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Abstract

Random domain decomposition (RDD) provides a powerful tool for quantifying uncertainty in flow simulations, when both

the geologic makeup of a porous medium and its hydraulic parameters are under-specified by data. Its prior applications dealt

with flows in porous media whose internal compositions are amenable to simple parameterizations. This study provides a means

for probabilistic reconstruction of boundaries between geologic facies. We apply our general approach to multiple data sets to

reconstruct highly permeable zones within an aquitard in the Bologna (Italy) aquifer system and demonstrate how it can be used

in conjunction with RDD.
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1. Introduction

With rapid advances in computing power and

numerical techniques, insufficient medium parame-

terization (site characterization) seems to be one of

the remaining stumbling blocks on the road to

describing efficiently and reliably flow and transport

in heterogeneous subsurface environments. As the

size of computational domains increases (it is not

uncommon to see numerical models with millions of

degrees of freedom), the need to quantify uncertainty

associated with assigning values of hydraulic and

transport parameters (e.g., hydraulic conductivity,

porosity, and dispersivity) to the nodes of a grid where

data are not available is becoming increasingly

important. Complicating the matter further is an

often occurring disparity between a scale (or scales)

on which data have been collected and a scale on

which they are used in numerical simulations.

Stochastic methods have emerged as a powerful

tool for making predictions and quantifying pre-

dictive uncertainty in subsurface modeling. How-

ever, most of these approaches are limited to mildly

heterogeneous porous media. For (semi-) analytical

methods, such as moment equations, this require-

ment is essential to guarantee the accuracy of

closure approximations. For purely numerical

methods, such as Monte-Carlo simulations, it is

needed to keep the number of realizations manage-

able. Of course, the more data are available, the

higher the degree of heterogeneity for which

stochastic methods are reliable (Guadagnini and

Neuman, 1999). Advances in data collection and

data assimilation techniques make well-conditioned

simulations a reality.
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When data are scarce, however, the question

remains how to make the best use of them within the

stochastic framework. The solution we propose is to

utilize available data in a way that significantly

increases their information content. Specifically, we

demonstrate how available data, e.g., hydro-strati-

graphic measurements, can be used to estimate the

statistics of a facies’ geometry. These data are further

combined with other types of data, e.g., hydraulic

conductivity measurements, to obtain a parameter’s

distribution within each facies. This is in contrast with

existing stochastic approaches that either ignore

internal macro-structures of porous media completely

(the so called homogeneous approximation) or rely on

statistically homogeneous multi-modal distributions.

For the detailed review of these and other methods,

such as data de-trending, we refer the interested reader

to Winter et al. (2003).

A probabilistic description of facies’ geometry is

the input required by the random domain decomposi-

tion (RDD) approach (Winter and Tartakovsky, 2000,

2002; Winter et al., 2002). The key advantage of RDD

is that it provides robust closures (accurate approxi-

mations) for moment equations even when the

medium is highly heterogeneous. RDD makes use of

the fact that a high degree of heterogeneity usually

arises from the presence of different geologic facies

(understood here in a very broad sense to include

fractured regions, inclusions, layering, etc.) in the

subsurface environment. Specifically, RDD replaces a

non-Gaussian, multi-modal hydraulic and/or transport

parameter field, YðxÞ, of large variance, s 2
Y , with a

two-scale random process. The large-scale random-

ness arises due to uncertainty in internal boundaries of

geologic facies. The small-scale randomness corres-

ponds to uncertainty in hydraulic and/or transport

parameters within each facies. In other words, a non-

Gaussian, multi-modal probability density function

pðYÞ is replaced with a joint probability density

function pðY ;GÞ ¼ pðYlGÞ; pðGÞ: The conditional

probability density function, pðYlGÞ; describes the

distribution of Y within each geologic facies con-

ditioned on the boundary location G: As such it has

convenient properties, such as uni-modality, small

variances, etc.

Within the RDD framework, calculating the

statistics of system parameters, such as mean

hydraulic head, khl; is carried out in two steps.

The first step consists of calculating the conditional

statistics, e.g.,

khlG ¼
ð

h pðY lGÞ dY : ð1Þ

The second step is averaging in probability space of G

khl ¼
ð
khl GpðGÞ dG: ð2Þ

Evaluating Eq. (1) requires a closure approximation,

e.g., a perturbation expansion in the variance of log-

conductivity, s 2
Y : This formally limits applicability of

such approximations to mildly heterogeneous porous

media, i.e., media with s 2
Y p 1: As demonstrated by

Winter et al. (2002), the RDD approach extends the

range of applicability of a perturbation closure of the

moment equations to heterogeneous media with s 2
Y as

high as 24.

One of the main unresolved issues of the RDD

approach is how to obtain pðGÞ from available (scarce)

data. Another is evaluation of the functional integral

in Eq. (2). Previous applications of RDD dealt

with idealized geometries, such as square inclusion

(Winter et al., 2002) or perfect layering (Guadagnini

et al., 2003), which makes their statistical parameteri-

zation straightforward. This study provides a means to

apply RDD to realistic settings with complicated

geologic structures, which do not lend themselves to

simple parameterizations.

We formulate our general approach for the

probabilistic geometry reconstruction in Section 2.

The strategy we pursue here is somewhat similar to

that proposed by Ritzi et al. (1994). The key

difference is that their method provides an estimate

of the facies geometry without quantifying the

uncertainty associated with such a prediction. Our

method provides a probabilistic description of the

internal boundary G in the form of a probability

density function pðGÞ: We demonstrate applicability

of the approach to real world simulations, by using

data sets collected at an aquifer system of Bologna,

Italy (Section 3). The robustness and accuracy of the

approach are analyzed in detail in Section 4 for a

synthetic layered media. RDD is then used in Section 5

to calculate, without resorting to expensive Monte-

Carlo simulations, mean hydraulic head and head

variance. Section 6 compares our approach with

alternative methods.
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2. General approach

A typical site characterization yields multiple data

sets that describe different, but often interconnected,

features of a porous medium, such as its hydraulic

conductivity, stratigraphy, etc. Often, these data sets

correspond to different support volumes and possess

variable degrees of reliability. We leave these

important factors for future studies, and assume that

all data are error free and are collected on the same

support scale.

Let Np be a number of parameters AðpÞ ðp ¼

1;…;NpÞ: Each parameter AðpÞ is sampled at

locations x
ðpÞ
i ði ¼ 1;…;N

ðpÞ
s Þ; with AðpÞ

i ¼ AðpÞðxiÞ

indicating the corresponding measurements. Recon-

structing boundaries of geologic facies from small-

scale data and estimating the corresponding

uncertainties are our main goals. For the sake of

simplicity, we assume that a medium consists of two

geologic facies, F1 and F2: A typical pdf for a

parameter AðpÞ becomes bi-modal (see, for example,

Fig. 2 that shows a frequency distribution for a

sedimentologic data set used below in our analysis of

the Bologna site).

The procedure we propose consists of the follow-

ing steps.

Step 1

Constructing the indicator function. Several para-

meters are often sampled at the same locations. Let

N0 be the number of locations where measurements

of more than one parameter are available. Then, the

total of N ¼
PNp

j¼1 N
ðjÞ
s 2

PN0

j¼1 N
ðjÞ
s þ N0 locations

have at least one measurement. To each of these

locations, xi ði ¼ 1;…;NÞ; we assign a (random)

indicator function

IðxÞ ¼
1 x [ F1

0 x [ F2

(
: ð3Þ

The following rule is used to infer values of the

indicator function from the data sets AðpÞ ðp ¼

1;…;NpÞ: If a measurement falls within the interval

A2
1 # AðpÞ

i # Aþ
1 ; then the measurement point

xi [ F1; i.e., IðxiÞ ¼ 1: Otherwise, the measurement

location xi [ F2; i.e., IðxiÞ ¼ 0: The bounds A2
1 and

Aþ
1 are inferred from analyzing corresponding bi-

modal distributions.

Step 2

Estimating the relative volumes occupied by each

facies. Volumetric fractions V1 and V2 occupied by

the facies F1 and F2; respectively, are estimated by

computing the global de-clustered mean of the

indicator function IðxiÞ; where i ¼ 1;…N: De-clus-

tering is required to avoid systematic bias introduced

by uneven distributions of measurement points

(Issaks and Srivastava, 1989).

Step 3

Structural analysis and spatial statistics of IðxÞ: A

correlation structure of the indicator function IðxÞ is

computed via a sample variogram. The ensemble

mean, kIðxÞl; and variance, s 2
I ðxÞ; of the indicator

function are computed by ordinary Kriging. This yields

the probability, P½x [ F1�; of encountering the facies

F1 at a point x; since P½x [ F1� ¼ kIðxÞl: Equally

important to note is that kIðxÞl represents an estimate of

the local volumetric fraction of the facies F1:

Step 4

Calculating the probability distribution of I at each

estimation point. This step requires an assumption that

IðxÞ is a truncated Gaussian field, so that the statistics

computed by the point Kriging (mean and variance)

uniquely specifies pðI; xÞ; a single-point probability

density function of IðxÞ:

Step 5

Assigning probabilistic weights to the boundaries. In

the spirit of Ritzi et al. (1994), we assume that the mean

boundary between the materials F1 and F2 is defined by

points x; where P½x [ F1� ¼ V1: This preserves the

relative volumetric fractions occupied by each facies,

as inferred from available data in Step 2. Then for any

suitable spatial discretization D of the pdf pðI; xÞ; we

compute

WðxÞ ¼
ðV1þD=2

V12D=2
pðI; xÞdI: ð4Þ

The isolines WðxÞ ¼ Wi define boundaries Gi

between the facies F1 and F2 corresponding to

probabilistic weights Wi:

Once the weights Wi are calculated, statistics of

the system states, such as the mean hydraulic head in

Eq. (2), is readily approximated by

khl ¼
X

i

WikhlGi
: ð5Þ
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3. Application to the Bologna aquifer system (Italy)

We use our probabilistic facies reconstruction to

analyze composition of an aquitard that separates two

aquifers in the alluvial aquifer system of the city of

Bologna, Italy (Fig. 1). The aquitard serves as a

natural barrier that separates the polluted upper

aquifer from the lower aquifer that is used for

municipal water supplies. The available 39 geognos-

tical boreholes logs and 183 well-logs reveal that the

aquitard’s thickness is highly variable, changing from

1 to 3 m in the vicinity of the peak of an alluvial fan to

8–12 m near the well fields, to even larger values in

the northern part (Guadagnini et al., 2002). The

deposits are mainly silty-clayey, with local inter-

bedding of coarser material. A quantity [gr þ sa]/th,

representing the cumulative thickness of gravel (gr)

and sand (sa) relative to the total thickness (th), is

generally less than 0.2. However, it displays local

peaks larger than 0.8, indicating possible disconti-

nuities within the aquitard itself. We use hydro-

stratigraphic data to categorize materials within the

aquitard Alpha into two classes (i.e., low- and high-

permeability facies) according to the frequency

distribution of [gr þ sa]/th shown in Fig. 2.

Presence of the highly conductive regions indicates

possible connections between the upper and lower

aquifers.

Following the steps outlined in Section 2, we use

sedimentological and stratigraphic data sets to assign

the indicator function IðxÞ to the low-conductivity

facies, F1: Specifically, a point x is assigned to either

low- or high-conductivity facies according to values

of both (a) local thickness of the aquitard (as

estimated by stratigraphic analysis) and (b) percent-

age of the coarse-grain materials integrated along a

stratigraphic column within the identified thickness. A

global de-clustered average indicates that V1 ¼ 0:81;

i.e., that the low-conductivity facies occupies about

80% of the sampled aquitard.

Fig. 1. Aquitard Alpha separating two aquifers in the Bologna

aquifer system.

Fig. 2. Frequency distribution of [gr þ sa]/th, the cumulative

thickness of gravel (gr) and sand (sa) relative to the total thickness

(th) in the aquitard Alpha. Such a distribution is typical for parameters

that characterize porous media composed of two distinct facies.

Fig. 3. A sample variogram for the indicator function IðxÞ:
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The next step is to use a sample variogram to

estimate a spatial correlation of IðxÞ: We computed

several directional variograms using an angular

tolerance of 308 along the directions oriented at

azimuths of 0, 45, 90 and 1358 from the North. The

sample variograms exhibit no clear evidence of aniso-

tropy. Fitting an isotropic exponential model with a

nugget to the sample variograms results in nugget ¼

0.08, sill ¼ 0.11 and correlation scale ¼ 350 m. Fig. 3

shows the corresponding variogram.

Using point Kriging, and selecting probability

cutoff P½x [ F1� ¼ V1 ¼ 0:81; yields an estimate

(ensemble mean) of the facies geometry, which is

shown in Fig. 4. Fig. 5 depicts boundaries between

the two facies that correspond to the probabilistic

weights 0.069 and 0.044. The contour levels of

cumulative frequency corresponding to these bound-

ary configurations are 74 and 87%, respectively.

Reliability of our facies reconstruction approach is

corroborated by the analysis of available stratigraphic

data and geologic cross-sections, which suggest

connections between upper and lower aquifers within

the identified areas. To further investigate accuracy

and robustness of the proposed approach, we consider

a synthetic example. Of particular interest in this

example is the influence of measurement locations on

one’s ability to delineate facies.

4. Synthetic example

We start by generating a heterogeneous Y ¼ ln K

field, whose properties, including facies’ geometry,

are known. Next we select 100 points, where

conductivity is known (measured), and use these

data to reconstruct the boundary. To investigate the

impact of measurement locations we consider two

scenarios. In the first, the data points are uniformly

distributed throughout the domain, without any regard

for a boundary location. In the second, the measure-

ments are denser around a supposed boundary

between the two materials. The latter scenario occurs

Fig. 5. Facies geometry corresponding to contour levels of 74% (a) and 87% (b) of cumulative frequency.

Fig. 4. Estimate of the facies geometry.
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in practice, when an expert knowledge is incorporated

into modeling process.

Consider a square domain within a layered medium

composed of two contrasting materials. The layers are

separated by a straight line that passes through the

center of the square.

The domain is discretized by a grid of 104 square

elements (100 rows and 100 columns) of uniform size,

D ¼ 0:2; with five points per correlation length of Y :

The log-conductivity is correlated within each layer

but there is no correlation between the conductivities

of different layers. Values of Y are generated at the

center of elements using GSLIB (Deutsch and

Journel, 1992). The two sampling strategies are

shown in Fig. 6.

Following the procedure outlined in Section 2

leads to

(1) the indicator function IðxÞ ¼ 1 when x [ F1

(a low-conductivity facies) and 0 when x [ F2

(a high-conductivity facies);

(2) the volumetric fractions V1 ¼ V2 ¼ 0:50;

(3) the sample variograms displaying a zonal

anisotropy. Regardless of the sampling strategy,

fitting an isotropic Gaussian model with a nugget

to the sample variograms gives nugget ¼ 0.02

and range ¼ 20. For the uniform sampling,

sill ¼ 0.5 in the N/S direction and 0.09 in

the E/W direction. The alternative sampling

results in sill ¼ 0.5 in the N/S direction and

0.07 in the E/W direction;

(4) the estimate (ensemble mean) of the boundary,

which is defined by P½x [ F1� ¼ V1 ¼ 0:50;

and the probabilistic weights associated with

each boundary configuration (Figs. 7 and 8).

Not surprisingly, the non-uniform sampling

increases accuracy of the estimates (ensemble

means) of the boundary. At the same time, Fig. 7

shows that the two sampling strategies play virtually

no role in assigning probabilistic weights to the

boundaries. This is also confirmed by Fig. 8 that

compares the boundary’s probabilistic reconstructions

corresponding to the two sampling strategies. This

somewhat unexpected result can be explained by the

simple geometry (a straight line) combined with the

particular arrangements of data points used in our

example. We expect that for more complicated spatial

configurations, such as the one considered in

Section 3, the placement of data points will play a

crucial role in reducing uncertainty in the boundary

reconstruction.

It is interesting to note that the maximum weight

does not correspond to the horizontal line located in

the middle of the square domain. This is so, because

some of the measurement points with I ¼ 1 are closer

Fig. 6. Layered medium with (a) uniformly and (b) non-uniformly distributed measurement points. The points are assigned values of the

indicator function, such that IðxÞ ¼ 1 if x is in the low-conductivity layer and 0 otherwise.
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to the ‘true’ separation line than the points with I ¼ 0

(Fig. 6). This results in a mean (estimated) boundary

that somewhat differs from the ‘true’ location of the

layering.

5. Quantifying uncertainty in flow simulations

To demonstrate how the probabilistic facies

delineation can be used in conjunction with RDD,

we consider flow through a medium with the internal

boundaries analyzed in Section 1. Flow simulations in

this section differ from reality in two important

aspects. First, we impose artificial boundary con-

ditions, which translates into an artificial flow regime.

Second, due to lack of conductivity data, we

arbitrarily select heterogeneous distributions of the

hydraulic conductivity of each facies.

Specifically, we assume that within each facies the

log hydraulic conductivity, Y ¼ ln K; is a statistically

homogeneous Gaussian field with an exponential

correlation function. Mean log-conductivities of the

low- and high-permeability zones are set to kYlowl ¼
3:5 and kYhighl ¼ 7:0; respectively, when hydraulic

conductivities are expressed in cm/day. We further

assume that log-conductivity within each facies has

the same variance s 2
Y ¼ 1; correlation scale l; and

that the conductivities of the two facies are uncor-

related. All these assumptions are made for the sake of

Fig. 7. Distributions of weights for the layered medium with

(a) uniformly and (b) non-uniformly distributed measurement points.

Fig. 8. Probabilistic reconstructions of the boundary between the two layers obtained from (a) uniformly and (b) non-uniformly distributed

measurement points. Each isoline represents a boundary configuration between the two layers, which corresponds to a given weight.
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convenience only, since the general theory of RDD

allows for different covariance structures within facies

and for cross-correlations between facies.

A correlation function for the hydraulic conduc-

tivity of the composite medium is obtained by

averaging the conditional correlation functions over

all possible realizations of the materials distribution.

Even though the two materials are assumed to be

uncorrelated, there exists a transitional zone, where

the points from the two materials are correlated.

Within this zone, membership of a given point in a

particular material is uncertain. Averaging over the

boundary distribution smooths the conditional cor-

relation function of conductivity.

Consider steady-state flow through the rectangular

domain shown in Figs. 4 and 5. Flow is driven by

(mean) head gradient of about 0.2% due to the cons-

tant heads HA ¼ 21:0 m and HB ¼ 1:0 m that are

imposed on the left and right hand boundaries of the

domain, respectively. The remaining two boundaries

are impermeable. Both the size of the flow domain

(7.2 £ 6.8 km2) and the background hydraulic gradi-

ent are representative of the actual field conditions. A

pumping well is located in the middle of the field and

operates at the constant flow rate of 100 m3/day.

The flow domain is discretized by a grid of 19,484

square elements (144 rows and 136 columns) of

uniform size, D ¼ 50 m; with five points per corre-

lation length of Y : We obtain the conditional

hydraulic head statistics (conditional mean and

variance) by solving the RDD moment equations

(Winter and Tartakovsky, 2000, 2002) with the

finite element code of Guadagnini and Neuman

(1999). The accuracy of approximations that is

required to derive these moment equations is assessed

by comparison with Monte-Carlo simulations. Since a

complete stabilization of the Monte-Carlo statistics is

not necessary for such a comparison to be meaningful

(Guadagnini and Neuman, 1999), 3000 conditional

Monte-Carlo simulations for each of the log-conduc-

tivity fields were used. Since 21 realizations of the

material distributions were considered in this study,

we performed a total of 21 £ 3000 ¼ 63,000 Monte-

Carlo simulations. Such a huge computational burden

makes the use of Monte-Carlo simulations to compute

statistics of transient flow and/or transport problem-

atic. RDD makes the stochastic analysis of such

systems feasible.

We find that an overall agreement between the two

solutions is excellent, except in the vicinity of the

pumping well. This is in line with previous results of

Guadagnini and Neuman (1999). The mean and

variance of the hydraulic head computed with RDD

are shown in Fig. 9.

To ascertain the relative importance of the two

sources of uncertainty (facies geometry versus facies

conductivity), we show in Fig. 10 the mean and

variance of the hydraulic head corresponding to the

random facies geometry but the deterministic (cor-

responding to their respective geometric means)

hydraulic conductivities. Comparing Figs. 9 and 10

reveal that this simplification leads to similar

Fig. 9. Mean (a) and variance (b) of hydraulic head resulting from uncertain facies geometry and hydraulic conductivity.
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qualitative spatial patterns of the mean head and the

head variance. However, quantitatively results differ

considerably between the two models, especially with

regard to hydraulic head variance. This is in

accordance with earlier results of Guadagnini et al.

(2003) obtained for stratified media and of Winter

et al. (2003) obtained for a low-permeability inclusion

in a high-permeability matrix.

6. Comparison with alternative models

There exist several approaches that implicitly

account for the presence of different geologic facies,

without explicitly preserving the facies topology.

These include a homogeneous approximation, deter-

ministic trend models, and models resulting in

multi-modal distributions of hydraulic conductivity.

(We refer the interested reader to Winter et al., 2003

for a review of these and other similar approaches.).

Such approaches result in statistically homogeneous

conductivity distributions. In contrast, RDD gives

rise to conductivity fields that are essentially

inhomogeneous, in that their (ensemble) means,

variances, and correlation functions are all space

dependent. This distinction is important, since it is

reasonable to expect that points within a geologic

facies are better correlated than points in different

Fig. 10. Mean (a) and variance (b) of hydraulic head resulting from uncertain facies geometry and known (deterministic) hydraulic conductivity.

Fig. 11. Mean (a) and variance (b) of hydraulic head computed with the homogeneous approximation.
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facies. RDD accounts for this fact, while the other

models do not.

We have analyzed errors introduced by determi-

nistic trend models and have contrasted them with

RDD elsewhere (Winter et al., 2002). Here, we

provide a similar comparison for the homogeneous

model and a model with a bi-modal conductivity

distribution. The former constructs a statistically

homogeneous field, whose statistics is determined as

the mixture. The latter expresses the local conduc-

tivity, Keq, as a weighted sum of the conductivities

within each facies, i.e.

Keq ¼ P½IðxÞ ¼ 1�Klow þ P½IðxÞ ¼ 0�Khigh: ð6Þ

The probabilities P½IðxÞ ¼ 1� and P½IðxÞ ¼ 0� ¼

1 2 P½IðxÞ ¼ 1� are determined by the Kriging

estimate of IðxÞ: For each facies we generate 3000

log-conductivity fields with the same statistics as used

before and then construct realizations of KðxÞ

according to Eq. (6). Standard approaches for deriving

bi-modal (dual continuum) distributions of hydraulic

conductivity (Shvidler, 1988; Rubin, 1995) assume

that the volumetric fractions of the materials are

constant over an entire flow domain. The approach we

use results in a statistically inhomogeneous conduc-

tivity field.

Figs. 11 and 12 show the hydraulic head statistics

computed with the homogeneous approximation and

the bi-modal distribution model, respectively.

The homogeneous approximation significantly

overestimates the head and uncertainty (as quantified

by the head variance) at the well. These results are

consistent with those reported by Guadagnini et al.

(2003). The bi-modal distribution model leads to the

mean hydraulic head that is qualitatively and

quantitatively similar to that obtained by considering

only randomness in boundaries between materials.

However, it significantly underestimates the hydraulic

head variance.

7. Conclusions

We presented an approach for the probabilistic

reconstruction of boundaries between geologic facies

comprising natural porous media. Advantages of our

approach are:

† It can assimilate in a seamless manner different

sources of information, such as pumping and tracer

tests, well-logs, and geophysics.

† It provides a required input for the RDD approach

(Winter and Tartakovsky, 2000, 2002), which

allows one to quantify uncertainties in both geologic

makeup of porous media and hydraulic (and

transport) parameters within each geologic facies.

† It alleviates the need for a closure approximation or

Monte-Carlo simulations required by RDD to

Fig. 12. Mean (a) and variance (b) of hydraulic head resulting from the bi-modal conductivity distribution. The latter is computed by Eq. (6) and

is shown on the gray scale that varies from dark (low-conductivity) to white (high-conductivity).
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compute ensemble averages in the probability space

of geologic facies’ geometries.

The proposed approach represents a first attempt at

probabilistic reconstruction of geologic facies and

relies on an assumption that the indicator function is a

truncated Gaussian field. When this assumption is not

valid, alternative approaches must be explored.
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