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[1] Spatial and temporal heterogeneity of ambient natural
environments play a significant role in large scale transport
phenomena. Uncertainty about spatio‐temporal fluctuations
in system parameters (e.g., flow velocity) make determinis-
tic predictions of macroscopic system states (e.g., solute
concentration) elusive. Distributions of system states gener-
ally exhibit highly non‐Gaussian behavior, which cannot be
captured solely by the corresponding mean and variance.
Instead, these features of transport are described by the
probability density function (PDF) of a system state, e.g.,
the PDF of concentration at a certain point in space and
time. We study the PDF of a passive scalar that disperses
in a random velocity field. We derive an explicit map
between the velocity distribution and the scalar PDF, and
obtain approximate solutions for the PDF of the normalized
scalar. These solutions enable one to quantify explicitly the
impact of dispersion on the evolution of the passive scalar
PDF without recurrence to classical closure approximations
used in mixing models. Citation: Dentz, M., and D. M. Tar-
takovsky (2010), Probability density functions for passive scalars
dispersed in random velocity fields, Geophys. Res. Lett., 37,
L24406, doi:10.1029/2010GL045748.

[2] Dispersion in random velocity fields plays a central
role in a variety of geophysical phenomena. We start from
the hypothesis that local scale transport of a passive scalar
c(x, t) can be described by the advection‐dispersion equation
(ADE)

@c x; tð Þ
@t

þr $ u x; tð Þc x; tð Þ½ & ' r $ Drc x; tð Þ½ & ¼ 0; ð1Þ

where u(x, t) is the flow velocity and D the dispersion
tensor, which here is assumed to be constant. Examples of
passive scalars c(x, t) include solute concentration and fluid
temperature. In many geophysical applications characterized
by large Reynolds numbers Re, randomness of u(x, t) is a
manifestation of turbulence. In other applications, of which
flow and transport in porous media are a prime example, the
velocity u(x, t) is often treated as random to reflect spatial
heterogeneity and related uncertainty about the ambient
environment (e.g., uncertainty about the porosity !(x) and
hydraulic conductivity K(x) of a heterogeneous porous
medium) even though Re might be very small and flow is

laminar. In the former class of problems, temporal vari-
ability of u(x, t) is essential, while in the latter class velocity
is often considered at steady state.
[3] Regardless of application, randomness in, or uncer-

tainty about, the flow velocity u(x, t) renders a solution of
(1) stochastic, i.e., given in terms of the probability density
function (PDF) of c(x, t). As a practical matter, it is com-
mon to focus on the one‐point concentration PDF, pc(y; x, t),
which specifies the probability of the random concentration
c at a point x and time t to have a value in [y, y + dy].
[4] The scalar PDF carries information on the mixing state

of a system [e.g., Villermaux and Duplat, 2006] and as such
plays a central role in the quantification of non‐linear
mixing‐driven reaction systems beyond the mean field [e.g.,
Pope, 2000]. Furthermore, the scalar PDF is a key quantity
for the assessment of environmental hazards and risks [e.g.,
Tartakovsky, 2007] because it encodes the uncertainty about
the mean behavior.
[5] While derivation of PDF equations for purely advec-

tive transport (D ≡ 0) is mathematically rigorous and rela-
tively straitforward [e.g., Indelman and Shvidler, 1985;
Chen et al., 1989], the quantification of the role of diffu-
sion in the evolution of the scalar PDF remains a fundamental
question. Phenomenologically, diffusion reduces uncertainty
by smearing out scalar gradients. It sharpens the scalar PDF,
or in other words it reduces scalar variance. These mechan-
isms have been quantified mainly using phenomenological
approaches, so called mixing models. Such approaches
include the interaction by exchange with the mean model
(IEM) [Villermaux and Devillon, 1972;Dopazo and O’Brien,
1974], mapping approaches [Chen et al., 1989] and sto-
chastic mixing models [Valiño and Dopazo, 1991; Fox and
Yeung, 2003; Fedotov et al., 2005], see also Pope [2000]
for an overview. In general, the relaxation or degradation
mechanisms caused by diffusion have been found difficult to
account for [Chen et al., 1989]. An alternative approach is to
rely on an assumed form of the PDF, most often by pos-
tulating that the concentration PDF is a b‐distribution
[Girimaji, 1991]. This approach has proved to be successful
in modeling transport in random porous media in steady‐
state random velocity fields u(x) [Caroni and Fiorotto, 2005;
Bellin and Tonina, 2007; Cirpka et al., 2008].
[6] This dichotomy points to the need to develop an

approach that is equally applicable to transient and steady‐
state velocity fields u(x, t), posing as few restrictions on its
statistics as possible. PDF methods [e.g., Tartakovsky et al.,
2009; Meyer et al., 2010] provide a general framework for
achieving this goal. In the present analysis we compute the
PDF of concentration c(x, t) in (1) by imposing the following
two constraints on u(x, t). First, we assume the (steady or
transient) velocity to be divergence‐free, r · u(x, t) = 0.
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Second, we assume that u(x, t) is a statistically homoge-
neous (stationary) multivariate Gaussian random field. The
latter assumption is somewhat restrictive, since the spatio‐
temporally fluctuating random velocity field u(x, t) is deter-
mined by boundary conditions and, in the case of porous
media flow, the medium heterogeneity. Yet, experimental
evidence strongly suggests that u(x, t) is indeed (approxi-
mately) Gaussian for turbulent flows [e.g., Bronski and
McLaughlin, 2000]. The same assumption is routinely
made in analyses of transport in random porous media [e.g.,
Koch and Shaqfeh , 1992; Zhang , 1995; Jaekel and
Vereecken, 1997; Fiori and Dagan, 2000; Dentz and
Tartakovsky, 2008]. For non‐stationary and non‐Gaussian
velocity fields, the presented approach can be used to obtain a
prior distribution for the concentration PDF, which can be
updated through a Bayesian approach or ensemble Kalman
filtering to account for non‐stationarity and non‐Gaussianity.
[7] With these assumptions in mind the mean flow

velocity hui and variance su2 are constant,

u x; tð Þh i ¼ u; "2
u ¼ u′ x; tð Þ2

D E
: ð2Þ

The two‐point correlation function has the form

Cij x' x′; t ' t′ð Þ ¼ ui′ x; tð Þuj′ x′; t′ð Þ
! "

: ð3Þ

Here u′(x, t) denotes zero‐mean random fluctuations of the
velocity field u(x, t) about its ensemble mean u, i.e., u(x, t) =
u + u′(x, t). The angular brackets h·i denote the ensemble
average over the random field u(x, t). The components Cij of
the correlation matrix C decay on the correlation scales lij
and tij. The advection time tu = ‘u/∣u∣ measures the time for
advective transport over the correlation scale ‘u in the
direction of the mean velocity. The diffusion scale tD = ‘D

2 /D
denotes the typical diffusion time over a transverse correla-
tion distance ‘D. The dimensionless Péclet number is defined
as Pe = tD /tu. It compares the efficiency of diffusive and
advective transport.
[8] The single point PDF of the concentration c(x, t) is

defined as

pc  ; x; tð Þ ¼ #  ' c x; tð Þ½ &h i; ð4Þ

where y is the sampling variable. The concentration c(x, t)
is a functional of the flow field u(x, t), whose concrete form
is unknown because there is no closed form solution of (1)
for general spatially fluctuating velocity fields.
[9] Here we derive a mapping approach to obtain the

concentration PDF pc(y; x, t) that explicitly takes into
account the impact of diffusion on the evolution of the
concentration PDF. This approach is based on mapping the
disorder distribution as quantified by the joint PDF of the
(random) centroid and (random) spatial width of c(x, t)
onto the scalar PDF. To this end, we establish an expression
for c(x, t) that depends explicitly on these (random) ob-
servables. To obtain such an expression, we consider the
Langevin equation for the particle trajectories x(t) that is
equivalent to the ADE (1),

dx tð Þ
dt

¼ u x tð Þ; t½ & þ x tð Þ; ð5Þ

where x(t) is a Gaussian white noise characterized by zero
mean and correlation

$i tð Þ$ j t′ð Þ
! "

$
¼ 2Dij# t ' t′ð Þ; ð6Þ

where Dij are the components of the dispersion tensor D.
The angular brackets h·ix denote the noise average over x(t).
The Langevin equation (5) contains two stochastic pro-
cesses: the random velocity field u(x, t) and noise x(t),
which models diffusion. The random processes u(x, t) and
x(t) are statistically independent. The random concentration
c(x, t) in a single disorder realization can be written in terms
of the particle trajectories by averaging over the noise x(t),
i.e., c(x, t) = hd[x − x(t)]ix. The average concentration is
obtained by averaging over u(x, t).
[10] Let us rewrite the Langevin equation (5) as

dx tð Þ
dt

¼ v tð Þ þ h tð Þ; ð7Þ

where v(t), the particle velocity averaged over the noise x(t),
and h(t), the velocity fluctuations about v(t), are defined as

v tð Þ ¼ dm tð Þ
dt

; h tð Þ ¼ #u tð Þ þ x tð Þ: ð8Þ

Here, m(t) = hx(t)ix is the centroid of the scalar field c(x, t),
and du(t) = u[x(t), t] − hu[x(t), t]ix the Lagrangian velocity
fluctuation.
[11] The random processes h(t) and u(x, t) are not inde-

pendent. The distribution of h(t) is conditional to the spe-
cific realization of u(x, t), ph∣u(h; t) = hd[h − h(t)]ix.
[12] These definitions imply that h(t) has zero conditional

mean, hh(t)ix = 0, and its conditional correlation function
Cij

h(t, t′) = hhi (t)hj (t′)ix is given by

C %
ij t; t′ð Þ ¼ 2Dij#ij# t ' t′ð Þ þ #ui tð Þ#uj t′ð Þ

! "
$
: ð9Þ

Note that Ch(t, t′) is a random matrix since its definition
does not involve averaging over u(x, t).
[13] The approach of modeling the Lagrangian velocity

increment in order to infer concentration statistics has been
employed by, e.g., Fiori and Dagan [2000] and Meyer et al.
[2010]. Fiori and Dagan [2000] derived the velocity statis-
tics based on a perturbation approach and determined the mean
concentration and concentration variance. Similar results were
obtained by, e.g., Graham and McLaughlin [1989], Kapoor
and Gelhar [1994], and Kapoor and Kitanidis [1998].
[14] Both u(x, t) and x(t) are Gaussian processes. We

assume that the conditional PDF of h(t) in (8) is Gaussian,

p%ju h; tð Þ ¼
exp 'h 2C% t; 0ð Þ½ &'1h

n o

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2&ð Þddet C% t; 0ð Þ½ &

q : ð10Þ

To confirm the validity of this assumption we conducted
random walk simulations conditioned on a realization of a
steady random velocity field u(x). (Numerical simulations
correspond to isotropic three‐dimensional divergence‐free
steady Gaussian random velocity fields u(x) with ‘u = ‘D = l;
all theoretical derivations remain valid for anisotropic
velocity fields.) The increment statistics of h(t) as well as
the correlation matrix Ch(t, 0) were determined numerically
from 106 realizations of x(t). In Figure 1 we compare the
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results of these simulations for h1(t) with the conditional
PDF (10). One can see that (10) is indeed a good repre-
sentation of the conditional PDF of h(t). We therefore
conclude that h(t) can be modeled as a correlated Gaussian
noise in a single realization of u(x, t).
[15] Next, we express the random concentration in a sin-

gle disorder realization as a conditional average over the
correlated noise h(t)

c x; tð Þ ¼ # x' x tð Þ½ &h i%: ð11Þ

The random particle trajectories x(t) are obtained by inte-
grating (7) over time,

x tð Þ ¼ m tð Þ þ
Z t

0

dt′h t′ð Þ: ð12Þ

Substituting the resulting x(t) into (11) and taking the con-
ditional average over h(t) using (10) gives

c x; tð Þ ¼
exp ' 1

2 x'm tð Þ½ &k tð Þ'1 x'm tð Þ½ &
n o

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2&ð Þddetk tð Þ

q ; ð13Þ

where the random matrix k(t) is

'ij tð Þ ¼
Z t

0

dt′
Z t

0

dt′′C%
ij t′; t′′ð Þ: ð14Þ

Solution (13) implicitly assumes that the flow domain is
infinite and the initial condition is a point source at x = 0.
Distributed sources can be accounted for by treating c(x, t)
in (13) as a Green function and integrating it over the source
distribution.
[16] Expression (13) maps [m(t), k(t)] onto c(x, t), that is,

c(x, t) = f [x, t; m(t), k(t)]. Concentration PDF then is given
by

pc  ; x; tð Þ ¼
Z

dm
Z

dk #  ' f x; t;m; k½ &f g ) pm;' m; k; tð Þ;

ð15Þ

where pm,'(m, k; t) is the joint PDF of m(t) and k(t).
[17] In the following, we focus on the impact of fluctua-

tions in the centroid m(t). Thus, we assume that the fluc-
tuations of k(t) about its ensemble mean value ke(t) = hk(t)i

are small compared to the fluctuations of m(t), so that k(t)
can be approximated by its mean value ke(t), which de-
scribes the effective width of c(x, t) [e.g., Kitanidis, 1988].
This assumption allows us to simplify (15) as

pc  ; x; tð Þ ¼
Z

dm #  ' f x; t;m; 'e tð Þ½ &f gpm m; tð Þ; ð16Þ

where pm(m; t) = hd[m − m(t)]i is the centroid PDF.
[18] The random dynamics of centroid m(t) are described

by averaging (5) over x(t), dm(t)/dt = hu[x(t), t]ix. Since
u(x, t) is Gaussian, we assume that m(t) is Gaussian as well.
It is then completely defined by its mean hm(t)i = ut and
variance

'c
ij tð Þ ¼ mi tð Þ ' mi tð Þh i½ & mj tð Þ ' mj tð Þ

! "$ %! "
: ð17Þ

The centroid PDF then takes the form

pm m; tð Þ ¼
exp ' 1

2 m' utð Þ $ kc tð Þ'1 m' utð Þ
h i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2&ð Þddet kc tð Þ½ &

q : ð18Þ

To test the assumption that the centroid PDF is Gaussian, we
conducted Monte Carlo simulations (MCS) of dispersion in
a Gaussian random velocity field u(x). The results of 104

realizations of u(x) were used to compute the PDF of m(t),
its mean hm(t)i and variance kc(t). Figure 2 compares the
centroid PDF obtained via MCS with the Gaussian model
(18). This comparison indicates thatm(t) may be modeled as
a Gaussian stochastic process for the times and disorder
strengths under consideration.
[19] To illustrate the presented mapping approach, we

consider the PDF of concentration integrated over the di-
rections transverse to the mean flow and normalized by the
maximum concentration,

ĉ x1; tð Þ ¼ exp ' x1 ' m1 tð Þ½ &2

2'e
11 tð Þ

( )

; ð19Þ

which varies between 0 and 1. Its PDF is given by
pĉ( ̂; x1, t) = hd[ ̂ − ĉ(x1, t)]i. Using (16) to map the centroid
PDF (18) onto the concentration PDF we obtain

pĉ  ̂; x1; t
& '

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
(11 tð Þ
&

r
 ̂
(11 tð Þ'1

ln 1= ̂
& 'h i'1=2

) cosh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(11 tð Þ ln 1= ̂

& 'r
x1 ' utffiffiffiffiffiffiffiffiffiffiffiffi
'c
11 tð Þ

p
" #

exp ' x1 ' utð Þ2

2'c
11 tð Þ

" #

; ð20Þ

Figure 1. Conditional PDF of the random increment h1(t)
at time t = 10 tu for su2 = 1 and Pe = 102 in a single reali-
zation of u(x) given by (10) (solid line) and the random
walk simulations (+).

Figure 2. Centroid PDF at time t = 102 tu for su2 = 1 and
Pe = 102, computed with MCS (+) and the Gaussian model
(18).
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with a11(t) = '11
e (t)/'11

c (t). Thus, pĉ( ̂; x1, t) is completely
parametrized by the centroid variance '11

c (t) and the effective
spatial width '11

e (t) of c(x, t).
[20] We evaluate this expression for transport in a steady

three‐dimensional divergence‐free random velocity field
u(x). For su2 < 1, the effective width '11

e (t) and the centroid
variance '11

c (t) can be obtained through a first‐order per-
turbation expansion in su2 as [e.g., Dentz et al., 2000]

'e
11 tð Þ ¼ "2

uuul
ffiffiffiffiffiffi
2&

p
t ' 'c

11 tð Þ; ð21Þ

'c
11 tð Þ ¼ "2

uuul
ffiffiffiffiffiffiffiffi
&=8

p
)D ln 1þ 4t=)Dð Þ: ð22Þ

Alternatively, one can obtain these observables from either
measurements or MCS.
[21] Figure 3 illustrates the impact of dispersion on the

concentration PDF. As Pe increases, i.e., as the dispersion
coefficient decreases, pĉ( ̂; x1, t) becomes broader. In other
words, increasing dispersion decreases concentration
uncertainty. In the limit as Pe → ∞ (a11 → 0) the PDF in
(20) reduces to a sum of two delta‐functions peaked at  ̂ = 0
and 1. Typically, the impact of dispersion on the concen-
tration PDF is modeled in terms of closures such as the IEM
model. Here we derived a mapping approach to obtain the
concentration PDF taking explicitly into account mixing due
to dispersion and spatial disorder.
[22] In summary we derived an explicit map between the

scalar PDF and the distribution of the random velocity field
as quantified in terms of the joint PDF of the (random)
centroid and (random) spatial variance of the passive scalar.
The explicit analytical expressions for the scalar PDF shed
new light on the role of dispersion in the evolution of the
concentration PDF.
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