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Abstract Quantitative understanding of heat transfer in fractured media is critical in a wide
range of applications, including geothermal energy harvesting. Mathematical models of such
systems must account for fluid flow and heat transfer in both complex fracture networks and
the ambient rock matrix. Incorporation of individual fractures with millimeter-scale apertures
into meter-scale computational domains on which continuum models are discretized would be
computationally prohibitive even on modern supercomputers. By exploiting the similarities of
the underlying mathematical structure of heat and mass transfer processes, we adopt a mesh-
free time-domain particle-tracking method to model heat transfer in highly heterogeneous
fractured media. The method is used to model heat extraction from geothermal reservoirs
whose fracture networks exhibit fractal properties representative of faults and damage zones.
We explore a range of fracture network properties and experimental conditions in order to
study the impact of the fracture network topology and hydraulic regimes on heat transfer.
Our results demonstrate anomalous behavior of heat transfer in fractured environments and
a significant impact of the network topology on performance of geothermal reservoirs.

Keywords Heat transfer · Fractured reservoir · Particle-tracking method · Anomalous
transport · Geothermal performance

1 Introduction

Mathematical modeling of heat transfer in subsurface environments plays an important role
in many fields of science and engineering. It has been used to optimize the performance
of enhanced oil recovery by reducing oil viscosity with the injection of hot water or steam
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312 V. R. Gisladottir et al.

(Al-Hadhrami and Blunt 2001) and ground heat exchangers used in cooling/heating of build-
ings (Ciriello et al. 2015), and to characterize subsurface environments by treating geothermal
(Saar 2011) and anthropogenically generated (Wagner et al. 2014) heat as a groundwater
tracer. It has also been deployed to forecast the adverse affects of subsurface heat generation
and transfer, such as creation and/or reopening of microfractures leading to seismic activity
induced by geothermal energy extraction (Chen and Shearer 2011) and nuclear waste leakage
due to heat generated by radioactive decay (Wang et al. 1981).

In geothermal reservoirs, advection is the dominant mechanism of heat transfer within
a fracture network, while the ambient matrix acts as the principal heat storage medium
(Bruel 2002; Kolditz 1995; Ruiz Martinez et al. 2014). A network’s topology determines the
spatial extent of a heat extraction area, and the heat flux exchanged between fractures and the
surrounding matrix controls the geothermal performance. The former can be modified with
reservoir stimulation techniques (e.g., hydraulic fracturing), and the latter can be affected by
varying hydraulic conditions (e.g., flow rates). Numerical models of heat transfer in fractured
media facilitate design and implementation of both strategies.

These models must contend with a strong contrast in the hydraulic and thermal properties
of fluid-filled fractures and the surrounding rock matrix, as well as with heterogeneous
fracture networks that span a hierarchy of scales and often exhibit fractal behavior (Bonnet
et al. 2001; de Dreuzy et al. 2001a, b). Such fractured media might not have a representative
elementary volume. Hence, they are not amenable to standard homogenization (Long et al.
1982; Painter and Cvetkovic 2005; Roubinet et al 2010a) and modeling based on a single-
continuum advection–dispersion equation (ADE). Two conceptual frameworks have been
proposed to tackle this problem in the context of solute transport. The first treats a fractured
rock as a stochastic continuum, whose transport properties are random fields; one postulates
either the existence of a scale on which the (stochastic) ADE is valid (Neuman 2005) or the
absence of such a scale by adopting instead, e.g., continuous-time random walk (CTRW)
models (Berkowitz and Scher 1997). Both approaches predict anomalous (non-Fourier-like)
average behavior of solute transport in fractured media (Scher et al. 2002; Neuman and
Tartakovsky 2009; Cushman et al. 2011). CTRW has also been used to model the anomalous
behavior of heat transfer in heterogenous and fractured media (Emmanuel and Berkowitz
2007; Geiger and Emmanuel 2010).

The second modeling framework explicitly incorporates dominant fractures into mathe-
matical representations of the subsurface, i.e., replaces the continuum-medium representation
of fractured rocks with two non-overlapping continua: a fluid-filled discrete fracture network
(DFN) and the ambient rock matrix. Mass transfer models of this sort have been applied to
both deterministic (Dverstorp et al. 1992; Nordqvist et al. 1992) and stochastic (Cacas et al.
1990; Ezzedine 2010) fracture networks. Numerical solutions of such models must combine
a meter-scale discretization of the matrix with a millimeter-scale discretization of fracture
apertures, which makes them computationally intensive, often prohibitively so. This has led
to the development of mesh-free, particle-based solvers for solute transport in fractured rocks
(Painter et al. 2008; Roubinet et al. 2010b). We are not aware of similar methods for heat
transfer.

To study heat transfer due to injection of fluids into fractured geothermal reservoirs, we
adopt the particle-based method of Roubinet et al. (2010b). The computational efficiency of
this method allows us to handle site-specific fractal geometries of fracture networks charac-
teristic of geothermal reservoirs and the hydraulic conditions representative of geothermal
systems. Our simulations, conducted on a wide range of fracture network parameters and
experimental conditions, reveal the anomalous behavior of heat transfer in heterogeneous
fractured media. They also demonstrate the significant impact of the network properties
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and hydraulic conditions on the performance of geothermal reservoirs. Section 2 contains a
description of the fracture network and heat transfer models used in our analysis. In Sect. 3,
we describe the mesh-free numerical method used to solve this problem and present a set
of numerical experiments in Sect. 4. The simulation results are interpreted and discussed in
Sect. 5.

2 Problem Formulation

To study geothermal energy harvesting, we consider fracture networks that are representative
of geothermal reservoirs. The fracture network construction is described in Sect. 2.1, and
models of fluid flow and heat transfer on these networks are formulated in Sects. 2.2 and 2.3,
respectively.

2.1 Fracture Networks Models

Following Watanabe and Takahashi (1995), we consider a fractal fracture network model of
geothermal reservoirs. The model defines the number of fractures Nf and the length ri of the
i th fracture (i = 1, . . . , Nf) as

Nf = int(C/r D
0 ), ri = (C/ i)1/D, (1)

where the function int(x) rounds x up to the next integer and D is the fractal dimension
(a fitting parameter). The remaining two parameters, the fracture density C and the smallest
fracture length r0, can be estimated from a core sample. The fracture network is constructed
by treating the midpoint of each fracture pair as a random variable. The angle between the
pair of fractures can take one the two prescribed values, θ1 or θ2, with equal probability. The
fracture’s aperture b is constant and the same for all fractures.

2.2 Fluid Flow in the Network

We consider steady-state laminar flow of an incompressible fluid, which takes place in the
fracture network while treating the ambient rock matrix as impervious. Assuming that a
fracture is formed by two parallel smooth plates and that the fluid density ρ and dynamic
viscosity μ remain constant, the Poiseuille law results in the average flow velocity u given
by

u = −ρgb2

12μ
J. (2)

Here, g is the gravitational acceleration constant, and J is the hydraulic head gradient along
the fracture. Enforcing mass conservation at fracture junctions and applying expression (2) to
each fracture segment leads to a linear systemAh = bwhere h is the vector of the (unknown)
hydraulic heads at fracture junctions (e.g., Long et al. 1982; de Dreuzy et al. 2001a). Given
the global pressure gradient imposed on the outer edges of the network, we solve this linear
system and use the resulting hydraulic heads to compute the average flow velocity in each
fracture of the network.
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2.3 Heat Transfer in Fracture–Matrix Systems

The particle method described in Sect. 3 constructs a solution to the problem of heat transfer
in fracture networks from a solution to the problem of heat transfer in an individual fracture,
with aperture b and semi-infinite length, embedded in an infinite matrix. The latter problem is
formulated as follows. The fracture is represented by Ωf = {(x, z) : 0 ≤ x < ∞, |z| ≤ b/2}
and the matrix by Ωm = {(x, z) : 0 ≤ x < ∞, |z| ≥ b/2}. Fluid temperature in the fracture,
T f(x, z, t), satisfies an advection–dispersion equation (ADE)

∂T f

∂t
+ u

∂T f

∂x
= Df

L
∂2T f

∂x2 + Df
T

∂2T f

∂z2 , (x, z) ∈ Ωf, (3)

where u is the fluid velocity computed in Sect. 2.2, and Df
L and Df

T are the longitudinal
and transverse dispersion coefficients, respectively. These coefficients are defined as Df

L =
λf

L/(ρc)+ E f
L/(ρc) and Df

T = λf
T /(ρc)+ E f

T /(ρc), where c is the fluid’s heat capacity; λf
L

and λf
T are the longitudinal and transverse thermal conductivity coefficients, respectively; and

E f
L and E f

T are the longitudinal and transverse thermal dispersion coefficients, respectively
(Yang and Yeh 2009).

Since the ambient matrix Ωm is assumed to be impervious to flow, temperature in the
matrix, T m(x, z, t), is governed by a diffusion equation (DE)

∂T m

∂t
= Dm

L
∂2T m

∂x2 + Dm
T

∂2T m

∂z2 , (x, z) ∈ Ωm, (4)

where Dm
L and Dm

T are the longitudinal and transverse diffusion coefficients, respectively.
These coefficients are defined as Dm

L = λe
L/ce and Dm

T = λe
T /ce, where ce is the effective heat

capacity of the matrix, and λe
L and λe

T are the longitudinal and transverse thermal conductivity
coefficients in the matrix, respectively.

At the fracture–matrix interfaces |z| = b/2, the continuity of both temperature and heat
flux is enforced with conditions

T f = T m, φm Dm
T

∂T m

∂z
= Df

T
∂T f

∂z
, |z| = b/2, (5)

where φm = [φ + (1 − φ)ρscs/(ρc)]; φ is the matrix porosity, and ρs and cs are the density
and heat capacity of the solid phase, respectively. Finally, Eqs. (3) and (4) are subject to
initial conditions

T f(x, z, 0) = T0, T m(x, z, 0) = T0, (6)

and boundary conditions

T f(0, z, t) = Tinj, T f(+∞, z, t) = T0, T m(x,±∞, t) = T0, (7)

where T0(x, z) is the initial temperature in the system, and Tinj the temperature of the fluid
injected at the entrance of the fracture.

Since the heat transfer problem (3)–(7) is invariant under transformations T = T i − T0

(i = f, m), we set, without loss of generality, T0 = 0.

3 Particle Method for Heat Transfer in Fractured Media

Since the underlying mathematical structure of the heat and mass transfer problems is the
same, we adapt the particle method of Roubinet et al. (2010b), which was developed to
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model solute transport, to describe heat transfer in fractured rocks. The method consists of
three parts: (i) at the fracture–matrix scale, heat transfer is described by advection in the
fracture and conduction in the infinite matrix; (ii) at the matrix block scale, heat conduction
in the matrix is restricted by the presence of neighboring fractures, into which particles can
transfer; and (iii) at the fracture network scale, heat flux conservation is enforced at each
fracture intersection by considering that the probability for a particle to enter a fracture
depends on the intersection configuration and flow rate distribution.

At the fracture–matrix scale, we use the analytical solution of Tang et al. (1981), which
is derived under the following simplifications of the boundary value problem (3)–(7). First,
the ADE (3) is averaged over the fracture aperture to replace it with its one-dimensional
counterpart. Second, longitudinal dispersion in the fracture is assumed to be negligible relative
to convection. Third, diffusion in the matrix is assumed to be one-dimensional, in the direction
perpendicular to the fracture. Finally, the flux continuity expressed by the second condition
in (5) at the fracture–matrix interfaces is replaced by a source term in the fracture equation,
which depends only on the matrix properties. Under these conditions, whose validity has
been studied by Roubinet et al. (2012), the temperature distribution inside the fracture is
given by

T f(x, t) = Tinj erfc

(
φm

√
Dm

T x

2ub
√

t − x/u

)
. (8)

This expression is converted into a probabilistic model for a particle’s diffusion time in infinite
matrix, t∞d , as

t∞d =
[

φm
√

Dm
T ta

2b erfc−1(R)

]2

, ta = x

u
(9)

where R is a uniform random number in the interval [0, 1], and ta is the advection time spent
in the fracture to reach the position x .

To take into account the impact of potential neighboring fractures (i.e., the finite size of
matrix blocks), we consider the scenario of a fracture fi surrounded by (i) a fracture f1

located at distance l1 on one side of fi and (ii) a fracture f2 located at distance l2 on the
other side of fi . For each particle that diffuses into the matrix surrounding fi , we define
P1

transfer as the probability to reach fracture f1 without crossing fracture f2 and P2
transfer as

the probability to reach fracture f2 without crossing fracture f1. These probabilities in the
Laplace domain are given by (Feller 1954)

P̄1
transfer = exp(l1

√
s/Dm

T )

s

1 − exp(−2l2
√

s/Dm
T )

1 − exp[2(l1 − l2)
√

s/Dm
T ] (10a)

P̄2
transfer = exp(l2

√
s/Dm

T )

s

1 − exp(−2l1
√

s/Dm
T )

1 − exp[2(l2 − l1)
√

s/Df
T ]

, (10b)

where s is the Laplace variable. The numerical inversion of these expressions is performed
with the Stehfest (1970) algorithm. The final diffusion time of each particle and its final
position after diffusing in the matrix are computed in two steps. First, we determine Ptransfer,
the probability for a particle to transfer to one of the neighboring fractures with an associated
transfer time ttransfer smaller than the maximum diffusion time t∞d , as

Ptransfer = P1
transfer

(
ttransfer ≤ t∞d

) + P2
transfer

(
ttransfer ≤ t∞d

)
. (11)
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Second, we pick a random number U from a uniform distribution on the interval [0, 1]: If U is
larger than Ptransfer, the particle does not transfer to the neighboring fractures (i.e., the particle
goes back to its initial fracture) and its diffusion time is equal to t∞d (i.e., the assumption of
infinite matrix is valid); otherwise, the particle transfers to one of the neighboring fractures,
the transfer time is defined by solving Ptransfer(t ≤ ttransfer) = U , and the particle transfers
to fracture f1 if condition

U

Umax
>

l1
l1 + l2

(12)

is verified and to f2 otherwise with Umax = Ptransfer. This method enables us to handle the
presence of neighboring fractures in heterogeneous fracture networks. In the context of solute
transport, a comparison between this approach and analytical solutions considering either a
single fracture (Tang et al. 1981) or infinite systems of parallel fractures (Sudicky and Frind
1982) is provided in Roubinet et al. (2010b, 2013).

Finally, when a particle reaches a fracture intersection that forks into multiple fractures,
both intersection configuration and flow rate distribution determine which fracture it enters.
The particles can only enter into fractures that have a positive flow velocity (i.e., a fluid
flowing from the studied intersection to another intersection) considering complete mixing
and streamline routing rules (Hull and Koslow 1986; Berkowitz et al. 1994). In most cases,
complete mixing is assumed and the probability for a particle to enter into a fracture is
expressed as the ratio of the flow rate in the considered fracture to the sum of the flow rates
leaving the studied intersection. A particular case is considered when a particle can enter two
fractures: If the closest fracture has a dominant flow rate, the particle goes in priority to this
fracture (Le Goc 2009).

4 Simulations of Heat Transfer in Geothermal Reservoirs

4.1 Geothermal Reservoir Properties

To study heat transfer in realistic geothermal reservoirs, we consider a square domain of length
L = 100 m, whose left and right borders are connected by a fracture network. The latter
has the fractal dimension D = [1, 1.3] which has been observed in the natural environments
(Main et al. 1990; Scholz et al. 1993), and fracture density C = [2.5, 6.5] (Watanabe and
Takahashi 1995). Three groups of fracture networks, DFN1, DFN2 and DFN3, are defined
with a fracture density set to C = 2.5, 4.5 and 6.5, respectively. For each group, we generate
four fracture networks with a fractal dimension set to D = 1, 1.1, 1.2 and 1.3. Table 1 shows
the parameters used to generate these fracture networks which are presented in Fig. 1.

Injection and extraction of fluid in these domains are simulated by considering injection
and extraction wells located on the left and right borders of the domains, respectively. Two
hydraulic regimes are applied between these wells in order to study different conditions of
the geothermal exploitation. To this end, we define the Fast Flows regime where the head
gradient is equal to 1.25 as considered in existing studies on geothermal systems (Suzuki et al.
2015). For comparison, we also define the Slow Flows regime where the head gradient is set
to 10−2. Considering a no-flow condition on the bottom and top borders of the domain, flow
takes place from left to right through the interconnected fracture networks. The corresponding
flow velocity fields are computed with the fluid density ρ = 103 kg/m3 and the dynamic
viscosity μ = 10−3 kg/(m s), on the interconnected fracture networks shown in Fig. 2.
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Table 1 Parameters used to
generate alternative fracture
networks

C [-] D [-] θ1 [◦] θ2 [◦] r0 [m] b [m]

DFN1a 2.5 1 25 145 10−1 5 × 10−4

DFN1b 2.5 1.1 25 145 10−1 5 × 10−4

DFN1c 2.5 1.2 25 145 10−1 5 × 10−4

DFN1d 2.5 1.3 25 145 10−1 5 × 10−4

DFN2a 4.5 1 25 145 10−1 5 × 10−4

DFN2b 4.5 1.1 25 145 10−1 5 × 10−4

DFN2c 4.5 1.2 25 145 10−1 5 × 10−4

DFN2d 4.5 1.3 25 145 10−1 5 × 10−4

DFN3a 6.5 1 25 145 10−1 5 × 10−4

DFN3b 6.5 1.1 25 145 10−1 5 × 10−4

DFN3c 6.5 1.2 25 145 10−1 5 × 10−4

DFN3d 6.5 1.3 25 145 10−1 5 × 10−4

(a) DFN1a (b) DFN1b (c) DFN1c (d) DFN1d

(e) DFN2a (f) DFN2b (g) DFN2c (h) DFN2d

(i) DFN3a (j) DFN3b (k) DFN3c (l) DFN3d

Fig. 1 Fracture networks generated with the fracture network parameters presented in Table 1. The blue
rectangles on the left and right sides of the domains represent the injection and extraction wells of the
geothermal systems, respectively
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(a)DFN1a (b)DFN1b (c)DFN1c (d)DFN1d

(e)DFN2a (f)DFN2b (g)DFN2c (h)DFN2d

(i) DFN3a (j)DFN3b (k)DFN3c (l) DFN3d

Fig. 2 Interconnected fracture networks related to the fracture networks presented in Fig. 1 and connecting
the injection and extraction wells

4.2 Heat Transfer Simulations

Heat transfer is simulated in the interconnected fracture networks presented in Fig. 2 assuming
an infinite matrix around each domain. For each fracture network and each flow regime,
particles are injected into the fractures that intersect the injection well (left border of the
domain), they are transported across the domain according to the heat transfer particle method
presented in Sect. 3, and their arrival time to the production borehole (right border of the
domain) is recorded. The rock porosity is φ = 0.1 and the thermal parameters are provided
in Table 2. These form data set (i) from Lippmann and Bödavarsson (1983), data set (ii)
from Pruess et al. (1999), data set (iii) from Bödvarsson and Tsang (1982) and data set
(iv) from Geiger and Emmanuel (2010).

Figure 3 exhibits the relative temperatures in the fracture network DFN2a with Fast Flow
(Fig. 3a) and Slow Flow (Fig. 3b), for the thermal parameters representative of the values
found in geothermal fields (Table 2). The between-set variability is not significant and has
only minor impact on the temperature curves. Therefore, in the simulations presented below
we use the parameter set (ii) in Table 2.

Figure 4 shows the corresponding relative temperature curves for the interconnected frac-
ture networks DFN1a, DFN2a and DFN3a and the Fast Flows (Fig. 4a) and Slow Flows
(Fig. 4b) regimes. In these figures, the relative temperature T ∗ is defined as
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Table 2 Physical properties of
fractured rocks used to simulate
heat transfer

Parameter set Values

(i)

Thermal conductivity [W/(m ◦C)] 1.5

Rock density [kg/m3] 2700

Rock heat capacity [J/(kg ◦C)] 920

(ii)

Thermal conductivity [W/(m ◦C)] 2.1

Rock density [kg/m3] 2650

Rock heat capacity [J/(kg ◦C)] 1000

(iii)

Thermal conductivity [W/(m ◦C)] 2

Rock density [kg/m3] 2500

Rock heat capacity [J/(kg ◦C)] 1000

(iv)

Thermal conductivity [W/(m ◦C)] 2.5

Rock density [kg/m3] 2500

Rock heat capacity [J/(kg ◦C)] 880
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Fig. 3 Temporal variability of the relative temperature T ∗ in fracture network DFN2a with fractal dimension
D = 1, for parameter sets (i)–(iv) in Table 2

T ∗ = Text − T0

Tinj − T0
(13)

where Text and Tinj are the fluid temperatures at extraction and continuous injection, respec-
tively. These curves are obtained from the cumulative distribution functions (CDFs) of the
particle arrival times using N = 1855 particles, and these results are similar to those obtained
from 104 particles.

This empirical CDF T ∗(t) deviates significantly from the Gaussian CDF G(t), with the
same mean t̄ and standard deviation σt , over wide ranges of the fractal dimension D and
fracture density C . This finding is reported in Table 3 in terms of the Kolmogorov–Smirnov
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Fig. 4 Temporal variability of the relative temperature T ∗ in fracture networks DFN1a, DFN2a and DFN3a
(see Fig. 2), for the matrix properties from data set (ii) in Table 2 and a Fast Flows and b Slow Flows
conditions

Table 3 Kolmogorov–Smirnov statistic SKS for fracture networks characterized by their fractal dimension
D and fracture density C

Fractal dimension, D Fracture density, C Kolmogorov–Smirnov statistic, SKS

1.0 2.5 0.472

1.0 3.5 0.470

1.0 4.5 0.456

1.0 5.5 0.451

1.0 6.5 0.447

1.3 2.5 0.466

1.3 3.5 0.470

1.3 4.5 0.473

1.3 5.5 0.448

1.3 6.5 0.403

(KS) statistic (e.g., Lurie et al. 2011, Chapter 11.8)

SKS ≡ max
1≤i≤N

|G(ti ) − T ∗(ti )| = max
1≤i≤N

{∣∣∣∣G(ti−1) − i − 1

N

∣∣∣∣ ,
∣∣∣∣ i

N
− G(ti )

∣∣∣∣
}

(14)

where {t1, . . . , tN } are the particle arrival times arranged in the ascending order. The KS
goodness of the fit test rules out the hypothesis that the CDF T ∗(t) is Gaussian and, hence,
that heat transfer in fractured rocks follows Fourier’s law, with any degree of confidence. For
example, the 5 % (or 20 %) level of significance requires SKS not to exceed the critical value
S	

KS ≈ 1.36/
√

N = 0.0316 (or ≈ 1.07/
√

N = 0.0248) (Lurie et al. (2011), [Table T-13]),
but the values of SKS in Table 3 are more than an order of magnitude larger than S	

KS. Even
with the caveat that the mean t̄ and variance σ 2

t of the Gaussian CDF G(t) should ideally be
determined from simulations of an effective model rather than N samples, the discrepancy
between SKS and S	

KS is so large as to demonstrate the anomalous (non-Fourier-like) nature
of heat transfer in fractured rocks.
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Fig. 5 Temporal variability of the relative temperature T ∗ in fracture networks DFN1a, DFN2a and DFN3a
(see Fig. 2), for the matrix properties from data set (ii) in Table 2 and a Fast Flows and b Slow Flows
conditions

To elucidate this anomalous behavior further, we define a relative temperature T ∗, which
corresponds to the relative temperature T ∗ for an instantaneous temperature change of the
injected fluid. Figure 5 shows the temperature distribution in the interconnected fracture
networks DFN1a, DFN2a and DFN3a for the Fast Flows (Fig. 5a) and Slow Flows (Fig. 5b)
hydraulic configurations. These results are obtained by transforming the CDFs presented
in Fig. 4 into the probability density functions (PDFs). Here, 106 particles have been used
in order to obtain smooth curves, and these results are similar to those obtained with 107

particles.
Geothermal performance of fractured reservoirs is often reported in terms of Pf = 1−T ∗,

such that Pf = 0 represents the minimum efficiency of the system as the temperature of the
extracted fluid is equal to the temperature of the (here cooler) injected fluid. Conversely,
Pf = 1 represents the maximum efficiency of the system as the temperature of the extracted
fluid is equal to the (here warmer) initial temperature of the system. Figure 6 shows the
temporal profiles Pf (t) for all considered fracture networks and for both the Fast Flows and
Slow Flows hydraulic regimes. As in Fig. 4, these results are obtained using 103 particles
and they are similar to those obtained from 104 particles.

5 Results and Discussion

5.1 Anomalous Heat Transfer

The results presented in Fig. 4 show a different behavior of T ∗ depending on the considered
fracture density and flow regime. When T ∗ increases from 0 to 1, the temperature of the
extracted fluid varies from the initial temperature in the system to the temperature of the
injected fluid. This shows the progressive impact of the cooled injected fluid on the tem-
perature of the extracted fluid due to the propagation of the cold front from the injection to
the extraction wells. For Fast Flows (Fig. 4a), increasing the fracture density from DFN1a
to DFN3a results in delaying the variations of T ∗, showing that the cold front reaches the
extraction well at longer times when considering larger fracture densities. In this case, the
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Fig. 6 Temporal variability of the geothermal performance P f of the fracture networks presented in Fig. 2
with the matrix properties from data set (ii) in Table 2, for the Fast Flows (left column) and Slow Flows
(right column) conditions

complexity and density of the fracture networks determine the propagation of the cold front
across the domain and increasing the fracture network density implies an increase in the time
required to propagate from the left to right sides of the domain. Conversely, for Slow Flows
(Fig. 4b), the impact of the cold front on the production well is delayed when the fracture
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density decreases. In this case, the properties of the matrix blocks have a more important
impact on the cold front propagation than the fracture network properties. For a small fracture
densities (DFN1a), the cold front can propagate far away in the matrix without reaching a
fracture, implying that this front reaches the extraction well at very large times. Increasing
the fracture density (DFN2a and DFN3a) implies that the cold front propagation inside the
matrix is limited by the presence of fractures, which results in reaching the exploitation well
at smaller times. These results show that the impact of the geological structures on the prop-
agation of a cold front depends on the hydraulic regime, as these structures determine if heat
transfer is controlled by the fracture network properties or the size of the matrix blocks.

Converting the previous results into PDFs enables us to study the anomalous behavior
of heat transfer in our simulations. As demonstrated by the heavy tails observed in Fig. 5,
this anomalous behavior occurs for both Fast Flows (Fig. 5a) and Slow Flows (Fig. 5b)
configurations. This is mostly due to the contrast between the fracture and matrix properties,
as these structures are responsible for fast and slow heat propagation across the domain,
respectively. However, the results presented in Fig. 4 reveal that this anomalous behavior is
also related to the heterogeneities of each structure (fracture networks and matrix blocks)
whose importance is determined by the hydraulic conditions. For Fast Flows, the fracture
network complexity impacts the observed anomalous behavior. In this case, there is no impact
of the matrix block heterogeneities as heat conduction inside these blocks is not limited by
their size. Conversely, for Slow Flows, the matrix block size distribution impacts the observed
anomalous behavior as heat conduction is limited by the size of these blocks.

5.2 Performance of Geothermal Systems

Figure 6 depicts the impact of both fracture density and fractal dimension on the performance
of geothermal systems. The fracture networks with small fracture densities are not sensitive to
the fractal dimension for both Fast Flows (Fig. 6a) and Slow Flows (Fig. 6b) conditions. This
is due to the corresponding interconnected fracture networks which present small differences
when changing the fractal dimension from 1 (Fig. 2a) to 1.1 (Fig. 2b) and no differences from
1.1 to 1.2 (Fig. 2c) and 1.3 (Fig. 2d). This shows the limitation of characterizing geother-
mal reservoirs only from core sampling as the related data do not give information on the
connectivity of the domain. In terms of geothermal performance, this implies that reservoirs
with different fracture network properties might have a nearly identical performance.

As the fracture density increases, from DFN1 to DFN3, the impact of the fractal dimension
D on the geothermal performance Pf depends on the hydraulic regime. For Fast Flows
conditions (Fig. 6, left column), D does not have a significant impact on Pf , which is equal
to 0 for times larger than 108 s. For Slow Flows conditions (Fig. 6, right column), D has a
significant impact for the largest fracture density considered in this study (DFN3, Fig. 6f):
An increase in the fractal dimension, from DFN3a to DFN3d, decreases the reservoir’s
performance. For Slow Flows, Pf = 0 for times larger than 1012, 1011 and 1010 s for the
fracture networks DFN1 (Fig. 6b), DFN2 (Fig. 6d), and DFN3 (Fig. 6f), respectively. This
shows that increasing the fracture density causes the performance to decrease.

The different behavior of Pf for Fast Flows and Slow Flows conditions is related to the
structural heterogeneities that control heat transfer in fractured domains. As demonstrated
in Sect. 5.1, the fracture network and matrix block heterogeneities are determinant for Fast
Flows and Slow Flows conditions, respectively, and, as demonstrated in Fig. 2, increasing the
fracture density and fractal dimension results in more complex structures with more important
heterogeneities. Therefore, broader distributions of the matrix block size are observed with the
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presence of small blocks that limit heat conduction in the matrix and reduce the performance
of the systems.

6 Conclusion

Quantitative understanding of heat transfer in heterogeneous fractured media is necessary
for economically feasible harvesting of geothermal energy. We used a mesh-free particle-
tracking method to model heat transfer in fractured geothermal reservoirs. This approach is
capable of handling realistic discrete fracture networks and has computational efficiency that
significantly exceeds that of standard (mesh-based) numerical methods. This enables us to
conduct a series of two-dimensional heat transfer simulations for a large range of fracture
network properties and experimental conditions and to interpret the corresponding results in
terms of anomalous heat transfer and geothermal performance of reservoirs.

Our analysis leads to the following major conclusions.

1. Depending on hydraulic conditions, the propagation of a cold front across fractured
domains is controlled by either the fracture network (Fast Flows) or matrix block (Slow
Flows) properties.

2. The contrast of properties between fractures and matrix results in anomalous (non-
Fourier-like) behavior of heat transfer, which is enhanced by heterogeneity of the fracture
networks (Fast Flows) and matrix blocks (Slow Flows).

3. For small fracture densities (C = 2.5), different values of the fractal dimension (D =
[1, 1.3]) can lead to identical interconnected fracture networks with similar geothermal
performance.

4. In fractured domains with large fracture density (C = 6.5) and fractal dimension (D =
1.3), a broad distribution of the matrix block size is obtained with the presence of small
blocks that reduce the geothermal performances under Slow Flows conditions.

5. Over a wide range of fracture densities and fractal dimensions, the heat transfer sig-
nificantly deviates from the Fourier law, giving rise to anomalous effective behavior
characterized by long tails.

Although the low computational cost of our method is attractive, some improvements could
be introduced in future studies. These include incorporation of heterogeneity of matrix prop-
erties, implementation of two-dimensional convection by means of the analytical solutions
developed by Ruiz Martinez et al. (2014) and extensions to three-dimensional conditions.

In the latter case, the modeled fractures will be represented as two-dimensional elements
and the impact of the domain and structure dimensionality could be studied by progressively
improving our model. For example, representing the fractures as rectangles with a one-
dimensional flow (e.g., Lee et al. 2001) will allow us to evaluate the impact of the fracture
network dimensionality. In comparison with two-dimensional simulations, the larger number
of advective paths connecting the domain borders in three dimensions should lead to a
larger distribution of the advection times spent in the fractures. These fractures could also be
represented as ellipses (e.g., de Dreuzy et al. 2013) in which the heterogeneous flow velocity
fields expand the distribution of advective times in comparison with the one-dimensional flow
representation. As flow velocity in the fractures impacts heat propagation in both fractures
and matrix, we also expect broader distributions of temperature of the extracted fluid with a
significant anomalous behavior.

Finally, this study could be extended to more complex configurations where, for example,
the impact of heterogeneous fracture apertures and randomly distributed fracture angles could
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be considered. In order to evaluate the interest of representing different levels of heterogeneity,
our work is related to the uncertainty in site characterization (de Barros et al. 2012; Ezzedine
2010) with Monte Carlo simulations.
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