., V =P ∪S [39]. The pore 
15
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space P is filled with an electrically neutral electrolyte with concentrations of positive ions or cations (e.g., tetraethylam-
monium ions) and negative counter ions or anions that evolve in both space and time. The characteristic length scale for 
this evolution, i.e., a typical pore diameter, is denoted by � and satisfies ε := �/L � 1. The interaction of the electrolyte 
ions with static charges at the fluid-solid interface � gives rise to an electrical double layer (EDL). A representative unit 
cell U consisting of pore space P̂U , structure ŜU , and fluid-solid interface �̂U is illustrated in Fig. A.11 adapted from [39]. 
We are interested in understanding macroscopic material properties that provide a homogenized (continuum-scale) descrip-
tion of the ion diffusion in the electrolyte, which was derived from a microscale formulation based on the Nernst–Planck 
equation in [39]. The latter describes the motion of the electrolyte ions under the influence of a concentration gradient and 
the electric field associated with the gradient of the electric potential in the EDL. The relevant QoIs are then the effective 
diffusion coefficients of the anions and cations in the electrolyte, and two derived quantities, the electrolyte conductivity 
and transference number.

A.1. Effective ion diffusion coefficients

The effective (continuum-scale) diffusion coefficients of the cations and anions are second-order semipositive-definite 
tensors given by

Deff± := Dω

G±

∫
P̂U

e∓zϕ̂EDL(I + ∇yχ
�±)dy , G± :=

∫
P̂U

e∓ϕ̂EDL dy. (A.1)

Here D [L2/T]3 is the molecular diffusion coefficient of both ion species in the electrolyte;

ω := ‖P‖/‖V‖ (A.2)

is the material porosity; z [-] is the ion charge (valence)4; I is the identity matrix; and χ±(y) are U -periodic vector functions 
arising from the homogenization closure equations, i.e., that solve the boundary-value problems

∇y
(
e∓zϕ̂EDL(I + ∇yχ

�±)
) = 0 , y ∈ P̂U ; (A.3a)

n(I + ∇yχ
�±) = 0 , y ∈ �̂U ; (A.3b)∫

P̂U

χ±dy = 0 . (A.3c)

In (A.3), ϕ̂EDL is a non-dimensional formulation of the EDL potential ϕEDL [V], that is,

ϕ̂EDL = FϕEDL

RT
,

where F = 96485 C/mol is the Faraday constant, R [J/(mol K)] is the gas constant, and T [K] is the temperature. Under the 
assumption that the spatial variability of ϕ̂EDL is confined to the nanoscale, it is found by solving

∇̂2ϕ̂EDL = �2ĉb

ε2λ2
D

sinh(zϕ̂EDL) , ŷ ∈ P̂U ; (A.4a)

ϕ̂EDL = ϕ̂� , ŷ ∈ �̂U , (A.4b)

where � [L] is the characteristic pore size; ĉb := cb/cin [-] with cb [mol/l] a characteristic ion concentration in the system 
(e.g., the initial or average concentration) and cin [mol/l] the initial ion concentration; the Dirichlet boundary condition

ϕ̂EDL = ϕ̂� = Fϕ�

RT

arises from assuming that the surface � carries a constant electric (zeta) potential ϕ� which is satisfied if the solid matrix 
is highly conductive as in the case of carbon aerogels [61]; and λD [L] is the Debye length, a characteristic length of the 
EDL which in nanoporous materials is of the same order as the characteristic pore size �. The Debye length is given by

λD =
√

RTE
2F 2z2νcin

, (A.5)

3 We use L for dimensionless units of length and l for liters.
4 For simplicity of presentation, we assume ion charge symmetry (z+ = −z− = z) and equality of dissociation constants (ν+ = ν− = ν), i.e., the electrolyte 

salt is completely dissociated into cations and anions which have equal but opposite charges. The analysis can be easily extended to multicomponent and/or 
asymmetric electrolytes.
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Table A.2
Values for the constant parameters in (A.6). For simplicity we take these parameters 
as fixed values (cf. (8b) where these could also be incorporated as hyperparameters).

Variable Meaning Value Units

V external voltage 3 V
CH Helmholtz capacitance 0.45 F/m2

E solvent’s dielectric constant 6.9e-11 -
ϕecm electrocapillary maximum 0.1 V
ϕmin midplane potential 0.01 V

Fig. A.11. Unit cell U for a homogeneous isotropic nanoporous material containing circular impermeable structures ŜU of radius r separated by pore space 
P̂U with pores of throat size 2lpor in both the transverse and longitudinal directions. The fluid-solid interface �̂U , involved in the formation of the EDL, 
is a key component in the investigation of EDLC cells. Data-driven UQ for simulation-aided design of nanoporous metamaterials is crucial to data-centric 
approaches for engineering advanced supercapacitors for long-term energy storage applications.

where E [F/m] is the absolute permittivity of the solvent and ν [-] is the dissociation constant. We set cb = cin (i.e., ĉb = 1) 
in our numerical experiments, and compute ϕ� by solving the transcendental equation

ϕ� = V

2
− ϕecm − σ

CH
, (A.6a)

where V is the external voltage, ϕecm is the electrocapillary maximum, CH is the Helmholtz capacitance, and σ is the 
surface charge density given by

σ = √
4ERT I

√
cosh

(
eϕ�

kBT

)
− cosh

(
eϕmin

kBT

)
,

I = z2C, ϕmin = min
y∈P̂U

ϕEDL(y).

(A.6b)

In (A.6b), e [C] is the elementary charge, kB [J/K] is the Boltzmann constant, I is the ionic strength, C is the macroscopic 
ion concentration, and ϕmin is the midplane potential computed by solving (A.4). Since the latter requires knowledge of the 
boundary potential ϕ� , which we are solving (A.6) for, this would require an iterative procedure. Instead, we assume a value 
of 0.01 for ϕmin. Additionally, for simplicity we set C = cin, i.e., equal to the initial ion concentration. Using an initial guess 
of 0.3 for ϕ� , performing a constrained (ϕ� ≤ 0.5) nonlinear optimization in MATLAB

® resulted in physically reasonable 
solutions for ϕ� over the ranges of T and cin considered. The values of the various constants in (A.6) are given in Table A.2.

As opposed to the typical treatment that expresses effective diffusion through phenomenological relations, the rigorous 
derivation of the effective diffusion tensors in (A.1) using homogenization theory enables one to express them in terms of 
pore-scale geometry and processes including the EDL potential. In particular, we observe that only the diagonal elements 
of Deff± are non-zero since off-diagonal elements of ∇yχ�± are zeros in (A.3). Together with the fact that we consider a 
homogeneous isotropic nanoporous material (see unit cell in Fig. A.11), the diffusion coefficients in (A.1) become scalars,

Deff+ and Deff− . (A.7)
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The assumption of isotropy is reflected in the fact that the pore throat size is identical in both directions (Fig. A.11) and can 
be expressed in terms of the solid radius r and porosity ω via

lpor = −r + 0.5

√
4r2 + 4r2 ·

[
π

4 · (1 − ω)
− 1

]
, (A.8)

where lpor refers to the half pore throat size.5

A.2. Effective electrolyte conductivity and transference number

The effective diffusion coefficients in (A.1) are used to compute other key QoIs including the effective electrolyte con-
ductivity κeff [mS/cm],

κeff := νz2 F 2cin

RT
(Deff+ + Deff− ) , (A.9)

and the transference number t+ [-] (fraction of the current carried by the cations),

t+ := Deff+
Deff+ + Deff−

. (A.10)

A.3. Three-equation model governing the EDL

The effective ion diffusion parameters Deff+ , Deff− , κeff, and t+ serve as coefficients in a three-equation model [39,62,63] for 
macroscopic state variables that characterize the behavior of EDLC cells: electrolyte ionic concentration C(x, t), electrolyte 
potential �(x, t), and electric potential of the solid phase �s(x, t), satisfying,

CEDL
∂(�s − �)

∂t
= ∂

∂x

(
σs

∂�s

∂x

)
, (A.11a)

∂

∂x

(
σs

∂�s

∂x
+ κeff ∂�

∂x
+ κeff RT

2t+ − 1

zF

∂ ln C

∂x

)
= 0 , (A.11b)

ω
∂C

∂t
= ∂

∂x

(
2Deff+ Deff−

Deff+ + Deff−

∂C

∂x
− α

∂(�s − �)

∂t

)
, (A.11c)

for x ∈ [0, L] and t > ∞, subject to suitable boundary conditions. Here σs is the electric conductivity of the solid phase, CEDL
is the EDL capacitance, and α = α(x) is a piecewise defined function of t+ that varies according to electrode thickness and 
separator thickness. In the remainder of this work, we will use their normalized counterparts Deff+ /D and Deff− /D, but retain 
the notation Deff+ and Deff− to refer to these normalized effective diffusion coefficients.

Equations (A.1)–(A.8) and (A.11) constitute two stages of a complex model for supercapacitor dynamics in EDLC cells that 
includes nonlinear multiscale and multiphysics interactions. To construct a BN PDE model, we focus only on the first stage 
covered in Appendix A.1 and Appendix A.2. A similar reasoning can be followed for the EDLC state model detailed in the 
current section.
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