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Noise-driven interfaces and their macroscopic representation
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We study the macroscopic representation of noise-driven interfaces in stochastic interface growth models in
(1 + 1) dimensions. The interface is characterized macroscopically by saturation, which represents the fluctuating
sharp interface by a smoothly varying phase field with values between 0 and 1. We determine the one-point
interface height statistics for the Edwards-Wilkinson (EW) and Kadar-Paris-Zhang (KPZ) models in order to
determine explicit deterministic equations for the phase saturation for each of them. While we obtain exact
results for the EW model, we develop a Gaussian closure approximation for the KPZ model. We identify an
interface compression term, which is related to mass transfer perpendicular to the growth direction, and a diffusion
term that tends to increase the interface width. The interface compression rate depends on the mesoscopic mass
transfer process along the interface and in this sense provides a relation between meso- and macroscopic interface
dynamics. These results shed light on the relation between mesoscale and macroscale interface models, and
provide a systematic framework for the upscaling of stochastic interface dynamics.
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I. INTRODUCTION

Dynamics of fluctuating interfaces is central to understand-
ing and quantification of growth phenomena in a plethora
of disciplines ranging from materials science to biology, and
plasma physics to hydrology. Studies of interface growth and
dynamics deal with phenomena as diverse as immiscible fluid
displacement [1,2], biofilm growth and evolution of bacterial
colonies [3], crystal growth [4] and sediment deposition, as
well as the morphogenesis of interosseous structures [5]. While
the underlying (physical, chemical, or biological) mechanisms
of these and other interfacial phenomena can be quite different,
the focus on fluctuating interface dynamics facilitates the
development of general approaches.

Fluctuations of the interface height are described by
stochastic differential equations, such as the random depo-
sition model [6], the Edwards-Wilkinson (EW) model, and
the Kadar-Parisi-Zhang (KPZ) model. These approaches have
been used to describe such interfacial growth phenomena
as molecular beam epitaxy, biofilm growth, and combustion
fronts [7], fluctuating fluid interfaces [8], movement of fluid
interfaces in disordered media [2,6,9], and reaction fronts in
disordered flows [10]. Reviews of such stochastic models can
be found in [1,6,9,11].

These models describe the interface behavior under dif-
ferent growth mechanisms and quantify the impact of system
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fluctuations driven by spatial and temporal disorder on
the growth and displacement dynamics. Phase saturation,
or occupancy maps [12–14], on the other hand, provide
macroscopic descriptions of the interface evolution. For
(1 + 1)-dimensional interfaces, phase saturation S(z,t) at the
longitudinal position z and time t is defined in terms of the
interface height, z = H (x,t), as

S(z,t) = 1

2a

∫ a

−a

�[H (x,t) − z]dx, (1)

where �(·) is the Heaviside function, x is the transverse
coordinate, and 2a is the domain size. The mesoscale
description, H (x,t), exhibits significant fluctuations, while
its macroscopic (phase-field) representation, S(z,t), varies
smoothly between 0 and 1. We address the hitherto
open question of how to account for mesoscale interface
fluctuations with lateral relaxation in macroscopic saturation
models. Thus, the objective of this paper is to investigate
the macroscopic (deterministic) saturation dynamics which
originate in mesoscale (stochastic) interface fluctuations.

We consider the (1 + 1)-dimensional KPZ model [15]

∂H

∂t
= v + κ

∂2H

∂x2
+ λ

2

(
∂H

∂x

)2

+ ξ (x,t), (2)

which describes the evolution of the interface height H (x,t)
due to the combined effects of a constant growth rate v, the
interface relaxation process (transverse redistribution of mass)
represented by the second (EW) term, the transverse interface
growth encoded in the third (KPZ) term, and the Gaussian
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white noise ξ (x,t). The latter has zero mean, variance σ 2
ξ , and

a two-point correlation 〈ξ (x,t)ξ (x ′,t ′)〉 = 2Dl0δ(x − x ′)δ(t −
t ′), where l0 is a characteristic fluctuation scale, and δ(·) is the
Dirac δ function. The EW model [16] corresponds to (2) with
λ = 0.

II. PHASE SATURATION AND INTERFACE STATISTICS

When the transverse system size 2a significantly exceeds
the characteristic fluctuation length l0, a � l0, the spatial
average in (1) is equivalent to the ensemble average 〈·〉. In
other words, the phase saturation S at a position z corresponds
to the probability that H (x,t) > z,

S(z,t) =
∫ ∞

z

pH (h,t)dh, (3)

where pH (h,t) is the probability density function (PDF) of the
interface height at time t .

A. Multipoint probability density function

Our derivation of an equation for the PDF of H (x,t) starts
with a spatial discretization of (2). Since the treatment of
ξ (x,·) as a white noise may be considered an idealization
corresponding to l0 � a, we choose l0 as the discretization
scale. Then the interface height H (x,t) is represented by a
vector H(t) = [. . . ,H−i(t), . . . ,Hi(t), . . . ]�, and (2) gives rise
to the multidimensional Langevin equation [17]

dHi

dt
= v + Ei(H) + Ki(H) + ξi(t). (4)

Here we have defined

Hi ≡ 1

l0

∫ xi+l0

xi

H (x,t)dx, ξi ≡ 1

l0

∫ xi+l0

xi

ξ (x,t)dx, (5)

and Ei(H) and Ki(H) are, respectively, discretized versions of
the EW and KPZ terms,

Ei(H) = κ
Hi+1 + Hi−1 − 2Hi

l2
0

, (6)

Ki(H) = λ

2

(Hi+1 − Hi−1)2

4l2
0

. (7)

Note that the noise covariance is given by

〈ξi(t) ξj (t ′)〉 = 2Dδij δ(t − t ′), (8)

where δij is the Kronecker delta. The discretization scheme (7)
provides stable numerical solutions for moderate nonlin-
earity [17–19]. For strong coupling alternative numerical
discretization schemes need to be employed [18,20].

In the limit a � 	0, the interface height statistics are station-
ary. This means the mean height 〈Hi〉 = 〈H 〉 is independent
from the position, and the height covariance, which is defined
by

Cij = 〈(Hi − 〈Hi〉)(Hj − 〈Hj 〉)〉, (9)

is a function of |i − j | only. The interface height variance Cii

is denoted by

σ 2
H ≡ Cii . (10)

The evolution of the joint PDF of H(t), pH(h,t), is governed
by the Fokker-Planck equation equivalent to (4),

∂pH

∂t
= D∇2

hpH −
∑

i

∂UipH

∂hi

, (11)

where we defined the drift

Ui(h) = v + Ei(h) + Ki(h). (12)

A similar perspective on the interfacial growth phenomenon
can be found in [21], which derives Langevin equations for
fluctuating surfaces from master equations that describe the
evolution of the joint PDF of the interface heights.

B. One-point probability density function

The phase saturation, as defined by (3), requires the deter-
mination of the single-point PDF, pHi

(hi,t), of the interface
height Hi(t) ≡ H (xi,t). It is obtained by marginalization of
pH(h,t), i.e.,

pHi
(hi,t) =

∏
j �=i

∫
pH(h,t)dhj . (13)

Integration of (11) over all hj with j �= i gives

∂pHi

∂t
= D

∂2pHi

∂h2
i

− ∂VipHi

∂hi

, (14)

where we defined the conditional drift

Vi = v + 〈Ei(H)|hi〉 + 〈Ki(H)|hi〉. (15)

The conditional averages are of the form

〈f (Hj )|Hi = hi〉 =
∫

f (hj )pHj |Hi
(hj ,t |hi)dhj , (16)

where f [Hj (t)] is any function of the interface height Hj (t)
at point j �= i. Since the conditional PDF

pHj |Hi
(hj ,t |hi) = pHi,Hj

(hi,hj ,t)

pHi
(hi,t)

(17)

is in principle unknown, the drift velocity U is not computable
and (14) requires a closure. Note that for the sake of clarity
we maintained here the index i for the PDF of Hi . Due to
stationarity, however, the one-point PDF is independent of
position.

III. CLOSURES

We first consider the exactly solvable random deposition
and EW models before addressing the KPZ model by means
of a closure approximation.

A. Random deposition model

For the random deposition model, λ = κ = 0. Thus, the
solution for the equation for the single point height PDF
pH (h,t) is given by the advection-diffusion equation

∂pH

∂t
= D

∂2pH

∂h2
− v

∂pH

∂h
. (18)

052802-2



NOISE-DRIVEN INTERFACES AND THEIR MACROSCOPIC . . . PHYSICAL REVIEW E 94, 052802 (2016)

The equation for the phase saturation S(z,t) defined by (3) is
thus given by

∂S

∂t
= D

∂2S

∂z2
− v

∂S

∂z
. (19)

Its solution for the initial condition S(z,t = 0) = �(z) with
�(z) the Heaviside step function is given by

S = 1

2
erfc

(
z − vt√

4Dt

)
. (20)

B. Edwards-Wilkinson model

For the EW model, i.e., for λ ≡ 0 in (2), the discretized evo-
lution equation (4) is a multidimensional Ornstein-Uhlenbeck
process [22]. In this case, and for the known (deterministic)
initial height distribution pH(h,t = 0) = δ(h), the joint PDF
pH(h,t) is a multivariate Gaussian. In this case, the conditional
PDF pHj |Hi

(hj ,t |hi) is known and given by a Gaussian PDF
whose mean is

〈Hj |hi〉 = 〈H 〉 + Cij

Cii

(hi − 〈H 〉). (21)

The unconditional height covariances Cij are defined by (9).
Thus, we can close Eq. (14) for the one point interface height
through the exact calculation of the conditional moments in
the drift (15) for κ ≡ 0. This gives

Vi(hi) = v + Ei

σ 2
H

(hi − 〈H 〉), (22)

where we defined

Ei = κ
Cii+1 − 2Cii + Cii−1

	2
0

. (23)

This expression is obtained by using (21) to determine the
conditional averages in 〈Ei(H)|hi〉, with Ei(H) given by (6).
We can relate Ei to the variance Cii = σ 2

H by using (4) for
λ = 0. First, we note that the mean height is given by 〈H 〉 =
vt . Thus, we obtain from (4) for the head fluctuation H ′ =
H − 〈H 〉,

dH ′
i

dt
= Ei(H′) +

√
2Dξi(t). (24)

Multiplication of the latter with H ′
i and using the Ito rule gives

dσ 2
H

dt
= Ei + 2D. (25)

Thus, we obtain for the drift Vi(hi) the closed form expression

Vi = v +
[
d ln

(
σ 2

H

)
dt

− 2D

σ 2
H

]
(hi − vt). (26)

In the following, we define for compactness

γ ≡ 2D

σ 2
H

− d ln
(
σ 2

H

)
dt

. (27)

The evolution of the variance σ 2
H of the interface height has

been well known [23] and is given by

σ 2
H = 2D	0

√
t√

2πκ
. (28)

We thus obtain for the one-point PDF pH (h,t) the evolution
equation

∂pH

∂t
= D

∂2pH

∂h2
− ∂[v − γ (t)(h − vt)]pH

∂h
. (29)

Consequently, we obtain for the phase saturation S(z,t) the
evolution equation

∂S

∂t
= D

∂2S

∂z2
− [v − γ (t)(h − vt)]

∂S

∂z
. (30)

Its solution for the initial condition S(z,t = 0) = �(z) can be
obtained by integration along the characteristics, or directly by
the fact that pH is a Gaussian characterized by mean vt and
variance σ 2

H (t) as

S = 1

2
erfc

(
z − vt√

2σ 2
H

)
. (31)

C. Kadar-Parisi-Zhang model

In order to obtain a saturation equation for the KPZ model,
we close (14) by assuming that for moderate values of λ �= 0
the conditional PDFs pHj |Hi

(hj ,t |hi) and pHj ,Hk |Hi
(hj ,hk,t |hi)

are Gaussian as in the case of the EW model. Thus, the
conditional mean is given by (21), where the Cij are the
height covariances of the KPZ model. The conditional height
covariance is given by

〈(Hj − 〈Hj |hi〉)(Hk − 〈Hk|hi〉)|hi〉

= Cjk − CijCik

Cii

. (32)

Under this assumption, we obtain for the conditional drift (15)

Vi(hi) = Ei

σ 2
H

(hi − 〈H 〉) + v + Ki , (33)

where Ei is defined by (23) and Ki is given by

Ki = λ

2

2Ci+1i+1 − 2Ci+1i−1

4	2
0

. (34)

This expression is obtained by using (32) for the conditional
covariances in 〈Ki(H)|hi〉 with Ki(H) given by (7) and
furthermore, using that the statistics are stationary such that
Cii = Cjj and Cii+1 = Cii−1.

Now we turn to determining Ei and Ki . To this end, we first
consider the evolution equation for the the mean height 〈H 〉.
The averaging of (4) yields

d〈H 〉
dt

= v + Ki . (35)

The nonlinear KPZ termKi causes a net interface displacement
even in the absence of an external drift [6]; this is because
transverse interface growth requires the addition of mass to
the interface. The long time value of this drift is given by [24]

Ki = λD

2κ
. (36)

We define the effective interface velocity by

ve = v + λD

2κ
. (37)
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In order to obtain a closed form expression for Ei , we
consider the evolution equation for the height fluctuation H ′ =
H − 〈H 〉, for which we obtain

dH ′
i

dt
= Ei(H′) + Ki(H′) − Ki +

√
2Dξi(t). (38)

Multiplication of the latter by H ′
i and using the Ito rule gives

dσ 2
H

dt
= Ei + 〈H ′

i [Ki(H′) − Ki]〉 + 2D. (39)

Under the assumption of Gaussianity, the second average on
the right side is zero because it involves first- and third-order
terms in the height fluctuations. Thus, we obtain, as in the case
of the EW model,

Ei = dσ 2
H

dt
− 2D. (40)

The height variance for the KPZ model is given by [24]

σ 2
H = c2

(
D	0λ

κ
t

)2/3

(41)

with c2 a constant.
Thus, based on this Gaussian closure approximation, we

obtain for the one-point point PDF pH (h,t) the closed form
evolution equation

∂pH

∂t
= D

∂2pH

∂h2
− ∂[ve − γ (t)(h − vet)]pH

∂h
, (42)

where γ (t) is defined by (27) in terms of the height vari-
ance (41) of the KPZ model. The equation for the phase
saturation is then obtained from (42) according to (3) as

∂S

∂t
= D

∂2S

∂z2
− [ve − γ (t)(z − vet)]

∂S

∂z
. (43)

As in the case of the random deposition and EW models, its
solution for a flat initial interface is given by a complementary
error function as

S = 1

2
erfc

(
z − vet√

2σ 2
H

)
, (44)

where ve is given by (37) and σ 2
H by (41).

IV. SATURATION DYNAMICS

The evolution equation (19) for the random deposition
model describes the evolution of an interface whose width
increases purely diffusively and whose mean position increases
linearly with time with the constant velocity v, as illustrated
in Fig. 1. The evolution of a typical interface and the
corresponding saturation profiles are illustrated in the first
column of Fig. 2.

The evolution of the interface and the corresponding
saturation are different for the EW and KPZ models. In
fact, the evolution equations (30) and (43) resemble those
for scalar transport in fluid flow, under the competition of
molecular diffusion and compression resulting from fluid
deformation [25,26]. The evolutions of the interface mean
position and height variance are illustrated in Fig. 1. The height
variances increase diffusively at short times until the interfacial

10-2

10-1

100

101

102

103

10-2 10-1 100 101 102 103

〈H
〉 (
t)

t

10-2

10-1

100

101

102

10-2 10-1 100 101 102 103

σ H2  (t
)

t

FIG. 1. Evolution of (top) the mean and (bottom) the variance
of the interface height for (red diamonds) the random deposition
model, (blue circles) the EW model, and (green triangles) the KPZ
model. The results are obtained by numerical simulation of (4) for
κ = λ = 0 and v = 1 (random deposition model), for κ = 1, λ = 0,
and v = 1 (EW model), and κ = 1, λ = 4, and v = 1 (KPZ model),
with 	0 = 1, �t = 10−2, and a = 103 in 102 realizations. The thin
black lines in the top panel represent the mean interface heights
〈H 〉 = vt for the random deposition and EW models and 〈H 〉 = vet

with ve given by (37). The thin black lines in the bottom panel denote
the diffusive behavior σ 2

H = 2Dt , the behavior (28) for the EW model,
and the behavior (41) for the KPZ model with c2 = 0.31.

smoothing due to the EW and KPZ terms, (6) and (7), starts
dominating. Then, at later times they increase subdiffusively
as a result of the interfacial compression quantified by γ (t).
At asymptotic times, it converges towards a constant long
time variance whose scaling with the lateral domain size a is
given by σH ∝ a1/2 for both the EW and KPZ models [6]
(asymptote not shown in Fig. 1). Figure 2 illustrates the
interface evolutions in the EW and KPZ models and the
corresponding saturation profiles at different times. The circles
in the bottom row of Fig. 2 denote the data obtained by
numerical simulations of (4), while the solid lines correspond
to the analytical expressions (31) and (44) for the saturation
profiles. Due to the interface relaxation in the EW and KPZ
models, the saturation profiles are compressed in comparison
to the random deposition model. The interfacial compression
rate γ (t) defined by (27) relates the stochastic mesoscale
interface fluctuations to the macroscopic interface dynamics.
In the EW model it is given in leading order by

γ =
√

2πκ

	0
t−1/2, (45)
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FIG. 2. Interfaces (top) and corresponding saturations (bottom) obtained with the (first column) random deposition model for κ = λ = 0
and v = 1 in (4), (middle column) the EW model for κ = 1, λ = 0, and v = 1 in (4), and (right column) the KPZ model with κ = 1, λ = 4,
and v = 1 in (4) at times (from left to right) t = 10, 30, and 50. The circles in the bottom row indicate data from the numerical solution of (4)
for 	0 = 1, �t = 10−2, and a = 103. These saturation profiles were obtained by spatial averaging along x and ensemble averaging over 102

realizations. The solid lines in the bottom row indicate the corresponding solutions (20), (31), and (44) for the saturation.

while the KPZ model is in leading order characterized by the
relatively weaker compression rate

γ = 2D1/3κ2/3

c2(	0λ)2/3
t−2/3. (46)

Finally, we consider the issue of mass conservation for a
constant flux of the deposited substance or, equivalently, for
a constant fluid flux ve in the KPZ and EW models. For the
latter, ve = v. Under this condition, the total amount of mass
in the system,

I (t) ≡
∫ t

0
S(z,t ′)dt ′, (47)

equals I (t) = vet . Indeed, integrating (43) over z and setting
S(0,t) = 1, we obtain

dI

dt
= ve + γ (vet − I ). (48)

Since I (0) = 0, the solution of (48) is I (t) = vet . Thus, the
mass is globally conserved. However, the saturation model (43)
is not locally mass conservative, which follows from its
divergence form,

∂S

∂t
+ ∂[ve − γ (z − vet)]S

∂z
= D

∂2S

∂z2
− γ (t)S. (49)

The sink term γ (t)S represents the mass transfer along the
interface. It removes mass from locations where the interface
is more advanced than its average position. Concurrently, the
same mass is transferred from the boundary at z = 0 into
the domain, which guarantees global mass conservation. This
behavior is similar to evolution equations for scalar fronts

transported by fluid flows and subjected to molecular diffusion
and fluid deformation [25], as discussed above.

V. CONCLUSIONS

Macroscopic saturation equations are often based on local
mass conservation and momentum balance over a control
volume [27] and are therefore locally mass conserving. This is
generally not the case for macroscopic descriptors emerging
from stochastic mesoscale interface models, such as (2),
because the saturation defined by (3) is given in terms of
the cumulative probability of interface heights. Although the
equation for the single-point PDF of the interface height
is locally mass conservative, the equation satisfied by the
cumulative distribution probability is not.

Nevertheless, for a given phenomenological description of
the interface kinematics, a globally mass conserving saturation
equation provides a valuable surrogate model of the true
macroscopic dynamics. On the other hand, a macroscopic
interface model may be used to infer mesoscale interface
dynamics via the compression rate γ (t), which connects the
macroscopic interface dynamics with the mesoscale fluctua-
tions. The derived methodology can be readily generalized to
interfaces driven by colored noise [28].

Irrespective of the nonlinearity of the stochastic interface
models, the macroscopic saturation dynamics are governed
by linear partial differential equations, which include the
salient features of the interfacial dynamics such as interface
compaction. Stochastic interface dynamics and its equivalent
macroscopic representations derived in this paper provide a
tool to predict the interface dynamics that results from various
fluctuation and growth mechanisms.
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H. Sakaguchi, and M. Mimura, Physica A (Amsterdam, Neth.)
249, 517 (1998).

[4] A. A. Chernov, J. Cryst. Growth 264, 499 (2004).
[5] C. P. E. Zollikofer and J. D. Weissmann, J. Anat. 219, 100

(2011).
[6] A.-L. Barabasi and H. E. Stanley, Fractal Concepts in

Surface Growth (Cambridge University Press, New York,
1995).

[7] J. Merikoski, J. Maunuksela, M. Myllys, J. Timonen, and M. J.
Alava, Phys. Rev. Lett. 90, 024501 (2003).

[8] E. G. Flekkøy and D. H. Rothman, Phys. Rev. Lett. 75, 260
(1995).

[9] P. Meakin, Phys. Rep. 235, 189 (1993).
[10] S. Atis, A. K. Dubey, D. Salin, L. Talon, P. Le Doussal,

and K. J. Wiese, Phys. Rev. Lett. 114, 234502 (2015).
[11] T. Halpin-Healy and K. A. Takeuchi, J. Stat. Phys. 160, 794

(2015).
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J. Schmittbuhl, Europhys. Lett. 71, 583 (2005).

[14] R. Toussaint, K. J. Måløy, Y. Méheust, G. Løvoll, M. Jankov,
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