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(DISTART), Università di Bologna, Bologna, Italy

Shlomo P. Neuman
Department of Hydrology and Water Resources, University of Arizona, Tucson

Daniel M. Tartakovsky
Group CIC-19, Los Alamos National Laboratory, Los Alamos, New Mexico

Abstract. It has been shown by Di Federico and Neuman [1997, 1998a, b] that observed
multiscale behaviors of subsurface fluid flow and transport variables can be explained
within the context of a unified stochastic framework, which views hydraulic conductivity as
a random fractal characterized by a power variogram. Such a random field is statistically
nonhomogeneous but possesses homogeneous spatial increments. Di Federico and Neuman
[1997] have demonstrated that the power variogram and associated spectra of a
statistically isotropic fractal field can be constructed as a weighted integral from zero to
infinity (an infinite hierarchy) of exponential or Gaussian variograms and spectra of
mutually uncorrelated fields (modes) that are homogeneous and isotropic. We show in this
paper that the same holds true when the field and its constituent modes are statistically
anisotropic, provided the ratios between principal integral (spatial correlation) scales are
the same for all modes. We then analyze the effect of filtering out (truncating) modes of
low, high, and intermediate spatial frequency from this infinite hierarchy in the real and
spectral domains. A low-frequency cutoff renders the truncated hierarchy homogeneous.
The integral scales of the lowest- and highest-frequency cutoff modes are related to length
scales of the sampling window (domain) and data support (sample volume), respectively.
Taking the former to be proportional to the latter renders expressions for the integral
scale and variance of the truncated field dependent on window and support scale (in a
manner previously shown to be consistent with observations in the isotropic case). It also
allows (in principle) bridging across scales at a specific locale, as well as among locales, by
adopting either site-specific or generalized variogram parameters. The introduction of
intermediate cutoffs allows us to account, in a straightforward manner, for lacunarity due
to gaps in the multiscale hierarchy created by the absence of modes associated with
discrete ranges of scales (for example, where textural and structural features are
associated with distinct ranges of scale, such as fractures having discrete ranges of trace
length and density, which dissect the rock into matrix blocks having corresponding ranges
of sizes). We explore mathematically and graphically the effects that anisotropy and
lacunarity have on the integral scale, variance, covariance, and spectra of a truncated
fractal field. We then develop an expression for the equivalent hydraulic conductivity of a
box-shaped porous block, embedded within a multiscale log hydraulic conductivity field,
under mean-uniform flow. The block is larger than the support scale of the field but is
smaller than a surrounding sampling window. Consequently, its equivalent hydraulic
conductivity is a random variable whose variance and spatial autocorrelation function,
conditioned on a known mean value of support-scale conductivity across the window, are
given explicitly by our multiscale theory.

1. Introduction

Geologic media are heterogeneous and exhibit both discrete
and continuous spatial variations on a multiplicity of scales. It
is therefore not surprising that the same is true of their flow

and transport properties. One manifestation of multiscale het-
erogeneity is the apparent increase in spatial correlation scale
and variance of natural log hydraulic conductivity Y 5 ln K
with the size of the domain under investigation; another is the
apparent dependence of permeabilities and dispersivities on
their scale of measurement or observation [Neuman and Di
Federico, 1998]. A scaling theory that establishes a consistent
link between these phenomena has recently been advanced by
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Di Federico and Neuman [1997, 1998a, b; see also Neuman and
Di Federico, 1998]. It rests on the observation that at an in-
creasing number of sites on distance scales ranging from a few
meters to 100 km [Grindrod and Impey, 1992; Desbarats and
Bachu, 1994; Molz and Boman, 1995; Guzman and Neuman,
1996; Liu and Molz, 1996], Y(x) data appear to represent a
nonstationary field with homogeneous spatial increments.
When this field is statistically isotropic, it is associated with a
power variogram g(s) 5 as2H, where a is a constant, s is
separation distance, and H is a Hurst coefficient. Since the
variogram scales as g(rs) 5 r2Hg(s), the field is self-affine
and within the range 0 , H , 1 constitutes a random fractal
with dimension D 5 d 1 1 2 H , where d is Euclidean
(topologic) dimension [Voss, 1985]. If the field is additionally
Gaussian, it constitutes fractional Brownian motion (fBm)
[Mandelbrot and Van Ness, 1968]. When 0.5 , H , 1, ran-
dom spatial increments in field values are positively correlated
so that positive and negative deviations from the mean tend to
persist over distance, a phenomenon known as persistence.
When 0 , H , 0.5, the increments are negatively correlated
so that positive and negative deviations from the mean tend to
alternate rapidly, a phenomenon called antipersistence. When
H 5 0.5, the increments are uncorrelated and the field rep-
resents Brownian motion.

The Hurst coefficient associated with an fBm description of
Y is not the same at each site, though it has been found to lie
near the midrange of 0 , H , 0.5 in most of the above
studies, some of which emphasize horizontal and some of
which emphasize vertical variations in Y (Ababou and Gelhar
[1990] work with H ' 0, while Aasum et al. [1991] find H .
0.5). Within this range the increments are negatively corre-
lated and relatively noisy, exhibiting antipersistent behavior.
Nevertheless, when one juxtaposes apparent values of variance
and integral scale from many sites, inferred from Y data by
assuming that the underlying field is homogeneous, one finds
that they fit a generalized power model with H ' 0.25 [Neu-
man, 1994]. Such generalized behavior has been deduced ear-
lier by Neuman [1990] from the observed scale dependence of
juxtaposed apparent dispersivities reported for a large number
of tracer studies worldwide.

Though one can represent multiscale random heterogeneity
by means of other models, such as fractional Gaussian noise
(fGn) [Robin et al., 1991; Molz and Boman, 1993, 1995; Tub-
man and Crane, 1995; Eggleston and Rojstaczer, 1998] (these
studies typically yield H . 0.5), corresponding power law
approximations [Glimm et al., 1993; Dagan, 1994], Weierstrass-
Mandelbrot fractal function [Molz et al., 1998], fractional Levy
motion (fLm) [Painter, 1996a, b], or multifractals [Liu and
Molz, 1997; Molz et al., 1997], their reliance on fBm allowed Di
Federico and Neuman [1997] to establish a geostatistical frame-
work within which they had been able to solve multiscale flow
and transport problems by well-established methods of sto-
chastic analysis [Di Federico and Neuman, 1998a, b]. The
geostatistical framework rests on a discovery by Neuman [1990]
and Di Federico and Neuman [1997] that the variogram and
spectra of fBm can be constructed as, or decomposed into, an
infinite hierarchy of either exponential or Gaussian variograms
and spectra of mutually uncorrelated, statistically homoge-
neous and isotropic random fields (modes). Filtering out (trun-
cating) low-frequency (large scale) modes from this infinite
hierarchy renders it statistically homogeneous with a positive
spatial autocovariance function that decays monotonically with

separation distance in a manner not too dissimilar from that of
its constituent (exponential or Gaussian) modes. The integral
scale l l of the low-frequency cutoff mode is related to the
length scale of a sampling window defined by the region under
investigation. If a high-frequency (small scale) cutoff is
present, then its integral scale lu is related to the length scale
of data support (volume of measurement). Taking each rela-
tionship to be one of proportionality renders the integral scale
and variance of a truncated field dependent on window and
support scales in a manner consistent with observations.

The multiscale geostatistical framework of Di Federico and
Neuman [1997] allows bridging across scales at a given locale
by calibrating a truncated variogram model to data observed
on a given support in one domain and predicting the autoco-
variance structure of the corresponding field in domains that
are either smaller or larger. One may also venture bridging
across both domain scales and locales by using generalized
parameters such as H ' 0.25, derived on the basis of juxta-
posed data from many sites.

The geostatistical theory of Di Federico and Neuman [1997]
allowed Di Federico and Neuman [1998a] to investigate analyt-
ically, by means of a standard perturbation method, mean-
uniform steady state groundwater flow in unbounded, two- and
three-dimensional domains where the log hydraulic conductiv-
ity forms a truncated multiscale hierarchy of Gaussian fields,
each associated with an exponential autocovariance. They
started by deriving an expression for effective hydraulic con-
ductivity, as a function of the Hurst coefficient H and the
cutoff scales in one-, two-, and three-dimensional domains,
which is qualitatively consistent with observed variations in
hydraulic conductivity with the scale of measurement. They
then developed leading-order analytical expressions for two-
and three-dimensional autocovariance and cross-covariance
functions of hydraulic head, velocity, and log hydraulic con-
ductivity versus H , l l, and lu, examined their behavior, and
compared them with those corresponding to an exponential log
hydraulic conductivity autocovariance. Their results suggested
that it should be possible to bridge information about hydraulic
heads and groundwater velocities across windows of disparate
scales. In particular, they found that when l l .. lu, the
variance of head is infinite in two dimensions and grows in
proportion to l l

212H in three dimensions, while the variance
and longitudinal integral scale of velocity grow in proportion to
l l

2H and l l, respectively, in both cases.
The latter work formed the basis for a subsequent pertur-

bation analysis by Di Federico and Neuman [1998b] of advec-
tive transport in a multiscale velocity field. They found that if
one considers such transport to be affected by a finite domain
much larger than the mean travel distance of a plume, so that
s ,, l l , ` , then an early preasymptotic regime develops
during which longitudinal and transverse dispersivities grow
linearly with s . If one considers transport to be affected by a
domain which increases in proportion to s , then l l and s are of
similar order and a preasymptotic regime never develops. In-
stead, transport occurs under a regime that is perpetually close
to asymptotic under the control of an evolving scale, l l ; s .
They showed that if, additionally, lu ,, l l, then the corre-
sponding longitudinal dispersivity grows in proportion to
l l

112H or, equivalently, s112H. Both these preasymptotic and
asymptotic theoretical growth rates are consistent with the
observed variation of apparent longitudinal Fickian dispersivi-
ties with scale. The authors concluded their analysis by inves-
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tigating the effect of variable separations between cutoff scales
on dispersion.

The log hydraulic conductivity of many geologic media ex-
hibits statistical anisotropy [Hufschmied, 1985; Sudicky, 1986;
Neuman and Depner, 1988]. Hewett [1992], Molz and Boman
[1993], Perez and Kalkar [1993], and Molz et al. [1998] repre-
sented anisotropy through a combination of vertical fGn and
horizontal fBm models having identical Hurst coefficients; Ra-
jaram and Gelhar [1995] and Zhan and Wheatcraft [1996] in-
troduced anisotropy into power spectra of fGn and/or fBm. In
this paper we extend the geostatistical framework of Di Fed-
erico and Neuman [1997] to the case of a nonhomogeneous
random field that possesses homogeneous but anisotropic spa-
tial increments. We demonstrate that the power variogram and
associated spectra of such a field can be constructed as
weighted integrals from zero to infinity of variograms and
spectra of mutually uncorrelated, statistically homogeneous
but anisotropic random fields, or modes, with either exponen-
tial or Gaussian variograms, all of which have identical anisot-
ropy ratios. We then analyze the effect of filtering out (trun-
cating) high- and low-frequency modes from this infinite
hierarchy in the real and spectral domains. Our analysis shows
that, as in the isotropic case, a low-frequency cutoff renders the
truncated hierarchy statistically homogeneous with an aniso-
tropic spatial autocovariance that varies monotonically with
separation distance in a manner not too dissimilar from that of
its constituent modes.

By introducing intermediate cutoffs, we find it possible to
account for gaps in the multiscale hierarchy created by the
absence of modes associated with discrete ranges of scales, a
phenomenon which we refer to as lacunarity. It is easy to think
of examples in which textural, structural, petrophysical, hydro-
logical, or other features and attributes of a geologic medium
are associated with discrete ranges of scales rather than with an
uninterrupted continuum of such scales. One such example is
provided by fractures having discrete ranges of trace length
and density, which dissect the rock into matrix blocks having
corresponding ranges of sizes. In such a fractured-porous en-
vironment the spatial autocorrelation scale of matrix log con-
ductivity is often small in comparison to the shortest scale
associated with fracture conductivity, so that there is a gap
between the two sets of scales. We refer to such gaps as lacu-
nae and to the corresponding phenomenon as lacunarity. Our
use of the term differs from that of Mandelbrot [1983], who
used it to connote gaps or holes in the geometric image of a
fractal object. The need to consider lacunarity in the context of
multiscale log conductivity fields was recently pointed out by
Liu and Molz [1998] and Molz et al. [1998]. We explore math-
ematically and graphically the effects that anisotropy and la-
cunarity have on the integral scale, variance, covariance, and
spectra of a truncated anisotropic fractal field.

Finally, we develop an expression for the equivalent hydrau-
lic conductivity of a box-shaped porous block, embedded
within a multiscale log hydraulic conductivity field, under
mean-uniform flow. The block is larger than the support scale
of the field but is smaller than a surrounding sampling window.
Consequently, its equivalent hydraulic conductivity is a random
variable whose variance and spatial autocorrelation function,
conditioned on a known mean value of support-scale conduc-
tivity across the window, are given explicitly by our multiscale
theory.

2. Anisotropic Multiscale Random Fields as
Superposition of Mutually Uncorrelated Modes
2.1. Superposition of Modes in Real Domain

It is common practice [i.e., Neuman and Depner, 1988] to
treat anisotropic covariance functions as being elliptical. This
means that in the anisotropic domain one can define a system
of principal Cartesian coordinates x, and corresponding prin-
cipal spatial autocorrelation or integral scales l, l2, and l3,
such that the covariance becomes isotropic when x is trans-
formed according to

x* 5 d21x (1)

where

d 5 S 1 0 0
0 e2 0
0 0 e3

D e2 5 l2/l e3 5 l3/l (2)

Consider an infinite hierarchy of mutually uncorrelated, statis-
tically homogeneous, and anisotropic random fields (modes),
each of which is associated with an exponential or Gaussian
variogram

g~s , l , l2, l3! 5 s2~l!H 1 2 exp F2S s1
2

l2 1
s2

2

l2
2 1

s3
2

l3
2D 1/ 2G J

(3)

g~s , l , l2, l3! 5 s2~l!H 1 2 exp F2
p

4 S s1
2

l2 1
s2

2

l2
2 1

s3
2

l3
2D G J

(4)

where

s2~n! 5 C/n2H (5)

s is a separation vector, C is a constant having dimensions
[L22H], and n 5 1/l is a principal mode number, so that the
variance decreases as a power 2H of this number. The vario-
grams in (3) and (4) can be rewritten in terms of transformed
separation distances as

g~s* , l , e2, e3! 5 s2~l!F 1 2 exp S2
s*
l D G (6)

g~s* , l , e2, e3! 5 s2~l!F 1 2 exp S2
ps*2

4l2 D G (7)

where

s* 5 us* u 5 s~uTd22u!1/ 2 (8)

s 5 usu, u is a unit vector parallel to a given direction in the
original anisotropic system of coordinates, and the superscript
T indicates transpose. Let the anisotropy ratios e2 and e3 be
independent of mode number n and consider the weighted
integral

g~s*! 5 E
0

`

g~s*, n!
dn
n (9)

of variograms of individual modes over the entire admissible
range of scales. Since the variograms g are expressed in terms
of s*, they do not depend explicitly on e2 and e3. This equa-
tion is identical in form to (11) of Di Federico and Neuman
[1997]. Upon substituting (5) into (6) or (7) and substituting

2893FEDERICO ET AL.: ANISOTROPY, LACUNARITY, AND UPSCALED CONDUCTIVITY



these into (9), one immediately finds in analogy to (12) and
(25) of Di Federico and Neuman [1997] that

g~s*! 5 C0s*2H (10)

g~s*! 5 C90s*2H (11)

for exponential and Gaussian modes, respectively, which trans-
form into

g~s! 5 C0S s1
2 1

s2
2

e2
2 1

s3
2

e3
2D H

(12)

g~s! 5 C90S s1
2 1

s2
2

e2
2 1

s3
2

e3
2D H

(13)

where

C0 5 C
G~1 2 2H!

2H 0 , H , 1/ 2 (14)

C90 5 C
G~1 2 H!

2H Sp

4D
H

0 , H , 1 (15)

are constants proportional to C having the same dimensions
and G is the gamma function. The above implies that any power
variogram of the form (12) or (13) can be constructed math-
ematically as (or decomposed into) a nonunique weighted sum
of mutually uncorrelated exponential or Gaussian anisotropic
modes.

Consider now the case

g~s*, nl, nu! 5 E
nl

nu

g~s*, n!
dn
n (16)

where integration is performed with lower and upper cutoffs
nl 5 1/l l and nu 5 1/lu, so that all modes with integral scale
larger than l l and lower than lu are filtered out (excluded). As
indicated by Di Federico and Neuman [1997], the integral scales
of the lowest- and highest-frequency cutoff modes are related
to the length scales of the sampling window (domain) and data
support (sample volume), respectively. As we take the cutoffs
in (16) to apply equally along all three (principal) coordinate
directions, they delineate a cubic window and support volume
in the equivalent isotropic domain of s*, which, in turn, attain
brick shapes upon back transformation into the corresponding

anisotropic coordinates. Then, in analogy to (20) of Di Federico
and Neuman [1997],

g~s*, nl, nu! 5 g~s*, nl! 2 g~s*, nu! (17)

where according to their (15) and (27)

g~s*, nm! 5
C0

G~1 2 2H!nm
2H @1 2 exp ~2nms*!

1 ~nms*!2HG~1 2 2H , nms*!# (18)

g~s*, nm! 5
C90

G~1 2 H!~p/4!Hnm
2H F 1 2 exp S2

p

4 nm
2 s*2D

1 Sp

4 nm
2 s*2D H

GS 1 2 H ,
p

4 nm
2 s*2D G (19)

for exponential and Gaussian modes, respectively. In (18) and
(19), m 5 l , u and G(a , x) is the incomplete gamma function;
in the limit as nl 3 0 and nu 3 ` , (17) reduces to (10) or
(11), depending on mode type. The variogram (17) defines a
homogeneous field associated with a constant variance

s2~nl, nu! 5 s2~nl! 2 s2~nu! (20)

autocovariance C(s*, nl, nu) 5 s2(nl, nu) 2 g(s*, nl, nu)
given by

C~s*, nl, nu! 5 C~s*, nl! 2 C~s*, nu! (21)

and finite integral scale

I~nl, nu, u! 5
2H

1 1 2H
nu

112H 2 nl
112H

nlnu~nu
2H 2 nl

2H!
~uTd22u!1/ 2 (22)

where

s2~nm! 5
C0

G~1 2 2H!nm
2H (23)

C~s*, nm! 5
C0

G~1 2 2H!nm
2H

z @exp ~2nms*! 2 ~nms*!2HG~1 2 2H , nms*!# (24)

for exponential modes, and

s2~nm! 5
C90

G~1 2 H!~p/4!Hnm
2H (25)

C~s*, nm! 5
C90

G~1 2 H!~p/4!Hnm
2H

z F expS2
p

4 nm
2 s*2D2Sp

4 nm
2 s*2D H

GS 1 2 H ,
p

4 nm
2 s*2D G

(26)

for Gaussian modes. In the absence of a high-frequency cutoff
where nu 3 ` , (22) simplifies to

I~nl, u! 5
2H

1 1 2H
1
nl

~uTd22u!1/ 2 (27)

The above equations reduce to their isotropic analogues in the
work of Di Federico and Neuman [1997] when e2 5 e3 5 1.

We introduce the cutoff ratio b 5 nl/nu, 0 # b # 1 and
nl . 0 and show in Figure 1 the variance given in (20),
normalized with respect to its value at b 5 0, as a function of

Figure 1. Dimensionless variance versus b for various H .
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b for H 5 0.10, 0.25, 0.40, 0.75, where the case H 5 0.75
represents only Gaussian modes. Since here we take nl . 0,
the case b 5 0 represents absence of an upper cutoff (in
practice, an upper cutoff scale and corresponding support scale
that are small compared to the scales of the lower cutoff and
window). The normalized variance is seen to decrease as b
increases and to diminish as H becomes small. In many prac-
tical applications, b , 0.01, and the reduction in variance is
modest. The integral scale in (22) depends on the direction of
the unit vector u. We let u designate the angle between u and
the vertical and normalize the integral scale with respect to its
horizontal (u 5 908) value at b 5 0. Figure 2 shows how this
normalized integral scale varies with u for various values of H ,
b, and the axisymmetric anisotropy ratio e which takes on,
from bottom to top, the values 0.01, 0.1, 1, 10, and 100. When
e , 1 so that the spatial autocorrelation scales of each mode
are larger in the horizontal than in the vertical direction, the
normalized integral scale of the truncated hierarchy increases
with u; it decreases with u when e . 1. In the isotropic case
where e 5 1, the normalized integral scale of the hierarchy
does not vary with u. In all cases it increases with b and
decreases with H .

The autocorrelation function r(s , nl) 5 C(s , nl)/s2(nl)
corresponding to exponential and Gaussian modes without an
upper cutoff (b 5 0) and with axisymmetric statistical anisot-
ropy (e2 5 1 and e3 5 e) is plotted in Figures 3 and 4,
respectively. Figures 3 and 4 show how these functions vary
with dimensionless distance nls , along various directions de-
fined by the angles u and f between u and the coordinates x3

and x1, respectively, for various values of e and H . The left
columns in Figures 3 and 4 depict vertical (u 5 08, any f) and
the second intermediate (u 5 458, f 5 458) autocorrelation
functions; curves corresponding to e 5 1 in either left or right
columns coincide with the horizontal autocorrelation func-
tions. In both columns the autocorrelation functions are seen
to increase with e and H . When e . 1, these functions decay
more slowly in the vertical than in the intermediate direction;
curves corresponding to e 5 10 and 100 in this latter direction
are virtually indistinguishable from each other. Autocorrela-
tion functions corresponding to exponential and Gaussian
modes are quite similar to each other within their joint range
of admissible Hurst coefficients, 0 , H , 0.5, but the latter
decay more slowly near the origin outside of this range, where
H . 0.50.

Figure 5 shows how the introduction of an upper cutoff
affects multiscale autocorrelation functions r(s , nl, nu) 5
C(s , nl, nu)/s2(nl, nu) that represent sums of exponential
modes. The functions are plotted versus nls for various anisot-
ropy ratios e (which takes on, from bottom to top, the values
0.01, 0.1, 1, 10, and 100), H 5 0.25, two values of b (0.01 and
0.1), and two directions (vertical with u 5 08 and any f and
intermediate with u 5 458 and f 5 458). As b (i.e., the smaller
cutoff scale relative to the larger one) increases, the autocor-
relation is seen to become more pronounced and to decay
more slowly.

2.2. Superposition of Modes in Spectral Domain

All results obtained in the real domain have a direct coun-
terpart in the spectral domain. In the equivalent isotropic do-
main the spectral density and autocovariance are related
through the Fourier transform pair

S~k*! 5
1

~2p!d E
2`

`

C~s*!e2ik*zs* ds* (28)

C~s*! 5 E
2`

1`

S~k*!eik*zs* dk* (29)

where k* is a vector of wave numbers. Defining a correspond-
ing vector k in the principal coordinates according to

k* 5 dk (30)

where d was defined in (2), we find in analogy to (33) and (38)
of Di Federico and Neuman [1997] that the three-dimensional
spectral densities associated with exponential and Gaussian
anisotropic modes become

S~k , l , l2, l3! 5
s2~l!ll2l3

p2~1 1 k1
2l2 1 k2

2l2
2 1 k3

2l3
2!2 (31)

S~k , l , l2, l3!

5
s2~l!ll2l3

p3 exp F2
1
p

~k1
2l2 1 k2

2l2
2 1 k3

2l3
2!G (32)

respectively. Upon setting l 5 1/n , the superposition of a
continuous hierarchy of individual spectra over all possible
scales, weighted by 1/n , is accomplished in the equivalent
isotropic domain via

Figure 2. Dimensionless integral scale versus angle u for various e (from bottom to top, e 5 0.01, 0.1, 1,
10, and 100), b, and H .
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S~k*! 5 E
0

`

S~k*, n!
dn
n (33)

where k* 5 uk*u. Defining the variance in (31) and (32) ac-
cording to (5) and integrating these equations according to
(33) yields, in analogy to (35) of Di Federico and Neuman
[1997], the following spectral densities for superimposed expo-
nential and Gaussian modes in the anisotropic domain:

S~k! 5
C0e2e3~1 1 2H!G~1 1 2H!

2pG~H!G~1 2 H!~k1
2 1 e2

2k2
2 1 e3

2k3
2!~312H!/ 2 (34)

S~k! 5
C90e2e3~1 1 2H!G~1 1 2H!

2pG~H!G~1 2 H!~k1
2 1 e2

2k2
2 1 e3

2k3
2!~312H!/ 2 (35)

respectively, which are valid over the respective ranges 0 ,
H , 1

2 and 0 , H , 1. These spectral densities correspond

Figure 3. Autocorrelation function corresponding to anisotropic exponential modes with low-frequency
cutoff versus dimensionless distance nls for various e , H , and directional angles u and f.
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exactly to variograms (6) and (7), respectively, thus demon-
strating that our weighted superposition leads to identical re-
sults in the real and in spectral domains.

Rajaram and Gelhar [1995, equation (13)] postulated the
following form for the spectral density of a three-dimensional
fBm with vertical to horizontal (axisymmetric) anisotropy ratio e,

S~k! 5
c

~k1
2 1 k2

2 1 e2k3
2!~m13!/ 2 (36)

where c and m are constants. This intuitive spectrum becomes

identical to our formally derived (34) and (35) provided that
one sets m 5 2H , e2 5 1, e3 5 e , and c equal to the
corresponding coefficient of (34) or (35).

Introducing lower and upper cutoffs by setting the lower and
upper limits of integration in (33) equal to nl and nu, respec-
tively, leads in analogy to (37), (36), and (39) of Di Federico
and Neuman [1997] to

S~k*, nl, nu! 5 S~k*, nl! 2 S~k*, nu! (37)

where

Figure 4. Same as Figure 3 but corresponding to anisotropic Gaussian modes.
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S~k*, nm! 5
2He2e3C0

p2G~1 2 2H!~3 1 2H!nm
312H

z F2,1S 2,
3
2 1 H ,

5
2 1 H , 2

k*2

nm
2 D (38)

S~k*, nm! 5
22HHC90e2e3

p3/ 2G~1 2 H!k* ~312H!/ 2 g9S 3 1 2H
2 , 2

nm
2 k*2

p D
(39)

for superimposed exponential and Gaussian modes, respec-
tively. Here F2,1 is the Gauss hypergeometric function, and
g9(a , x) 5 G(a) 2 G(a , x) is the incomplete gamma function
[Abramowitz and Stegun, 1972, p. 260, p. 556].

3. Lacunary Multiscale Random Field
as a Weighted Superposition of Mutually
Uncorrelated Modes

Lacunarity represents gaps in the multiscale hierarchy cre-
ated by the absence of modes associated with discrete ranges of
scales. Our theory allows us to account for such gaps in a
straightforward manner by introducing intermediate cutoffs
into the weighted superposition of exponential or Gaussian
modes. For this purpose we designate M sets of lower and
upper frequency cutoffs nli 5 1/l li and nui 5 1/lui (i 5 1,
2, z z z , M) such that 0 # nui # nl(i11) (Figure 6), define
lacunae as all sets of modes corresponding to nui , n ,
nl(i11), and construct our multiscale field as a weighted su-
perposition of all remaining modes according to

g~s*, nl1, nu1, · · · , nlM, nuM! 5 O
i51

M E
nli

nui

g~s*, n!
dn
n (40)

where s* was defined in (8). Performing the integration yields

g~s*, nl1, nu1, · · · , nlM, nuM! 5 O
i51

M

g~s*, nli, nui! (41)

where g(s*, nli, nui) is given by (17). The variance, autoco-
variance, and integral scale of this lacunary multiscale field are
given by

s2~nl1, nu1, · · · , nlM, nuM! 5 O
i51

M

s2~nli, nui! (42)

C~s*, nl1, nu1, · · · , nlM, nuM! 5 O
i51

M

C~s*, nli, nui! (43)

I~nl1, nu1, · · · , nlM, nuM!

5
2H

1 1 2H

O
i51

M S 1
nli

112H 2
1

nui
112HD

O
i51

M S 1
nli

2H 2
1

nui
2HD

~uTd22u!1/ 2 (44)

respectively, where s2(nli, nui) is defined in analogy to (20)
and C(s*, nli, nui) is defined in analogy to (21) for any i . In
the special case where M 5 1, (44) reduces to (22). The term

Figure 5. Autocorrelation function corresponding to anisotropic exponential modes with low- and high-
frequency cutoffs versus dimensionless distance nls for H 5 0.25 and various e (from bottom to top, e 5 0.1,
1, and 10), b, and angles u and f.

Figure 6. Discrete ranges of modes in multiscale hierarchy with lacunae nui , n , nl(i11) along n axis.

FEDERICO ET AL.: ANISOTROPY, LACUNARITY, AND UPSCALED CONDUCTIVITY2898



raised to power 1⁄2 in (44) becomes unity when the multiscale
field is isotropic.

To illustrate the properties of lacunary fields, we consider
the simple case of a single gap, or lacuna, separating two sets
of modes (M 5 2) with nu2 3 ` as depicted in Figure 7. Our
results below are given in terms of two dimensionless param-
eters, b1 5 nl1/nu1 and c 5 (nl2 2 nu1)/nl1. When b1 5 1,
the leftmost set of lower-frequency modes disappears; as b1

decreases, the range of frequencies occupied by this set in-
creases; when b1 5 0, the leftmost set covers all frequencies
from the lowest cutoff to infinity. The parameter c measures
the length of the gap relative to the lowest cutoff; when there
is no gap, c 5 0. Figure 8 shows how the variance of such a
lacunary field, normalized with respect to its lacuna-free value
corresponding to c 5 0, varies with b1 for various values of H
and c . For given H and c the variance decreases monotonically
as b1 increases. This is easily understood by fixing nl1 so that
the process represents a gap of constant length in Figure 7,
moving to the left along the n axis into the domain of lower

frequencies which, by virtue of (5), are associated with larger
variances (which, when cut out, reduce the overall variance of
the multiscale hierarchy). For given H and b1 the variance
decreases as c increases, which is understood upon fixing both
nl1 and nu1 so that the process represents a lacuna with fixed
low-frequency edge, which widens by cutting out more and
more high-frequency modes thereby reducing the overall vari-
ance. Figure 9 shows how the integral scale of the same lacu-
nary field, normalized with respect to its lacuna-free value
corresponding to c 5 0, varies with b1 for various values of H
and c when all modes are isotropic. For given H and c the
integral scale first increases with b1 and then decreases. For a
fixed nonzero nl1, b1 5 0 corresponds to an infinite high-
frequency cutoff, nu1. A corresponding increase in b1 repre-
sents a decreasing high-frequency cutoff and a corresponding
elimination of small-scale contributions to the integral scale of
the multiscale hierarchy, which therefore increases with b1. As
b1 approaches 1, the leftmost set of lower-frequency modes
(Figure 7) is gradually eliminated by the lacuna, so that small-

Figure 7. Two discrete ranges of modes in multiscale hierarchy with one lacuna nu1 , n , nl2 when nu2
3 ` .

Figure 8. Dimensionless variance versus b1 for various c and H corresponding to single lacuna.
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scale contributions to the integral scale of the hierarchy be-
come predominant and cause the latter to diminish. At rela-
tively small values of b1 the integral scale increases with c; as
nl2 grows while nl1 and nu1 are fixed, the gap gradually extends
into the rightmost set of high-frequency modes whose influ-
ence on the integral scale thereby diminishes, allowing the
latter to increase. As b1 approaches 1, the integral scale de-
creases with c as the leftmost set of low-frequency modes
narrows down. The rates at which the variance and integral
scale in Figures 8 and 9 vary with b1 and c depend strongly on H.

Figures 10 and 11 depict the autocorrelations r(s , nl1,
nu1, nl2) 5 C(s , nl1, nu1, nl2)/s2(nl1, nu1, nl2) correspond-
ing to isotropic exponential and Gaussian modes, respectively,
as functions of dimensionless distance nls for various values of
H , b1, and c . The autocorrelation generally increases with H
and c except at values of b1 close to 1 where it sometimes
decreases as c increases. Autocorrelations corresponding to
exponential modes exhibit longer tails than those correspond-
ing to Gaussian modes.

We close this section by examining briefly the combined
effects of anisotropy and lacunarity on the integral scale and
autocorrelation of a multiscale random field. We do so for the
special case of axisymmetric anisotropy (e2 5 1, e3 5 e) at
H 5 0.25. Figure 12 shows how the integral scale, normalized
with respect to its horizontal value corresponding to b1 5 0
and c 5 0, varies with the angle of inclination u from the

vertical for various values of b1, c , and the axisymmetric
anisotropy ratio e which takes on, from bottom to top, the
values 0.01, 0.1, 1, 10, and 100. When e , 1 so that the spatial
autocorrelation scales of each mode are larger in the horizon-
tal than in the vertical direction, the normalized integral scale
of the truncated hierarchy increases with u; it decreases with u
when e . 1. In the isotropic case where e 5 1, the normalized
integral scale of the hierarchy does not vary with u. In all cases
it decreases slightly with b1 and is relatively insensitive to c .

Autocorrelation functions r(s , nl1, nu1, nl2, e) 5 C(s , nl1,
nu1, nl2, e)/s2(nl1, nu1, nl2) along the vertical (u 5 08, any f) and
an inclined (u 5 458, f 5 458) direction corresponding to
exponential modes, H 5 0.25, two values of b1 and c each,
and three values of e (equal to 0.1, 1, and 10 from bottom to
top) are plotted versus nls in Figure 13. Their decay rate is
seen to increase with b1, c , and inclination from the vertical.

4. Upscaled Conductivity and Its Autocovariance
Tartakovsky and Neuman [1998] have recently developed

analytical expressions for effective hydraulic conductivity un-
der three-dimensional transient flow through a box-shaped
domain because of a mean hydraulic gradient that varies slowly
in space and time. Their box is embedded within a statistically
homogeneous natural log hydraulic conductivity field, Y(x),
that is Gaussian and exhibits an anisotropic spatial correlation

Figure 9. Dimensionless isotropic integral scale versus b1 for various c and H corresponding to single
lacuna.
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structure. Here we consider their steady state result for a box
with lateral mean no-flow boundaries separated by finite dis-
tances equal to L2 and L3 and two constant head boundaries
a distance L1 apart (Figure 14). The boundaries of the box are
parallel to the principal coordinates of statistical anisotropy. A
spatially uniform mean hydraulic gradient J of magnitude J1

acts between the Dirichlet boundaries parallel to x1. Then,
according to (29) of Tartakovsky and Neuman [1998],

Keff
@2#~x!

KG
5 1 1 sY

2@1
2

2 Dst~x!# (45)

where Keff
[2] is the principal effective hydraulic conductivity par-

allel to x1, valid to first order of approximation in the variance
sY

2 of Y (or to second order in sY, as implied by the bracketed
superscript), KG is the geometric mean of hydraulic conduc-
tivity K , Dst is given by their (22) as

Figure 10. Isotropic autocorrelation function corresponding to exponential modes with single lacuna versus
dimensionless distance nls for various b1, c , and H .
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Dst~x! 5 E
0

L1E
0

L2E
0

L3

rY~x , y!
2GK~x , y!

 x1 y1
dy (46)

where rY is the spatial autocorrelation function of Y , and GK

is a Green’s function defined as the solution of ¹2GK(x, y) 5
0 in the box (Appendix B). A conjecture due to Landau and
Lifschitz [1960] allows generalizing (45) to arbitrary sY

2 by
writing

Keff~x!

KG
5 exp $sY

2@1
2

2 Dst~x!#% (47)

In the paper of Tartakovsky and Neuman [1998], rY corre-
sponds to a single exponential mode of our truncated multi-
scale hierarchy. In this paper we set rY in (46) equal to

rY~s*, l l! 5 exp S2
s*
l l
D 2 S s*

l l
D 2H

GS 1 2 2H ,
s*
l l
D (48)

Figure 11. Same as Figure 10 but corresponding to Gaussian modes.
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which is obtained upon substituting (19) into (21) and taking
nu 3 ` . The latter corresponds to a multiscale hierarchy of
exponential modes with a low-frequency cutoff scale (in the
principal x1 direction) l l, and anisotropy ratios ei 5 Ii/I1,
expressed in terms of a scalar separation distance s* 5 ux* 2 y*u
defined in equivalent isotropic coordinates x*i 5 xi/ei. In ac-
cord with Di Federico and Neuman [1997] we set l l 5 mL1 so

that x*i/l l 5 x*i/(mL1) 5 xi/(meiL1) 5 x i/m , where x i 5
xi/Li, which allows us to rewrite (48) as

rY~r , m! 5 exp S2
r
mD 2 S r

mD
2H

GS 1 2 2H ,
r
mD (49)

r 5 ux 2 z u

Figure 13. Autocorrelation function corresponding to anisotropic exponential modes with single lacuna
versus dimensionless distance nls for various e (from bottom to top, e 5 0.1, 1, and 10), b1, c , and angles
u, f when H 5 0.25.

Figure 12. Dimensionless integral scale versus angle u for various e (from bottom to top, e 5 0.01, 0.1, 1,
10, and 100), b1, and c corresponding to single lacuna when H 5 0.25.
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As shown in Appendix A, (46) then takes the form

Dst~x! 5
e2e3

8p3/ 2 E
0

`E
0

1E
0

1E
0

1

h25/ 2rY~r , m! O
m52`

` F S 1
2 2

am
1

h D
z expS2

am
1

h D 1 S 1
2 2

am
2

h D expS2
am

2

h D G
z O

n52`

` F expS2
bn

1

h D 1 expS2
bn

2

h D G

z O
j52`

` F expS2
cj

1

h D 1 expS2
cj

2

h D G dz1 dz2 dz3 dh

(50)

where am
6, bj

6, and cj
6 are defined in (B11). On the basis of

their Figure 9, Di Federico and Neuman [1997] found that the
integral scale of a truncated multiscale hierarchy is of the order
of one tenth the length of a corresponding sampling window. If
we consider our box to represent such a window, then their

finding implies that Ii ' Li/10. The latter, coupled with (50)
and (51) of Di Federico and Neuman, implies that

2H
1 1 2H m <

1
10 (51)

where, for exponential modes, 0 , H , 1/ 2. It thus follows
that Dst is a function of H and anisotropy ratios but not of
either box size or sY

2 . However, Keff increases linearly (in the
case of (45)) or exponentially (in the case of (47)) with sY

2 ,
which, in turn, is proportional to l l

2H 5 (mL1)2H and thereby
renders Keff a function of box size.

As Dst(x) is formally a function of x, we evaluate it at the
midpoint x 5 (0.5, 0.5, 0.5) of the box. Figure 15 shows how
Dst at this point, normalized by the product e2e3, varies with H
when the latter is related to m according to (51). It is seen that
Dst increases monotonically with the Hurst coefficient within
its admissible range, 0 , H , 0.5, rapidly at small values of
H and more slowly at higher values. The corresponding vari-
ation of Keff/KG with L1, according to (47), is depicted for
selected values of H in Figure 16. As implied by (47), Keff/KG

increases exponentially (and its logarithm linearly) with L1
2H,

in agreement with an earlier expression proposed by Neuman
[1994] for a block of length scale L without accounting for
truncation. Our (47) is identical to (4) of Neuman provided
one interprets his variogram as our sY

2 and sets his boundary
factor b (in our three-dimensional case) equal to 3Dst.

In deriving the above expressions for Keff in a box of dimen-
sions L1, L2, and L3, we excluded (filtered out) all modes
having integral scales larger than l li 5 mLi(i 5 1, 2, 3). The
unfiltered modes form a homogeneous field with well-defined
variance sY

2 , autocorrelation function rY, and principal inte-
gral scales Ii. These quantities represent measures of how the
unfiltered, small-scale or high-frequency modes fluctuate
about a mean, ^Y& , which the filtering process leaves unde-
fined. This is so because ^Y& is determined by the large-scale,
low-frequency modes that have been filtered out. It follows
that our expressions for Keff are conditional on a knowledge of
^Y& 5 ln KG within the box.

Figure 15. Dst normalized by e2e3 versus H . Figure 16. Keff/KG versus L1 for various H .

Figure 14. Box-shaped flow domain with Dirichlet and Neu-
mann boundaries.
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Taking the natural logarithm of (47) yields

Yeff 5 ^Y& 1 sY
2~1

2
2 Dst! (52)

where Yeff 5 ln Keff and the rightmost term is independent of
^Y& . It follows that any uncertainty in ^Y& translates directly
into an identical uncertainty in Yeff. To quantify this uncer-
tainty, we embed the box in a larger domain of dimensions B1,
B2, and B3 such that Bi $ Li for all i (Figure 17). It is
convenient (though not necessary) to think of the larger do-
main as a flow region, to think of the box as an element of a
computational grid superimposed on this region, and to think
of Keff as an upscaled or equivalent conductivity assigned to
this element. Then (52) implies that Yeff consists of two addi-
tive components, ^Y& which accounts for fluctuations in Y on
scales larger than a grid block and can therefore be resolved by
the grid and sY

2 (1/ 2 2 Dst) which accounts for unresolved
subgrid fluctuations.

Let l̃ li 5 mBi be principal integral cutoff scales associated
with the flow domain. Then the modes that contribute to fluc-
tuations in ^Y& within the flow domain have principal integral
scales l li # l i # l̃ li. It follows immediately that the super-
imposed hierarchy of these modes has a variance

sY
2~ñ l, nl! 5 sY

2~ñ l! 2 sY
2~nl! (53)

and autocorrelation function

rY~s*, ñ l, nl! 5 rY~s*, ñ l! 2 rY~s*, nl! (54)

where ñ l 5 1/l̃ l1, sY
2 (nl) 5 sY

2 is the variance of the subgrid
fluctuations, and rY(s*, nl) is their autocorrelation function.
Clearly, (53) and (54) represent the variance and autocorrela-
tion of ^Y& and therefore Yeff, within the flow domain.

5. Conclusions

The following conclusions can be drawn from this paper:
1. Both the power (semi)variogram and associated spectra

of a random field with homogeneous anisotropic increments
can be constructed mathematically as (decomposed into)
weighted integrals from zero to infinity (an infinite hierarchy)
of either exponential or Gaussian variograms and spectra of
uncorrelated homogeneous, statistically anisotropic random
fields (modes) with identical anisotropy ratios. Regardless of
how one constructs (or decomposes) the hierarchical field, the
latter is nonhomogeneous, positively autocorrelated across all
scales, and constitutes an anisotropic random fractal. This re-
sult is valid for exponential modes when the Hurst coefficients
is in the range 0 , H , 1⁄2 and for Gaussian modes when it
is in the range 0 , H , 1.

2. We investigated mathematically the effect of filtering
out (truncating) high- and low-frequency (small and large
scale) modes from this infinite hierarchy in three-dimensional
real and spectral domains. A low-frequency cutoff renders the
truncated hierarchy statistically homogeneous with a positive
spatial autocovariance function that decays monotonically with
separation distance. The principal integral scales of the lowest-
frequency mode (cutoff) are related to corresponding length
scales of a sampling window defined by the domain under
investigation. The principal integral scale of the highest-
frequency mode (cutoff) is related to corresponding length
scales of the data support (volume of measurement). Taking
each relationship to be one of proportionality renders our

expressions for the variance and principal integral scales of a
truncated anisotropic multiscale field explicitly dependent on
characteristic length scales of the sampling window and data
support.

3. When the characteristic length scale of the sampling
window is much larger than that of the data support, the
variance of the truncated hierarchy increases as a power 2H of
this characteristic scale, and the principal integral scales in-
crease linearly with the same scale.

4. Our theory allows accounting for lacunarity due to gaps
in the multiscale hierarchy, created by the absence of modes
associated with discrete ranges of scales, through the introduc-
tion of intermediate cutoffs. We have shown that the variance,
autocorrelation function, and principal integral scales of an
anisotropic multiscale field with a single lacuna depend on its
range of modes relative to the lower and upper cutoff modes of
the field.

5. We developed expressions for the principal effective
hydraulic conductivity Keff of a box-shaped porous block, em-
bedded within a three-dimensional anisotropic multiscale log
hydraulic conductivity field, under mean-uniform steady state
flow parallel to a principal direction of anistropy. We did so for
a block that is much larger than the support scale of the field,
which can therefore be set equal to zero; however, a nonzero
support is easy to accommodate. The effective conductivity was
shown to depend on the Hurst coefficient H , anisotropy ratios,
and a characteristic length scale of the box raised to power 2H .
It was additionally shown to be conditional on knowledge of
mean log conductivity within the box.

6. The mean log conductivity within the box is a random
variable which depends on low-frequency modes that had been
excluded (filtered out) from our evaluation of the effective
conductivity Keff. Our theory allows quantifying the variance
and spatial autocorrelation of this random variable, as well as
those of its natural logarithm, Yeff 5 ln Keff, by embedding the
box in a larger domain. It is convenient (though not necessary)
to think of this larger domain as a flow region, to think of the
box as an element of a computational grid superimposed on
this region, and to think of Keff as an upscaled or equivalent
conductivity assigned to this element. Then our theory allows
representing Yeff as the sum of two well-defined components,
one which accounts for fluctuations in log conductivity on
scales larger than a grid block and can therefore be resolved by
the grid and another which accounts for unresolved subgrid
fluctuations.

7. Our theory includes new expressions for the anisotropic

Figure 17. Box-shaped domain (block) embedded into larger
domain (flow region).
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variograms of multiscale random functions, with continuous or
discontinuous (lacunary) ranges of scale, which can be used to
perform standard geostatistical analyses of such functions, in-
cluding kriging, cokriging, and conditional simulation. All that
is required to make this computationally feasible is to embed
our new variogram expressions in existing or newly developed
geostatistical software. The same expressions make it possible
to apply standard methods of unconditional and conditional
stochastic analysis, such as perturbation, to flow and transport
in anisotropic, lacunary multiscale fields of heterogeneity. All
that is required for this purpose is to replace the single-scale
covariance functions, which are used to represent medium
heterogeneity in existing stochastic theories and models, with
the multiscale functions we present in this paper.

Appendix A: Derivation of Dst

As e1 5 1, it follows that

2

 x1 y1
5

2

 x*1 y*1
(A1)

The cross derivative of the Green function GK(x*, y*) in (46)
is given by (B13). Combining (46), (48), and (B13) leads to

Dst~x*! 5
1

8p3/ 2L*1L*2L*3 E
0

`E
0

L1E
0

L2E
0

L3

h25/ 2rY~s*, l l!

z O
m52`

` F S 1
2 2

am
1

h D exp S2
am

1

h D
1 S 1

2 2
am

2

h D exp S2
am

2

h D G
z O

n52`

` F exp S2
bn

1

h D 1 exp S2
bn

2

h D G

z O
j52`

` F exp S2
cj

1

h D 1 exp S2
cj

2

h D G dy dh (A2)

where the coefficients am
6, bn

6, cn
6 are defined in (B11). Upon

introducing a new variable of integration

z i 5 yi/Li (A3)

while considering (49), (A2) leads directly to (50).

Appendix B: Derivation of the Green’s Function
To the best of our knowledge the Green’s function G(x, y)

for the three-dimensional Laplace equation in the box consid-
ered in the paper is not given in the literature. At the same
time the Green’s function GD(x, y, t 2 t) for the diffusion
equation has the form [Tartakovsky, 1996, equation (3.57)]

GD~x* , y* , h! 5
2

L*1L*2L*3
O
m51

`

exp S2
Dp2hm2

L*12 D
z sin Spmx*1

L*1 D sin Spmy*1
L*1 D

z F 1 1 2O
n51

`

expS2
Dp2hn2

L*22 D cos Spnx*2
L*2 D cos Spny*2

L*2 D G
z F 1 1 2 O

j51

`

expS2
Dp2hj2

L*32 D cos Spjx*3
L*3 D cos Spjy*3

L*3 D G
(B1)

where D 5 KG/S is the diffusion coefficient, and h 5 t 2 t .
We require the derivative

2GD~x* , y* , h!

 x*1 y*1
5

2p2

L*13L*2L*3
O
m51

`

m2 exp S2
Dp2hm2

L*12 D
z cos Spmx*1

L*1 D cos Spmy*1
L*1 D

z F 1 1 2O
n51

`

expS2
Dp2hn2

L*22 D cos Spnx*2
L*2 D cos Spny*2

L*2 D G
z F 1 1 2O

j51

`

expS2
Dp2hj2

L*32 D cos Spjx*3
L*3 D cos Spjy*3

L*3 D G
(B2)

Owing to slow rate of convergence of (B1) it is advantageous to
work with an alternative representation of GD, obtained by
means of Poisson’s summation formula [Tartakovsky, 1996,
Appendix I]. Before applying the latter, we introduce the di-
mensionless variables

tD 5
Dt
L1

2 x̂ i 5
x*i
L1

(B3)

Upon recalling that ei 5 Ii/I1 and x*i 5 xi/ei, one has

Dt
L*i2

5
Dtei

2

Li
2 5

L1
2ei

2

Li
2 tD 5

L1
2Ii

2

I1
2Li

2 tD 5 tD (B4)

x*i
L*i

5
L1x*i
L*iL1

5
L1ei

Li
2 x̂ i 5

L1Ii

I1Li
x̂ i 5 x̂ i (B5)

where, as discussed in the context of (51), we have set Li/Ii 5
10 for all i . Then (B2) becomes

2GD~x* , y* , h!

 x*1 y*1

5
2p2

L*13L*2L*3
O
m51

`

m2 exp ~2p2hDm2! cos ~pmx̂1! cos ~pmŷ1!

z F 1 1 2 O
n51

`

exp ~2p2hDn2! cos ~pnx̂2! cos ~pnŷ2!G
z F 1 1 2 O

j51

`

exp ~2p2hDj2! cos ~pj x̂3! cos ~pj ŷ3!G (B6)

It then follows from Tartakovsky [1996, equations (I5), (I10),
(I11)] that
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O
m51

`

m2 exp ~2p2hDm2! cos ~pmx̂1! cos ~pmŷ1!

5
1

16~phD!5/ 2 O
m52`

` H @2hD 2 ~ x̂1 1 ŷ1 1 2m!2#

z exp F2
~ x̂1 1 ŷ1 1 2m!2

4hD
G1 @2hD 2 ~ x̂1 2 ŷ1 1 2m!2#

z exp F2
~ x̂1 2 ŷ1 1 2m!2

4hD
G J (B7)

O
n51

`

n2 exp ~2p2hDn2! cos ~pnx̂2! cos ~pnŷ2!

5 2
1
2 1

1

4 ÎphD
O

n52`

` H exp F2
~ x̂2 1 ŷ2 1 2n!2

4hD
G

1 exp F2
~ x̂2 2 ŷ2 1 2n!2

4hD
G J (B8)

O
j51

`

j2 exp ~2p2hDj2! cos ~pj x̂3! cos ~pj ŷ2!

5 2
1
2 1

1

4 ÎphD
O

j52`

` H exp F2
~ x̂3 1 ŷ3 1 2j!2

4hD
G

1 exp F2
~ x̂3 2 ŷ3 1 2j!2

4hD
G J (B9)

Substituting (B7)–(B9) into (B6) yields

2GD~x* , y* , hD!

 x*1 y*1
5

hD
25/ 2

8p3/ 2L*13L*2L*3

z O
m52`

` F S 1
2 2

am
1

hD
D exp S2

am
1

hD
D 1 S 1
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2
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D G
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` F exp S2
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1

hD
D 1 exp S2
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2

hD
D G

z O
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where

am
1 5

~ x̂1 1 ŷ1 1 2m!2

4 am
2 5

~ x̂1 2 ŷ1 1 2m!2

4

bn
1 5

~ x̂2 1 ŷ2 1 2n!2

4 bn
2 5

~ x̂2 2 ŷ2 1 2n!2

4 (B11)

cj
1 5

~ x̂3 1 ŷ3 1 2j!2

4 cj
2 5

~ x̂3 2 ŷ3 1 2j!2

4

The Green’s function GK for the Laplace equation can be
obtained from the corresponding Green’s function GD for the
diffusion equation through the following relation

GK~x , y! 5 lim
tD3`

E
0

tD

GD~x , y , hD! dhD (B12)

where tD is dimensionless time defined earlier. It thus follows
from (B10) that

2GK~x* , y*!
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