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Abstract. We study two-dimensional flow in a layered heterogeneous medium
composed of two materials whose hydraulic properties and spatial distribution
are known statistically but are otherwise uncertain. Our analysis relies on the
composite media theory, which employs random domain decomposition in
the context of groundwater flow moment equations to explicitly account for the
separate effects of material and geometric uncertainty on ensemble moments of
head and flux. Flow parallel and perpendicular to the layering in a two-material
composite layered medium is considered. The hydraulic conductivity of each
material is log-normally distributed with a much higher mean in one material
than in the other. The hydraulic conductivities of points within different materials
are uncorrelated. The location of the internal boundary between the two
contrasting materials is random and normally distributed with given mean and
variance. We solve the equations for (ensemble) moments of hydraulic head and
flux and analyze the impact of unknown geometry of materials on statistical
moments of head and flux. We compare the composite media approach to
approximations that replace statistically inhomogeneous conductivity fields with
pseudo-homogeneous random fields.
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1
Introduction
It has long been recognized that deterministic analyses of flow and transport in
the subsurface environment are rendered less than optimal by the lack of detailed
site characterization of the kind required for most high-resolution numerical
simulations. Uncertainty in hydraulic and transport parameters of natural geo-
logic formations is conveniently accounted for by treating them as random fields.
Consequently, flow and transport equations become stochastic.

Much of the existing literature on stochastic hydrogeology deals with mildly
heterogeneous formations, where variance of log-hydraulic conductivity, r2

Y , is
relatively small. This assumption is crucial for closing the moment differential
equations or for making Monte Carlo simulations manageable. At the same time,
it clearly limits the applicability of most such analyses. Several approaches have
emerged to deal with highly heterogeneous natural formations composed of
multiple geological facies. For an in-depth review of the current state-of-the-art
we refer the interested reader to Winter et al. (2003), while providing a brief
outline here.

Two models of heterogeneity have been intensively investigated in the litera-
ture. An early method of modelling flow and transport in composite aquifers
(i.e., aquifers composed of multiple geological facies) relies on removing deter-
ministic trends in hydraulic conductivity (e.g., McLaughlin and Wood, 1988).
De-trending techniques assume that the conductivity residuals are statistically
homogeneous and that the geometries of geological facies are known with
certainty. In particular, models with deterministic trends require hydraulic
conductivity to have the same correlation structure within each geological facies
and between facies. When the spatial arrangement of geological facies is un-
known, hydraulic conductivity can be treated as a random field with multi-modal
distributions (e.g., Desbarats, 1990). Models with multi-modal distributions result
in large variance of log-hydraulic conductivity when geological facies are
sufficiently different, which renders perturbation expansions unworkable. We call
these models homogeneous approximations to the heterogeneous system.

The recently proposed method of random domain decomposition (Winter and
Tartakovsky, 2000, 2002; Winter et al., 2002) provides a more general framework
for modelling flow and transport in heterogeneous composite porous media. It
allows for uncertainty in both spatial arrangement of geological facies and
hydraulic properties within each facies. Because perturbation expansions are
carried out within each facies separately, their accuracy and robustness remain
high for most geological settings. In what follows we employ random domain
decomposition (RDD) to analyze two-dimensional steady-state flow in layered
aquifers with uncertain boundaries between layers and hydraulic conductivities
within each layer. Layered media are of practical interest due to their simplicity
and because they provide an example of structural heterogeneity which arises in
natural sedimentary formations. While perfect layering represents an idealization
of a sedimentary medium, the composite medium scheme allows taking into
account its likely imperfect description. This renders the model more appealing to
applications over short distances and to grasp the key aspects of the flow pro-
cesses. The main goals of this study are to verify the accuracy of the flow statistics
obtained by RDD and to evaluate the relative impact of the two sources of
uncertainty in such a setting.

We start by formulating the problem of flow in heterogeneous layered aquifers
and by outlining the RDD approach in Sect. 2. Accuracy of the perturbation
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approximations for the first two statistical moments of hydraulic head (Sect. 3)
and Darcy flux (Sect. 4) is ascertained via comparison with Monte Carlo simu-
lations. In Sects. 3 and 4 we also analyze the relative importance of uncertain
geometry and uncertain conductivity by focusing on two special cases in which
(1) the layer geometry is random, but the hydraulic properties of each material
are fixed, and (2) the layer geometry is fixed but material properties vary. Finally,
we compare the composite medium model to models with deterministic trends.

2
Problem statement and RDD methodology
Consider steady-state flow equation,r � Krh ¼ f , where K is (random) hydraulic
conductivity, h is (random) hydraulic head and f is the (random) source function.
It is common to use the Reynolds decomposition to represent random fields
< ¼ h<i þ <0 as the sum of their ensemble means h<i and zero-mean fluctua-
tions <0. Then averaging the stochastic flow equations gives

r � ½hKirhhi� � r � r ¼ hf i ð1Þ

where r ¼ �hK 0rh0i is the residual flux, representing the cross-covariance be-
tween hydraulic head gradient and conductivity fluctuations. Deriving approxi-
mations for the residual flux is the crucial part of any stochastic analysis. One of
the most popular approaches is to use perturbation expansion in r2

Y , variance of
log-hydraulic conductivity, Y ¼ ln K. Theoretically this limits applicability of
such solutions to mildly heterogeneous aquifers or to highly heterogeneous
aquifers, in the presence of a large number of hydraulic conductivity measure-
ments. However, numerical simulations of Guadagnini and Neuman (1999b)
demonstrated that first-order perturbation approximations of hydraulic heads
and fluxes remain robust for moderately heterogeneous media with r2

Y as large as
four. Conditioning on conductivity data increases the applicability of such
solutions to even higher variances.

Random domain decomposition further extends the range of applicability of
perturbation closures (Winter and Tartakovsky, 2000, 2002). RDD recognizes that
high spatial variability usually stems from the presence of different geological
facies and explicitly accounts for it. As demonstrated by Winter et al. (2002), RDD
renders perturbation approximations of the hydraulic head moments accurate and
robust for r2

Y as large as 20. RDD treats the porous medium (and its conductivity)
as a doubly stochastic process, where both facies geometries and their hydraulic
conductivities are random. This allows one to obtain the statistics of hydraulic
head and Darcy flux in two steps. The first step consists of calculating the con-
ditional statistics of the system states via perturbation approximations, e.g.,

hh½1�ðxjbÞi ¼ hhð0ÞðxjbÞi þ hhð1ÞðxjbÞi ; ð2Þ

in powers of r2
YMi

, the variance of log-conductivity within the facies Mi. Here
superscript ðiÞ denotes terms in the expansion proportional to the i-th power of
r2

YMi
and the vertical bar means conditioning on the facies geometry, such as the

layer’s width b (Fig. 1).
In a flow domain, X ¼ X1 þ X2, composed of two disjoint units, X1 and X2,

with an uncertain boundary between them, deterministic hydraulic head,
Hiði ¼ 1; 2Þ, prescribed on Dirichlet boundaries, CDi

, and no flow Neumann
boundaries, the zeroth- and first-order approximations of conditional mean
hydraulic head in (2) are respectively given by
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hhð0ÞðxjbÞi ¼
X2

i¼1

Z

Xi

hf ðyÞiGðy; xÞdy �
X2

i¼1

Z

CDi

HiðyÞKgi
nðyÞ � ryGðy; xÞdy

ð3Þ

hhð1ÞðxjbÞi ¼
X2

i¼1

Z

Xi

ryGðy; xÞ � r
ð1Þ
i ðyjbÞ � Kgi

r2
YMi

2
ryhhð0ÞðyjbÞi

� �
dy ð4Þ

where n is the unit vector normal to the Dirichlet boundary, Kgi is the geometric
mean of the ith conductivity ði ¼ 1; 2Þ and G is the Green’s function corre-
sponding to the fixed boundary b and Kgi. When hydraulic conductivities of the
blocks X1 and X2 are uncorrelated, the first-order approximation of the condi-
tional mean residual flux, r

ð1Þ
i ðxjbÞ, is

r
ð1Þ
i ðxjbÞ ¼ K2

gi

Z

Xi

CYi
ðx; yÞryrT

x Gðy; xÞryhhð0ÞðyjbÞidy ð5Þ

See Winter and Tartakovky (2002) and Winter et al. (2002) for additional details.
The second step consists of calculating the corresponding statistics of the

system states averaging over the geometry distribution pðbÞ, e.g.,

hh½1�ðxÞi ¼
Z
hh½1�ðxjbÞipðbÞdb : ð6Þ

The conditional moment equations are solved numerically by finite elements
program of Guadagnini and Neuman (1999a) and (6) is approximated by the law
of large numbers,

hh½1�ðxÞi � 1

nb

Xnb

n¼1

hh½1�ðxjbÞi½1� ð7Þ

Fig. 1. Flow domain for mean flow (A) parallel and (B) normal to layering
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where nb is the number of realizations of b. Second-order statistics (variances) are
calculated in a similar manner,

r2
hðxÞ

� �½1�� 1

nb

Xnb

n¼1

r2
hðxjbÞ

� �½1� ð8Þ

with the first-order approximation of conditional head variance ½r2
hðxjbÞ�

½1� given by

r2
hðxjbÞ

� �½1�¼ �
X2

i¼1

Z

Xi

C
ð1Þ
Kih
ðy; xjbÞryhhð0ÞðyjbÞi � ryGðy; xÞdy ð9Þ

where the first-order approximation of the cross covariance
C
ð1Þ
Kih
ðy; xÞ ¼ hK 0iðyÞh0ðxÞi is found as

C
ð1Þ
Kih
ðy; xjbÞ ¼ �K2

gi

Z

Xi

CYi
ðy; zÞrzhhð0ÞðzjbÞi � rzGðz; xÞdz ð10Þ

Statistics for the flow can be derived in a similar manner.
To be specific we consider flow in a square domain composed of two layers of

different materials separated by an uncertain boundary. The materials are char-
acterized by hydraulic conductivities K1 << K2, which are treated as statistically
homogeneous log-normally distributed random fields Yi ¼ ln Ki, ði ¼ 1; 2Þ with
corresponding means, hY1i ¼ 3:5 and hY2i ¼ 7:0, variances, r2

YMi
¼ 1, and expo-

nential correlation functions, qYi
, with unit correlation lengths k. For simplicity,

conductivities of different materials are taken to be uncorrelated. Of course, the
resulting conductivity field is statistically inhomogeneous, in that its mean, var-
iance and correlation function are all space dependent.

We impose constant heads, HA ¼ 1:6 and HB ¼ 1:0 (in arbitrary consistent
units), on the vertical sides of a square domain of side a ¼ 12k while assuming
that the other two sides are impermeable. We consider two flow scenarios, (A)
parallel and (B) perpendicular to the layering. A sketch of the two mean flow
scenarios considered is presented in Fig. 1. The domain is discretized by a grid of
3600 square elements (60 rows and 60 columns) of uniform size with 5 points per
correlation length of Y .

On such domains we generated 5000 realizations of the location, b, of the
internal boundary between the two contrasting materials upon taking it as a
normally distributed random variable with given mean hbi ¼ a=2 and variance,
r2

b. We analyze the effect of uncertainty in the location of the layering on
variance of hydraulic head and flux by considering r2

b ¼ 0, 0.1, 0.5, 2, 3. For each
realization of b we generated 3000 realizations of each of the two random
materials on the grid spanning the whole square. Conditional realizations of our
composite media were obtained by composing the two generated materials to
create the desired layered domains. Guadagnini and Neuman (1999a, b) noted
that a complete stabilization of the Monte Carlo statistics is not necessary for a
comparison between the solutions obtained from moment equations and from
Monte Carlo simulations to be meaningful. Therefore we limit the number of our
Monte Carlo simulations to 5000 for b and 3000 for each of Yi. Since these 5000
realizations of b fell within 60 discrete classes, due to the prescribed cell size, we
performed a total of 60� 3000 ¼ 180; 000 Monte Carlo simulations of the flow
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equations. We also considered the effect of models with a deterministic linear
trend between the conductivities of the two contrasting materials.

By way of example, Fig. 2 depicts the comparison between the total hydraulic
head variance computed by our perturbed moment equations solved with the
technique of random domain decomposition and by numerical Monte Carlo for
some degrees of uncertainty in the layering location in the case of mean flow
perpendicular to the layering. The maximum discrepancy between the two
solutions is about 2%. A similar quality of agreement was observed in comparing
all significant moments of hydraulic head and flux; therefore, we do not compare
them further.

3
Ensemble moments of hydraulic head

3.1
Mean hydraulic head
In the following we examine the behavior of mean hydraulic heads along cross-
sections located at the midpoint of the flow domain and normal to the layering.

Fig. 2. Perpendicular flow. Comparison between hydraulic head variance computed by
numerical Monte Carlo simulations and moment equations with RDD: a cross-section x2/k =
6 for r2

b = 0.1, 2; b contour map for r2
b = 2 (dashed: Monte Carlo; solid: Moment Equations)
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When mean flow develops parallel to the stratification, profiles of mean hydraulic
head decrease linearly from left ðx1=k ¼ 0;HA ¼ 1:6Þ to right ðx1=k ¼ 12;HB ¼
1:0Þ independently of the location of the internal boundary. In the case of mean
flow normal to stratification, Fig. 3a depicts profiles of conditional mean
hydraulic head along the transverse cross-section x2=k ¼ 6 and three realizations
of the location of the internal boundary, b=k ¼ x2=k ¼ 3; 6; 9, together with the
mean hydraulic head resulting from the homogeneous approximation. As noted
before, head distributions obtained from Monte Carlo simulations and from our
moments equations are indistinguishable. Hence only the moments equation
solution is represented in all our examples. Figure 3b shows the distribution of
mean hydraulic head, along the transverse cross-section x2=k ¼ 6 for several
values of r2

b. The perfectly known geometry of the layered system corresponds to
r2

b ¼ 0. The effect of uncertainty in the internal boundary on one’s ability to
estimate hydraulic head is apparent. As r2

b increases, the profile of mean head
distribution is smoothed out and the sharp discontinuity at the interface of the
two materials vanishes. In this case, modelling the heterogeneous medium by
introducing only randomness in the location of the layering and considering
medium properties as deterministic renders a pattern which is very similar to that
of our composite model, with slightly steeper gradients at locations x1=k > 6 (not
shown). Analogously, adopting a linear trend model for the hydraulic conduc-
tivity yields a pattern which is similar to the homogeneous approximation (not

Fig. 3. Perpendicular flow. Cross-section x2 /k = 6 of a conditional mean hydraulic head for
several realizations of b and b mean hydraulic head for various levels of uncertainty of b
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shown). We also note that the scenario corresponding to r2
b ¼ 0 can be inter-

preted as the result of representing the spatial distribution of hydraulic con-
ductivity by a step function trend model. In practice, adopting this type of trend
function requires some information about the distribution of materials within the
flow domain. However, even such a trend model renders results which are
qualitatively and quantitatively different from those of a full composite medium
scheme.

3.2
Variance of hydraulic head
In the following we discuss the behavior of the effect of boundary uncertainty on
solutions for head variance. Figure 4a depicts the conditional hydraulic head
variance along the median transverse cross-section at x1=k ¼ 6 for mean flow
parallel to the layering and three realizations of the location of the internal
boundary, b=k ¼ x2=k ¼ 3; 6; 9. The corresponding depiction for mean flow
normal to the layering is shown in Fig. 4b. The distribution of hydraulic head
variance corresponding to a statistically homogeneous medium with unit variance
of Y is also reported. Figure 5a shows profiles of total head variance as computed
by our moment equations, homogeneous approximation and the approximation
replacing the statistically inhomogeneous conductivity field by a pseudo-homo-
geneous random field with a deterministic linear trend. The corresponding
depiction for mean flow normal to the layering is offered in Fig. 5b.

Fig. 4. Cross-sections of conditional distributions of hydraulic head variance compared to
the homogeneous approximation for a parallel and b perpendicular flow
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Although the internal boundary obviously affects each realization, the homo-
geneous approximation generally under-estimates head variance and actually
reduces head variance in the vicinity of the boundary where in reality variance
increases (Fig. 4a). Head variances derived from the composite medium approach
show a similar internal boundary effect, although it is smoothed by uncertainty
about the boundary location (Fig. 5a). For the three r2

b, head variance is slightly
lower in the less permeable material than is variance in the more permeable
material. The nature of this behavior is explained by the structure and the
functional dependencies evidenced in the moment equations. Increasing the
variance of b causes a reduction of the hydraulic head variance at points occupied
by the more conductive material in the flow scenario corresponding to the mean
location of the internal boundary (Fig. 5a, r2

b ¼ 0). Conversely, hydraulic head
variance increases at points occupied by the less conductive material in the flow
scenario corresponding to r2

b ¼ 0. The effect of introducing variability of b cor-
responds to hydraulic head variance at a point to be evaluated by the weighting
process (8). Therefore, when compared to the scenario r2

b ¼ 0, any variance of b
will cause appearance of high (low) conductivities at points corresponding to low
(high) conductivities for zero variance of b, thus impacting the results of the
weighting procedure. Accounting for increasing uncertainty in the location of the
internal boundary causes an ever increasing interference of the effects of the two
types of materials.

Fig. 5. Cross-sections x1/k = 6 of hydraulic head variance computed by the composite
medium model, homogeneous approximation, and imposing a linear trend in the log
conductivity for a parallel and b perpendicular flow

402



Once again, the homogeneous case is qualitatively different, showing a mini-
mum in variance at the midpoint of the transverse cross section. Superimposing a
(deterministic) linear trend to the heterogeneous hydraulic conductivity field
results in a distribution of head variance which is qualitatively similar to the
results of the homogeneous approximation, but with considerably lower values.
On the other hand, modelling the heterogeneous medium by introducing ran-
domness only in the location of the layering and characterizing each material by
constant properties results in a zero-variance hydraulic head field. This is so
because the hydraulic head for each realization of b is a straight line, as discussed
in the previous sub-section.

Mean flow perpendicular to the layering also illustrates the general inadequacy
of (pseudo) homogeneous approximations. In this flow scenario, conditional
hydraulic head variance (Fig. 5b) is generally much lower in the more conductive
subdomain than in the less conductive. This behavior can be explained by the fact
that pressure can equilibrate more easily where flow is least restricted. In fact, on
the basis of the Monte Carlo results and Fig. 3a we note that hydraulic heads
display lower gradients in the more conductive material, thus allowing for lower
variations of hðxÞ in the space of realizations of Y.

When considering the composite medium model (Fig. 5b) we notice that
increasing the variance of b causes a reduction of the hydraulic head variance at
points occupied by the less conductive material in the flow scenario corre-
sponding to the mean location of the internal boundary (Fig. 5b, r2

b ¼ 0). Con-
versely, hydraulic head variance increases at points occupied by the more
conductive material in the flow scenario corresponding to r2

b ¼ 0. This is ex-
plained again by the fact that for each realization in the space of b, variability of
hydraulic head within the more conductive material is considerably less than that
occurring in the less conductive medium. Therefore, the uncertainty in the
location of the internal boundary causes an interference of the effects of the two
types of materials and produces an overall result which tends to a configuration
qualitatively similar to that of a homogeneous approximation. For the same
physical reason, introducing a linear trend in Y renders a variance similar to that
of the homogeneous approximation, but skewed toward locations occupied by the
less conductive material.

The model prescribing only randomness in layering location renders profiles
with shape similar to the composite medium model, but qualitatively and
quantitatively dissimilar from the latter. Specifically, there is a continuous in-
crease of hydraulic head variance with r2

b. This behavior is imputable to the
adopted Normal distribution of b and descends straightforwardly from the results
of Fig. 3a. In the ensemble of realizations of b, the weight of realizations that are
symmetric with respect to the mean layering location is the same. However,
realizations where the less conductive material extends over a larger portion of
the domain always result in a larger contribution to the overall variance of the
process. Where for small variance of b only a few realizations of the internal
boundary (specifically those concentrated around the mean layering location)
affect the statistical averaging process, the number of relevant (statistically
meaningful) realizations increases with the variance of b. When r2

b is small,
evaluating hydraulic head variance upon considering uncertainty only in the
layers location renders results which underestimate those offered by a composite
medium model. The opposite occurs for larger variances of b. This is a direct
consequence of the weighting process in the ensemble of realizations of b and
descends from the results of Fig. 4b for the composite medium model (where we
see that the profiles at b=k ¼ 3; 9 have the same weight but remarkably different
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contribution to the global (weighted) variance of the process (8)) and Fig. 3a for
the model which considers only randomness in the layering location.

4
Ensemble moments of flux
Since mean transverse flux is always zero and longitudinal mean flux does not
show any particular feature, we will concentrate only on the discussion of flux
variance. The latter is particularly relevant in the context of solute transport in
layered formations.

4.1
Variance of flux
Figure 6a and b depict profiles of variance of transverse flux, r2

q2
(x), computed by

the composite medium model, homogeneous approximation, and imposing a
linear trend in the log conductivity for mean flow respectively parallel and per-
pendicular to layering. For reference, we have reported the analytical solution
derived by Rubin (1990), r2

q2
¼ Ur2

Y=8 (where U is mean longitudinal flux and
r2

Y ¼ 1), for two-dimensional mean uniform flow in an infinite domain. Results
from the homogeneous approximation and linear theory of Rubin have been

Fig. 6. Cross-sections of variance of transverse flux, computed by the composite medium
model, homogeneous approximation, and imposing a linear trend in the log conductivity
for a parallel and b perpendicular flow. The horizontal solid lines correspond to the
linear approximation of Rubin (1990) for an infinite medium composed by one of the two
materials
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evaluated upon considering a statistically homogeneous domain with unit r2
Y and

hYi ¼ 3:5, or 7.0 and are in excellent agreement, considering the limited size of
the domain.

Use of a model relying on unknown geometry but constant hydraulic prop-
erties renders a zero-variance transverse flux in both flow configurations,
therefore affecting significantly evaluation of contaminant lateral spreading.
Imposing a linear trend on hydraulic conductivities yields results which are
intermediate to those given by employing a homogeneous approximation of the
conductivity field. The effect of the composite medium model is apparent from
the figures and qualitatively different from those relying on (pseudo) homoge-
neous approximations.

The corresponding profiles of longitudinal flux variance are depicted in Fig. 7
for flow parallel to layering. In this case it is interesting to point out the behavior
of the solution based on imposing randomness only on b. Variance of longitu-
dinal flux peaks at the center of the domain and tends to zero toward the hori-
zontal boundaries. The portion of the domain within which it remains nonzero
increases with r2

b, eventually covering the whole domain. This behavior is ex-
plained by arguments analogous to those previously described for hydraulic head
variance. In the case of mean flow perpendicular to layering (not shown) the
general qualitative behavior of the different models is similar to that presented in
Fig. 7. However, in this case the model relying on unknown geometry and con-
stant properties renders a constant value of longitudinal flux variance throughout
the entire domain. Again, this is related to reasons explained in previous sections
and to mass conservation arguments.

5
Conclusions
Our work leads to the following major conclusions:

1. The random composite media approach, which employs random domain
decomposition in the context of groundwater flow moment equations, allows
one to explicitly take into account the separate effects of material and geo-
metric uncertainty on statistical moments of hydraulic head and flux.

Fig. 7. Parallel flow: cross-section x1/k = 6 of variance of longitudinal flux computed by
the composite medium model, homogeneous approximation, uncertain geometry but
known conductivities, and imposing a linear trend in the log conductivity. The horizontal
solid lines correspond to the linear approximation of Rubin (1990) for an infinite medium
composed by one of the two materials
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2. Our examples, based on two-dimensional flow in a two-material layered het-
erogeneous medium emphasize the qualitative and quantitative unsuitability of
the homogeneous approximation for mean flow parallel to the layering and
then for mean flow normal to the layering. In practice, these models allow
describing flow parallel and tilted (e.g., due to recharge) to aquifer stratifica-
tion in natural sedimentary formations.

3. Modelling the essentially inhomogeneous conductivity field with pseudo-
homogeneous random fields based on a linear trend of the conductivities of the
two contrasting materials yields misleading predictions of (ensemble) mo-
ments of hydraulic head and flux.

4. Use of a step function trend model for hydraulic conductivity distribution
might improve the overall quality of the agreement with moments computed
via the composite medium scheme. However: (a) from a practical standpoint
adopting this type of trend function always requires some information about
the distribution of materials within the flow domain; (b) even such a trend
model renders results which are qualitatively and quantitatively different from
those of a full composite medium scheme.

5. We have analyzed the relative importance of uncertain geometry and uncertain
conductivity by comparing the special case in which the layers geometry is
random, but the hydrogeologic properties of each material are fixed. Disre-
garding properties variability within materials leads to incorrect description of
the ensemble behavior of the system. Notable cases are offered by (a) the zero-
variance hydraulic heads in the case of mean flow parallel to stratification and
(b) the resulting zero-variance transverse component of flux for mean flow
parallel and perpendicular to stratification. These can be critical factors in risk
assessment practice dealing with quantitative and qualitative aspects of
groundwater.

6. Stochastic hydrogeology has been held back by its inability to accommodate
non-stationary conductivity fields. Geophysical and geological characterization
techniques have reached a point where it is now possible to outline material
facies with some uncertainty about their boundaries and internal properties
like conductivity (see Rubin et al., 1998 for a review). When such data is
available, RDD reduces uncertainty in head and flux estimates by exploiting all
available information. In particular, it represents macroscopic uncertainty
about the extent and location of facies in terms of geometry (rather than as a
trend, for instance), which is the natural representation of randomness at the
facies scale. The RDD model is broad enough to include most natural porous
media, while allowing for obvious simplifications when one scale of uncertainty
dominates the other.

References
Desbarats AJ (1990) Macrodispersion in sand-shale sequence. Water Resour. Res. 26(1):
153–163
Guadagnini A, Neuman SP (1999a) Nonlocal and localized analyses of conditional mean
steady state flow in bounded, randomly nonuniform domains, 1. Theory and computational
approach. Water Resour. Res. 35: 2999–3018
Guadagnini A, Neuman SP (1999b) Nonlocal and localized analyses of conditional mean
steady state flow in bounded, randomly nonuniform domains, 2, computational examples,
Water Resour. Res. 35(10): 3019–3039
McLaughlin D, Wood EF (1988) A distributed parameter approach for evaluating the
accuracy of groundwater model predictions, 1. Theory. Water Resour. Res. 24(7): 1037–
1047

406



Rubin Y, Hubbard SS, Wilson A, Cushey MA (1998) Aquifer characterization, Handbook of
Groundwater Hydrology, CRC Press, 10.1–10.33
Winter CL, Tartakovsky DM (2000) Mean flow in composite porous media. Geophys. Res.
Lett. 27: 1759–1762
Winter CL, Tartakovsky DM (2002) Groundwater flow in heterogeneous composite aqui-
fers. Water Resour. Res. 38(8): doi:10.1029/2001WR000450
Winter CL, Tartakovsky DM, Guadagnini A (2002) Numerical solutions of moment
equations for flow in heterogeneous composite aquifers. Water Resour. Res. 38(5): doi:
10.1029/2001WR000222
Winter CL, Tartakovsky DM, Guadagnini A (2003) Moment equations for flow in highly
heterogeneous porous media. Surveys Geophys. 24: 81–106

407


