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Salinization of shallow coastal aquifers is particularly critical for ecosystems and agricultural activities.
Management of such aquifers is an open challenge, because predictive models, on which science-based
decisions are to be made, often fail to capture the complexity of relevant natural and anthropogenic pro-
cesses. Complicating matters further is the sparsity of hydrologic and geochemical data that are required
to parameterize spatially distributed models of flow and transport. These limitations often undermine the
veracity of modeling predictions and raise the question of their utility. As an alternative, we employ
data-driven statistical approaches to investigate the underlying mechanisms of groundwater salinization
in low coastal plains. A time-series analysis and auto-regressive moving average models allow us to
establish dynamic relations between key hydrogeological variables of interest. The approach is applied
to the data collected at the phreatic coastal aquifer of Ravenna, Italy. We show that, even in absence
of long time series, this approach succeeds in capturing the behavior of this complex system, and pro-
vides the basis for making predictions and decisions.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction

Reclaimed low coastal plains are among the most populated
areas in the world. They are extensively exploited for a variety of
purposes, including urban settlements, maritime and industrial
infrastructure, agriculture and, not least, recreation and tourism
(Small and Nicholls, 2003; McGranahan et al., 2007). Among
diverse environments typical of coastal plains, active dune sys-
tems, paleo-dunes, and coastal forests are critical for providing
protection from storm surge, beach erosion and sea spray, which
can harm crops in coastal farmland or damage local structures
and infrastructure (Gambolati et al., 2002; Feagin et al., 2005;
Armaroli et al., 2012). Furthermore, these environments, together
with coastal wetlands, are often the only residual natural areas
in the coastal zone. As such, they are extremely valuable in terms
of ecosystem services, tourism, and preservation of the historical
heritage (Barbier et al., 2011).

Groundwater salinization in coastal areas is a pressing issue
(Custodio, 2010), which is virtually certain to become worse in
the future as a result of climate change and sea level rise (Oude
Essink and Kooi, 2012; Mollema et al., 2012; Mollema et al.,
2013). Aquifer salinization impacts coastal ecosystems, such as
marshes, wetlands, and forests, since vegetation species richness
and biodiversity are very sensitive to variations in water salinity
(Antonellini and Mollema, 2010). It also affects soil quality and,
therefore, crop productivity (Pitman and Läuchli, 2002).

Water resources management in low coastal plains is a chal-
lenging task, because the phreatic surface typically needs to be
artificially controlled due to low topography and reclamation
(Grootjans et al., 1998; Antonellini et al., 2008; De Louw et al.,
2010; Oude Essink et al., 2010). Drainage is required to allow
agriculture, prevent flooding of low-lands, and ensure dry ground
conditions for coastal forests. At the same time, drainage
contributes to water salinization by increasing saltwater intrusion
(Antonellini and Mollema, 2010). Complex feedback mechanisms,
which control ecosystems health in coastal areas, further
complicate both management and modeling of low coastal planes
(Giambastiani et al., 2014).

Characterization of groundwater salinization relies on the
description of a series of driving processes such as aquifer recharge
dynamics, sea water encroachment along rivers and channels, land
reclamation drainage, water pumping from wells, upwelling of
connate water from the bottom of the aquifer, evapotranspiration,
and natural and anthropogenic land subsidence (Bear et al., 1999;
Post et al., 2003; Antonellini et al., 2008). Analytical and numerical
models (e.g., Bear et al., 1999; Cheng et al., 2001; Langevin et al.,
2007) are usually employed to identify driving mechanisms and
their contributions to the overall process of groundwater saliniza-
tion. Such methods work well when either the significant factors
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controlling the process are few and constrained (Bear et al., 1999)
or the amount of data available is extensive (e.g., Post et al., 2003;
Oude Essink et al., 2010).

We present a case study in which these conditions are not sat-
isfied and traditional modeling approaches fail to accurately
describe the process of groundwater salinization (Antonellini
et al., 2015). We consider the phreatic coastal aquifer of
Ravenna (Italy), where multiple factors control the system
behavior and the monitoring network is sparse. Rather than using
under-parameterized flow and transport models, we apply statisti-
cal approaches to identify the underlying mechanisms of the salin-
ization process and provide a basis for building predictive models.
In particular, we employ time-series analyses (Hamilton, 1994, and
references therein) to interpret the hydrological data collected in
the study area. Auto-regressive moving average (ARMA) models
(Box and Jenkins, 1976) are used to capture the stochastic behavior
(temporal fluctuations) of the hydrological variables of interest and
to investigate the relationships among them.

This article is arranged as follows. In Section 2, we provide a
description of the study area. Section 3 presents the statistical
methodology employed to model the nonlinear dynamics of a
low coastal plane. Section 4 contains a discussion of the modeling
results and their implications for the aquifer management. A brief
summary of our study is presented in Section 5.
2. Study area

We focus on the low coastal plain of the Po river in the south of
Ravenna (Italy), which is adjacent to the North Adriatic sea. The
area stretches from Lido di Dante, in the north, to Lido di Classe,
in the south, and extends from the shoreline westward for a few
kilometers inland (Fig. 1). The area’s geomorphology consists of a
row of active dunes in the east, covered by halophilic bushy and
Fig. 1. Coastal region of Ravenna (Italy), with the red box indicating a study area co
monitoring networks and the pumping station considered in the analysis. (For interpretat
version of this article.)
grass vegetation, adjacent to multiple rows of paleo-dunes inland,
covered by pine trees of the species Pinus Pinaster (Antonellini and
Mollema, 2010). The paleo-dunes, on which the coastal pine forest
grows, is drained by two ditches parallel to the coast. Farmland
extends to the east, past the last row of paleo-dunes.

Alongshore sediment dispersal and land reclamation in the last
150–200 years has led to coastline progradation of up to 5 km. This
induced switching from a brackish lagoonal setting to a continental
one (Ciabatti, 1968; Veggiani, 1974; Stefani and Vincenzi, 2005). In
recent years, beach erosion has reversed this trend as a result of a
decreased sediment supply by rivers and land subsidence
(Bondesan et al., 1995). Natural land subsidence, due to differential
compaction of Pliocene and Pleistocene sediments, is about
2–3 mm/year. The current average anthropogenic subsidence rate,
due to water and gas withdrawal, is on the order of 3 mm/year,
with peaks in the study area of up to 15 mm/year. During the sec-
ond half of the past century, these rates have been higher, reaching
the maximum of abound 110 mm/year (Baú et al., 2000; Teatini
et al., 2006).

The low topography, which reaches in some places 1 m below
sea level, requires a land reclamation drainage system. A dense
network of channels organized in mechanical drainage basins is
deployed to lower the water table. The reclaimed water, in each
drainage basin, is routed to a cluster of pumping machines and
then uplifted into a channel draining into the sea (Stefani and
Vincenzi, 2005). Coastline progradation and land reclamation have
led to freshening of the groundwater in the upper permeable
sedimentary sequence below the study area during the past
150–200 years; nevertheless, this trend has been reversed recently
in some parts of the aquifer (Antonellini et al., 2015).

Shallow sediment deposition (less than 150 m from the surface)
in the coastal area of Ravenna has been controlled by two transgres
sion–regression cycles (Amorosi et al., 2004) that formed a
sequence of sand and silty-clay bodies. The upper 20–30 m form
mprising a coastal pine forest. Also shown are the piezometric and pluviometric
ion of the references to colour in this figure legend, the reader is referred to the web



Fig. 2. Geologic map of the area south-east of Ravenna (modified from Regione Emilia-Romagna, http://ambiente.regione.emilia-romagna.it/geologia/cartografia/webgis-
banchedati/webgis). The NE-SW-oriented red line represents the trace of the geologic cross-section.
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the shallow coastal aquifer. They were deposited during the last
sea level high stand (Marchesini et al., 2000). Most of the shallow
aquifer is made up by beach bar sands. In the northern part of the
study area, north of the Bevano River, some silty-clay deposits
belonging to a distal delta sedimentary environment are found at
an average depth of 10 m and have a thickness up to 15 m
(Fig. 2). These fine-grained deposits disappear in the southward
direction. It is important to note that the sands of the aquifer are
often covered, at the surface, by thin layers of continental clay up
to 1.5 m in thickness. They confine the surface aquifer along belts
parallel to the coast (Amorosi et al., 2005).

The shallow coastal aquifer contains scattered freshwater
lenses floating on top of brackish and saline water. The aquifer is
recharged only via rainfall infiltration and excess irrigation water
(Antonellini et al., 2008; Mollema et al., 2013). The origin of
groundwater salinization in this area has been studied by Ulazzi
et al. (2008), who observed conflicting relationships among the
elevation of the water table, the health of the coastal pine forest,
and the groundwater salt load. Marconi et al. (2011) and
Mollema et al. (2013), by studying the hydro-geochemical charac-
teristics of ground- and surface-water, established that a saliniza-
tion trend in the aquifer is ongoing and controlled by seasonal
variations in recharge. Groundwater salinization is mainly caused
by two processes: (i) saltwater intrusion, because of the strong
hydraulic gradients landwards and (ii) upwelling of Holocene
brackish and salty water from the bottom of the aquifer, where
the water table is below the sea level (Mollema et al., 2013).
Factors, such as land subsidence, land use, drainage and seawater
encroachment along rivers and channels, enhance these two pro-
cesses (Giambastiani et al., 2007; Antonellini et al., 2008;
Mollema et al., 2012; Mollema et al., 2013).

Given the hydrologic system’s complexity and the data paucity,
both construction of a reliable physics-based model and its
parameterization are problematic. Instead, we employ statistical
models that rely on the data collected at a series of piezometers,
which have been installed in the last years to monitor the dynam-
ics of the phreatic surface and the salinity of the shallow aquifer.
These models are used to analyze the coastal plane area occupied
by pine forest (Fig. 1).

3. Methodology

A hydrological time series may be seen as a single realization of
a stochastic process. It can be modeled as the sum of (i) some
deterministic components, which generate a systematic pattern,
and (ii) a stochastic component (random noise), which represent
the stationary counterpart of the hydrological process. The station-
ary part of a time series incapsulates the random nature of the
selected process and is of fundamental importance for quantifica-
tion of predictive uncertainty (Hamilton, 1994).

Auto-regressive integrated moving average (ARIMA) models
remove the non-stationary component of a (hydrologic) time series
by differentiating the original data (Box and Jenkins, 1976; Shahin
et al., 1993; Shumway and Stoffe, 2005). If a time series is stationary,
an auto-regressive moving average (ARMA) representation may be
directly applied. These models assume that a phenomenon under
consideration can be treated as a linear stochastic process. They have
been employed to analyze hydrological time series, especially at the
monthly scale (Wang et al., 2014, and references therein).

In the following, the main concepts related to these models are
described and extended to the case of auto-regressive distributed
lag (ARDL) models. The latter allow descriptions of processes,
which involve multiple independent variables (time series) and
are used to capture the influence of external stresses on a system’s
behavior e.g., (Almon, 1965; Davidson et al., 1978; Shin and
Pesaran, 1999; De Boef and Keele, 2008; Beck and Katz, 2011).
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3.1. ARMA models

Let us consider a stationary zero-mean time series consisting of
n measurements yt of a process yðtÞ, i.e., fytg ¼ ðy1; . . . ; ynÞ. An
ARMA ða; bÞ representation of the time series fytg is (Box and
Jenkins, 1976)

yt ¼
Xa

i¼1

/iyt�i þ
Xb

j¼1

hjnt�j þ nt ; ð1Þ

where a and b represent the orders of the auto-regressive (AR) and
moving average (MA) parts, respectively; /i and hj are model coef-
ficients; and nt denotes a white noise process. Eq. (1) is rewritten in
terms of the lag operator Lnyt � yt�n as

f/ � Lgyt ¼ fh � Lgnt ; ð2Þ

where f/ � Lg � 1�/1L� . . .�/aLa and fh � Lg � 1þ h1Lþ . . .þ hbLb

are the AR and MA polynomials, respectively.
If fytg is a non-stationary time series, a way to obtain a station-

ary time series fŷtg is to differentiate fytg, i.e., (Box and Jenkins,
1976)

ŷt ¼ ð1� LÞdyt ; ð3Þ

where d is the number of differences required to render the

series fytg stationary. For example, d ¼ 1 yields ŷt ¼ ð1� LÞ1yt ¼
yt � Lyt ¼ yt � yt�1;d ¼ 2 gives rise to ŷt ¼ ð1� LÞ2yt ¼ yt þ L2yt

�2L1yt ¼ yt þ yt�2 � 2yt�1 ¼ ðyt�2 � yt�1Þ � ðyt�1 � ytÞ, etc. Hence,
an ARIMA ða;d;bÞ representation of fytg is required if fytg is
non-stationary. Equivalently, an ARMA ða;bÞ model is applied to
fŷtg.

Hydrologic time series are generally affected by seasonality. In
order to obtain a stationary time series the seasonal component
has to be removed. This can be incorporated in the ARIMA frame-
work (e.g., Hillmer and Tiao, 1982).

3.2. ARDL models

Let us consider two time series, fxtg ¼ ðx1; . . . ; xnÞ and
fytg ¼ ðy1; . . . ; ynÞ. The ARDL is a particular type of ARMA models
(e.g., De Boef and Keele, 2008; Davidson et al., 1978; Koyck,
1954), in which the MA polynomial is applied to fxtg, the time ser-
ies representing an independent variable (or regressor). Assuming
that both time series are stationary, the ARDL model is written as

f/ � Lgyt ¼ fh � Lg � h0 � 1ð Þxt þ nt: ð4Þ

This equation can be extended to the case of more than one regres-
sor. In order to obtain a consistent estimation of model coefficients,
regressors have not to be cointegrated among themselves (Shin and
Pesaran, 1999).

The ARDL model (4) allows one to identify the dynamic rela-
tionship between two processes (time series). The influence of
the processes involved is distributed over time. If the relationship
between yt and xt exhibits no delay and persistence, (4) reduces to
a generic static model

yt ¼ hxt þ nt : ð5Þ
3.3. Implementation

The main steps involved in the implementation of an ARMA
model are summarized in the following.

(i) Analysis of stationarity. A weak stationarity is generally
required for time series, i.e., the mean and auto-covariance
have to be constant in time. Several alternative strategies
allow one to construct the stationary component of a time
series. One way is to apply the differences embedded in the
ARIMA framework. An alternative is to employ parametric
strategies to model the trend and seasonal components,
and then subtract them from the original time series
(Box and Jenkins, 1976). We employ the latter strategy by
representing time series with an additive model,
yt ¼ qðtÞ þ
XT

i¼1

mid i� R
t
T

� �� �
þ ŷt : ð6Þ

Here ŷt is the stationary counterpart of yt; qðtÞ is a polyno-
mial in t, which represents the trend component of yt; Rf�g
returns the remainder of the division expressed by the argu-
ment, dð�Þ is the Dirac delta function, and T is the period asso-
ciated with the seasonal component. Coefficients of the
polynomial qðtÞ and the coefficients mi are determined via a
multilinear regression.
(ii) Identification of model structure and estimation of model
coefficients. The order ða; bÞ is set according to the following
considerations. The auto-correlation function of fytg pro-
vides an indication of the process’ persistence that is related
to the order a. The parameter b and model coefficients are
determined iteratively (b ¼ 1;2;3 . . .), within a maximum
likelihood framework, by relying on a model selection crite-
ria, e.g., AIC (Akaike, 1974)
AIC ¼ ln
1
n

Xn

t¼1

n2
t

 !
þ 2K

n
; ð7Þ

where K is the total number of estimated coefficients, and n is
the size of the time series. According to this criterion, the
most favored model, i.e., the value of b in (4), corresponds
to the lowest value of AIC.
For a given b, model coefficients are computed via least
square estimation in a multiple linear regression. Following
Almon (1965), we start by rewriting Eq. (4) in a matrix form,
y ¼ A � cþ n, where y ¼ ðy1; . . . ; ynÞ

>; n ¼ ðn1; . . . ; nnÞ>;

c ¼ ðk0; k1; k2;/1; . . . ;/pÞ
> is the K-dimensional vector with

k0; k1 and k2 defined in terms of hj as hj ¼ k0 þ k1jþ k2j2;
and A is the n� K matrix,

A ¼

z0;t1 z1;t1 z2;t1 yt1�1 . . . yt1�p

z0;t2 z1;t2 z2;t2 yt2�1 . . . yt2�p

. . . . . . . . . . . . . . . . . .

z0;tn z1;tn z2;tn ytn�1 . . . ytn�p

0
BBB@

1
CCCA ð8Þ

with z0;t ¼
Pb

j¼0xt�j; z1;t ¼
Pb

j¼0jxt�j and z2;t ¼
Pb

j¼0j2xt�j. The
vector c is computed as

c ¼ ðA>AÞ�1
A>y: ð9Þ

This completes the determination of all the coefficients in (4).

(iii) Test on the residuals. The time series fntg has to behave as

white noise to satisfy the modeling assumptions.
Specifically, the residuals need to be independent, identi-
cally distributed random variables, sampled from a normal
zero-mean distribution. To verify this condition, we use
the Ljung-Box test (Ljung and Box, 1978)
H ¼ nðnþ 2Þ
Xm

u¼1

q2
u

n� u
< v2

jðm� a� bÞ; ð10Þ

where q2
u is the autocorrelation coefficient, and m is an inte-

ger chosen on the basis of the sample length n. If H fits the v2
j
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distribution with significance level 1� j, then the residual
sequence behaves as white noise.
The ARMA models provide a means for both assessment of the
underlying mechanisms of a dynamic system and quantitative pre-
diction of its behavior.
4. Results and discussion

Our construction of statistical models of the coastal aquifer
relies on time series of top salinity fstg, water table elevation
fwtg, rainfall frtg, and pumping rate fptg, all measured at the
monthly scale. As a preliminary step, each series has to be decom-
posed into a deterministic trend a stationary component, as
required by the ARDL theory (Section 3). This task is accomplished
by employing the parametric strategy given by Eq. (6). The result-
ing zero-mean stationary time series, fŝtg; fŵtg; fr̂tg and fp̂tg, are
considered in the analysis reported below (hereinafter, for the sake
of simplicity, the hats are omitted). Fig. 3 depicts the available time
series and their stationary counterparts.
4.1. Statistical models of available data

The data in the coastal strip under consideration mainly come
from two piezometers, labeled P1 and P2 in Fig. 1. Piezometer P1

belongs to a network of the University of Bologna (Greggio et al.,
2012). It has been used to monitor the phreatic level during several
months in 2010 and 2011. Piezometer P2 is part of the network of
the Emilia-Romagna Region Geological Survey. It has been used to
sample water levels and salinity, at multiple depths, from 2009 to
2012. The resulting water table elevation (w) and salinity (�s) data
(extrapolated at monthly scale) form time series fwP1 ;tg; fwP2 ;tg
and f�sP2 ;tg, respectively, where P1 and P2 refer to the piezometers
in which these quantities are measured. The size of time series
fwP1 ;tg is 19 (Fig. 3a), while the size of fwP2 ;tg and f�sP2 ;tg is 36
(Fig. 3b and c, respectively).
Monthly time series of (a) fwP1 ;tg (m asl), (b) fwP2 ;tg (m asl), (c) fsP2 ;tg (g/l), (d) frtg
onary components, from January 2009 forward.
Top salinity, i.e., the salinity measured at the top of the phreatic
surface, provides an indicator of the impact of groundwater salin-
ization on the ecosystem and biodiversity. The species Pinus
Pinaster, which is widespread in the study area, thrives if water
salinity does not exceed the threshold value of 5–7 g/l
(Antonellini and Mollema, 2010). Top salinity is controlled by sev-
eral factors (e.g., rainfall infiltration, drainage, evapotranspiration
from pine trees). Most of these factors, however, are linked to
groundwater flow dynamics and directly affect the water table
level. Hence, in the following, we investigate how variations in
water level at piezometer P2 affect top salinity. To do this, we
assume a lack of delay between the top salinity, fsP2 ;tg, and water
table elevation, fwP2 ;tg, time series. This allows us to adopt the sta-
tic model (5) to represent their relationship

sP2 ;t ¼ h0wP2 ;t þ nt : ð11Þ

where h0 ¼ �16:757 is derived via least square method.
Many of the key factors affecting top salinity do so indirectly,

via the phreatic surface elevation. The first of these factor is precip-
itation. To investigate the dynamics of natural recharge in the
study area we employ an ARDL model. This enables us to account
for the time delay, due to the infiltration through the vadose zone,
between the rainfall and the water table level. The rainfall data in
the area of interest were collected at the daily scale, by a pluviome-
ter whose location is shown in Fig. 1. These daily data are averaged
to the monthly scale to form time series frtg consisting of 48 ele-
ments (Fig. 3d); frtg covers the time period for which measure-
ments of the water table elevation are available.

The water table data collected by piezometers P1 and P2 are
described by ARDL models

wP1 ;t ¼
Xa1

i¼1

/1;iwP1 ;t�i þ
Xb1

j¼0

h1; jrt�j þ nt ð12Þ

and
(mm/day), and (e) fptg (mm/day). Each row comprises an observed time series and



Fig. 4. Phreatic levels observed in piezometer P2 and predicted with the ARDL model (13) from (a) all the available observations and (b) the first 75% of all the observations
(blue), with the remaining data (green) used for validation. The phreatic levels are represented by the stationary components of the time series. The 1:1 straight line
corresponds to the perfect agreement between measurements and predictions. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

Fig. 5. Phreatic levels observed in piezometer P1 and predicted with the ARDL
model (12). The phreatic levels are represented by the stationary components of the
time series. The 1:1 straight line corresponds to the perfect agreement between
measurements and predictions.

Table 1
Values of the orders and coefficients in the ARDL models (12)–(14).

a b /1 /2 /3 h0 h1 h2

Eq. (12) 2 2 1.1982 �0.5517 – 0.0237 0.0097 0.0018
Eq. (13) 3 2 1.3187 �0.3433 �0.2104 0.0305 �0.0008 �0.0110
Eq. (14) 3 2 0.5981 0.3151 �0.4956 0.1311 0.0728 0.0290
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wP2 ;t ¼
Xa2

i¼1

/2;iwP2 ;t�i þ
Xb2

j¼0

h2; jrt�j þ nt; ð13Þ

respectively. The order parameters a1 and a2 in these equations are
determined by analyzing the auto-correlation functions of time
series fwP1 ;tg and fwP1 ;tg, respectively. We found the correlation
between different elements of time series fwP1 ;tg to be statistically
significant (i.e., to have the autocorrelation coefficient exceeding
the 95% confidence interval) if the lag does not exceed 2 months,
which yields a1 ¼ 2. A similar analysis of time series fwP2 ;tg gives
rise to a2 ¼ 3. The order parameters b1 and b2 are computed
together with the remaining coefficients in (12) and (13) combining
model selection criteria and multilinear regression following Eqs.
(7)–(9). Their values are collected in Table 1.

The phreatic level is also influenced by the drainage system.
Water reclamation (pumping) is necessary to allow for agriculture
and settlements and is pursued with the aim of maintaining the
water level constant over time. The pumping rate time series,
fptg, consists of 24 measurements collected at the pumping
station (Fig. 3d). A relationship should exist between the pumping
rate used in reclamation, pðtÞ, and the rainfall, rðtÞ, since the two
have the opposite effect on the water table level. We use an
ARDL model,
pt ¼
Xa3

i¼1

/3;ipt�i þ
Xb3

j¼0

h3; jrt�j þ nt ; ð14Þ
to establish the relationship between the two time series, fptg and
frtg, constructed from the monthly data of pumping and rainfall
collected between January 2009 and December 2010. Following
the previously described procedure, we compute the values of the
parameters in (13). These are reported in Table 1.



Fig. 6. Pumping rates observed in the field and predicted with the ARDL model (14).
The pumping rates are represented by the stationary components of the time series.
The 1:1 straight line corresponds to the perfect agreement between measurements
and predictions.
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4.2. Results

We use the ARDL models (12) and (13) to quantify natural
recharge in the area of interest. The order parameter b in these
models is related to the time delay between precipitation, rðtÞ,
Fig. 7. (a) Relationship between top salinity and phreatic level observed, from the station
observed in piezometer P2 and predicted with the static model (11). The salinity values a
corresponds to the perfect agreement between measurements and predictions.

Table 2
Values of the angular coefficients, mrl , and coefficients of determination, R2

rl , associated with
for the first six lags with the E ¼ 95% confidence bounds.

mrl R2
rl

q1 q2

Eq. (12) 0.8622 0.8714 0.035 �0.2849
Eq. (13) 0.924 0.9408 0.0039 �0.0481
Eq. (14) 0.7838 0.8136 �0.2827 �0.1688
and water table response, wðtÞ. The strategy outlined in
Section 3.3 suggests this delay to be about 2–3 months, which is
consistent with observations at the site: the phreatic level in
autumn is affected by low precipitation occurring during summer,
and the effects of heavy winter rainfall are still detected in spring.

The second order parameter, a, represents the persistence
(memory) of the phreatic level. The latter is to be expected in a
dynamical system, such as a shallow aquifer recharged primarily
by precipitation. Our analysis revealed that a1 < a2 (see Table 1).
This is consistent with the fact that piezometer P1 is located in
the vicinity of a river (Fig. 1), which magnifies the dynamic effects
of natural recharge, i.e., shortens the system’s memory.

In Fig. 4a and b, we compare the phreatic levels observed in
piezometer P2 and predicted with the ARDL model (13). All avail-
able observations were used to calibrate the model in Fig. 4a; the
model in Fig. 4b used the first 75% of these data for model calibra-
tion and the remaining 25% for model validation. In both cases, the
points are clustered around the 45� regression line, with virtually
negligible spreading. This demonstrates the model’s robustness
and ability to accurately reproduce the available observations.

A similar analysis is performed for the phreatic levels measured
at P1 and computed with the ARDL model (12). However, given the
small size of the time series, all the data are used for model calibra-
tion and model validation is omitted. Fig. 5a demonstrates that the
accuracy of model’s predictions is still acceptable even if decreases
in this second case. This is mainly caused by the limited number of
available observations; the indirect recharge due to the surface
water stream plays a role too.

The results reported in Figs. 4 and 5 imply that temporal pat-
terns of precipitation play an important role in determining the
water table levels at the site. This finding is consistent with the
earlier observations (Antonellini et al., 2008; Mollema et al.,
ary components of the corresponding time series, in piezometer P2. (b) Top salinity
re represented by the stationary components of the time series. The 1:1 straight line

the regression lines in Figs. 4–6. Autocorrelation coefficients of the residual sequence

q3 q4 q5 q6 E

�0.1341 �0.0286 0.0041 �0.1298 �0.5235
�0.1162 0.3317 0.0503 0.1653 �0.336

0.0988 �0.1175 0.0063 0.0848 �0.4814



Fig. 8. ACF and PACF of the stationary time series of rainfall (left column) and the residuals associated with the ARIMA (1,1,3) model (right column).
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2013) that this shallow coastal aquifer is mainly recharged via
rainfall infiltration into the coastal dunes.

The water table in the study area is affected not only by rainfall
but also by the land reclamation drainage system, whose purpose
is to maintain constant groundwater level. A relationship between
the pumping rate associated with land reclamation and the rainfall
is provided by the ARDL model (14). Fig. 6 shows that the accuracy
of this model is lower then the accuracy of models (12) and (13).
This implies that the pumping rate may not be explained by the
rainfall alone. This is consistent with the fact that the pump oper-
ates almost continuously in time, while the rainfall at the daily
scale is intermittent. Furthermore, the drainage channel network
is not homogeneous throughout the area, routing the water to
the pump with different time delay. Nevertheless, the correlation
is sufficiently strong to demonstrate a clear link between the two
time series.

Table 2 contains various metrics of the accuracy of the ARDL
models (12)–(14). These are angular coefficients (mrl) and coeffi-
cients of determination (R2

rl) associated with the regression lines
in Figs. 4–6, autocorrelation coefficients (qi) of the residual
sequence for the first six lags (i ¼ 1; . . . ;6), and the 95% confidence
bounds. We also used (10) to conduct the residuals test, with a
Fig. 9. Forecast of the residuals of the rainfall time series obtained with the ARIMA (1
significance level of 5%. These results reveal that the residuals
behave as white noise, as required for this kind of models; the
small size of the available time series gives rise to high sample
variances.

Finally, we use the static model (11) to investigate the influence
of the phreatic level (independent variable) on the top salinity
(dependent variable). Fig. 7a shows the negative correlation
between these two variables. Fig. 7b demonstrates the high accu-
racy of the model’s predictions of top salinity, when compared to
the observations. The phreatic level acts as an indirect measure
of groundwater dilution just below the phreatic surface due to
rainfall. Hence, the top salinity is mainly controlled by natural
recharge, especially where the sand of the coastal dunes is directly
exposed at the surface. In the areas covered by pine forests,
groundwater top salinity may also be influenced by the combined
effects of water root uptake and evaporation (Mollema et al., 2012).
These mechanisms are not included in our analysis.
4.3. Forecasting

Since our models relate top salinity and phreatic levels to rain-
fall, they may be used to predict effects of changing precipitation
,1,3) model. The predicted stationary time series consists of 55 monthly periods.



Fig. 10. Work flow for forecast of precipitation and water level and for model validation.

Fig. 11. Observations and predictions of (a) phreatic levels and (b) salinities in piezometer P2. The data are inferred from the stationary components of the corresponding time
series. The predictions rely on the calibration procedure described in Fig. 10. The 1:1 straight line corresponds to the perfect agreement between measurements and
predictions.
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patterns on the top salinity in the study area. Pluviometric data are
typically available over long time periods, which make them suit-
able for an ARIMA analysis. Consider, for example, the monthly
rainfall data recorded from 1990 to 2012. After employing the dif-
ferentiation (3) with d ¼ 1 to render this time series stationary, we
compute its autocorrelation function (ACF) and partial correlation
function (PACF). These are shown in the left column of Fig. 8, which
also reveals the absence of a seasonal component in this time ser-
ies. The ACF cuts off sharply after the first lag, while PACF decays
more gradually, necessitating the use of the moving average
(Box and Jenkins, 1976). Among different combinations of
the order parameters, an ARIMA (1,1,3) model yields the
smallest variance. Its model coefficients are /1 ¼ �0:8393; h1 ¼
�0:8607; h2 ¼ �0:8253, and h3 ¼ 0:6925. The ACF and PACF of
the residual sequence are depicted in the right column of Fig. 8.
The model prediction of the last 35% of available data, which were
used for validation, is shown in Fig. 9 together with the 95% confi-
dence interval.

Finally, we use the ARIMA model to forecast the precipitation
pattern in the area of interest. Since its predictive power deterio-
rates with the forecasting time horizon, the model has to be
updated (recalibrated) as new data become available. Fig. 10
depicts a recalibration procedure, which consists of the following
steps. One future value of rainfall is predicted at each time step
with the ARIMA model. Then, the value of water level, at the same
time, is computed by means of the ARDL model, as described in the
previous section. When the observation corresponding to the pre-
dicted value of water level becomes available, the two are com-
pared for validation purposes. Stationary components of the top
salinity and water level observed at well P2 are compared with
their predicted counterparts in Fig. 11. The water levels were pre-
dicted with our recalibration procedure, and the corresponding
values of top salinity were obtained by means of the generic static
model. This comparison serves to validate the proposed
data-driven models. In general, time horizon, over which predic-
tions remain accurate, increases with the time series’ length.
5. Summary

Our results provide an insight into the underlying mechanisms
of groundwater salinization in reclaimed low coastal plains and
can serve as predictive models. We focused on a specific study area
in Ravenna (Italy), in which groundwater salinity is critical for
coastal vegetation. Specifically, we considered a coastal strip,
which provides a habitat for a valuable pine forest. Pine trees, a
species not typical of this environment, require both a deep water
table and a limited groundwater salinity to thrive. This places a
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premium on accurate forecasting and control of groundwater
levels.

We employed top salinity as a key metric of groundwater salin-
ization and established a functional dependence between it and
water table level, rainfall, and reclamation pumping. Our modeling
strategy relies on the auto-regressive moving average (ARMA)
framework. The resulting predictive models were validated by
comparison with data. We demonstrated that data-driven
approaches may provide useful information in situations where
physics-based models have only limited success in characterizing
the phenomenon of interest. Moreover, these approaches can be
used to assist in building physics-based models through a prelim-
inary interpretation of available observations.

Both ARMA and ARDL models are predicated on the assumption
that time series under investigation are stationary or become so
after de-trending, i.e., decomposing a time series into its (possibly
time-dependent) mean and zero-mean fluctuations about the
mean (the so-called residuals). Implicit in the ARMA and ARDL
models with de-trending is the notion that the residuals contain
sufficient informations to establish the interdependencies between
the underlying time series and that the average components of
these time series have the same relations as the residuals do.

An essentially nonstationary time series is a time series whose
residuals remain nonstationary after de-trending, e.g., it might
have a time-dependent variance. While important in many appli-
cations, e.g., forecasting an aquifer’s response to long-term climate
change, analysis of essentially nonstationary processes lies outside
the scope of the present study.
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