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Abstract We derive an approximate analytical solution, which describes the interface
dynamics during the injection of supercritical carbon dioxide into homogeneous geologic
media that are fully saturated with a host fluid. The host fluid can be either heavier (e.g.,
brine) or lighter (e.g., methane) than the injected carbon dioxide. Our solution relies on the
Dupuit approximation and explicitly accounts for the buoyancy effects. The general approach
is applicable to a variety of phenomena involving variable-density flows in porous media. In
three dimensions under radial symmetry, the solution describes carbon dioxide injection; its
two-dimensional counterpart can be used to model seawater intrusion into coastal aquifers.
We conclude by comparing our solutions with existing analytical alternatives.

Keywords Two-phase flow · Sharp interface · CO2 · Analytical solution

1 Introduction

Sequestration of supercritical carbon dioxide (CO2) in geological formations is one of the
approaches to mitigating the effects of global warming. While possible geological settings
are many (e.g., salt formations, depleted oil and gas reservoirs, saline aquifers, coal beds,
and deep-sea sediments) (Bachu 2000; House et al. 2006), there exists a general consensus
as to the means of delivering CO2 into the subsurface. Injection wells are used to accomplish
this task, which results in complex variable-density flow regimes.

While subsurface flow induced by injection/pumping wells has been studied in detail by
groundwater hydrologists and petroleum engineers, modeling of CO2 injection poses a set
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of unique challenges. These have been the subject of recent numerical (Pruess et al. 2003;
Doughty and Pruess 2004) and analytical (Saripalli and McGrail 2002; Riaz et al. 2006;
Nordbotten and Celia 2006) studies. The attraction of numerical solutions lies in their ver-
satility and ability to handle complex geochemical processes and various geologic settings.
Analytical solutions are invaluable for gaining physical insight into the phenomenon and
obtaining quick, back-of-the-envelope calculations of the subsurface capacity for CO2 sto-
rage. They are also used in system-wide assessment and management of subsurface systems
(Pawar et al. 2006; Zhang et al. 2007).

Injection of carbon dioxide into a subsurface environment induces nearly immiscible flow
of the ambient fluid and supercritical CO2. The difference between the densities of the two
fluids causes their stratification, with the invading CO2 laying either above or below the host
fluid. The first scenario is realized when CO2 is injected into deep saline aquifers replacing
water that is more dense than CO2; the second scenario occurs when CO2 is injected into coal
beds replacing methane that is less dense than CO2. Regardless of the injection conditions, the
resulting flow regime is substantially different from the so-called plug flow that is predicted
by a one-dimensional radial flow model (Pruess et al. 2003).

Proper understanding of the flow dynamics, including the ability to model the shape and
evolution of the interface between CO2 and the host fluid, is the key to addressing a host of
practical questions. The larger the surface area of this interface, the more extensive are the
geochemical reactions affecting CO2 and the more successful its long-term storage in the
subsurface is likely to be. A quantitative analysis of the dynamics of the interface separating
CO2 and the host fluid is our main goal.

This goal can be accomplished by employing one of the following two modeling approa-
ches. The first relies on two-phase flow equations and yields a diffusive interfacial region
wherein the CO2 saturation SCO2 gradually decreases from SCO2 = 1 in the region fully
occupied by the invading CO2 to SCO2 = 0 in the region that is fully occupied by the host
fluid. The second approach, which we pursue here, approximates the interfacial region by an
abrupt interface. This approximation is valid as long as flow velocity is high.

We start by describing alternative formulations of the abrupt-interface model in Sect. 2
and presenting an equation describing the interface dynamics under the Dupuit assump-
tion in Sect. 3. We proceed by deriving closed-form analytical solutions that describe the
two- (Sect. 4.1) and three-dimensional (Sect. 4.2) interface dynamics for CO2 injected into
homogeneous geologic media occupied alternatively by a heavier (e.g., saline water) or lighter
(e.g., methane) host fluid. In Sect. 4.3, we contrast these solutions with their semi-analytical
counterparts obtained by Nordbotten et al. (2005) and Nordbotten and Celia (2006).

2 Problem Formulation

Consider injection of CO2 from a fully penetrating well of radius rw into a deep confined
aquifer of thickness d (see Fig. 1). For standard operating conditions, CO2 remains super-
critical and in thermal equilibrium with the host fluid (Bachu 2003; Nordbotten et al. 2005,
and references therein). Macroscopic fluxes qi of CO2 (i = c) and host fluid (i = w) satisfy
Darcy’s law

qi = −kkiρi g

µi
∇hi , i = c, w, (1)

where ρi and µi are the density and viscosity of the i-th fluid, g is gravity accelaration, k is the
intrinsic permeability of the medium, and ki is the saturation-dependent relative permeability
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Fig. 1 A schematic
representation of supercritical
CO2 injection into a porous
medium occupied by (a) a
heavier or (b) a lighter host fluid.
The invading CO2 and the host
fluid are separated by the abrupt
interface ζ(r, t)
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of the medium for the i-th fluid. The hydraulic head hi in each phase is given in terms of
pressure pi as

hi = pi

ρi g
+ z, (2)

where z is the vertical coordinate. A two-phase formulation of the problem is completed by
combining (1) with mass conservation equations for the two fluids and specifying empirical
constitutive relations between relative permeability and saturation and between saturation
and capillary pressure between the two fluids. Doughty and Pruess (2004) used a similar
formulation to numerically model the injection of supercritical CO2 into the subsurface.

Numerical analyses of multi-phase flow are notoriously challenging and prone to errors.
Instead, we employ an abrupt-interface approximation, which stipulates the existence of an
interface separating a region saturated with the host fluid from a region occupied by the
advancing CO2. While an abrupt interface between immiscible (or miscible) fluids cannot
exist in a macroscopic (Darcian) sense, in many situations of practical interest the transition
zone between two (miscible) fluids is relatively narrow or the (immiscible) displacement is
almost complete, so that the approximation of an abrupt interface separating the two fluids
is justified (Bear 1972, p. 439).

The abrupt-interface approximation is generally valid for flow regimes with a large Péclet
number, a condition that is expected to hold during CO2 injection. This abrupt-interface
approximation has been used to analyze various multi-phase flow phenomena in porous media
(Bear 1972), including CO2 sequestration Nordbotten et al. (2005), Nordbotten and Celia
(2006). For a certain range of density and viscosity ratios, the moving front can become
unstable. An important question of the stability of CO2 fronts displacing a host fluid lies
outside the scope of the present analysis.

From the outset, it is important to recognize the fundamental differences between the
abrupt-interface approximation and the Buckley-Leverett approximation (Buckley and
Leverett 1942). Both approaches assume that capillary pressure is constant and are widely
used in analytical analyses of multiphase flow in porous media. However, the Buckley-
Leverett approximation allows for saturation variability behind the displacement front (i.e.,
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it accounts for the dependence of permeability on saturation), but ignores buoyancy ef-
fects (Bear 1972, p. 468). The abrupt-interface solution we develop explicitly incorporates
buoyancy effects but disregards saturation variability. Thus, the two approaches are comple-
mentary.

Within the abrupt-interface framework, a quasi-steady (successive steady-states) descrip-
tion of moving fronts is obtained by combining the Darcian fluxes qi in (1) with continuity
equations (Bear 1972, p. 566)

∇ · qi = 0, i = c, w. (3)

Let Q0(t) denote the volumetric flux of the injected CO2, and ζ(r, t) denote the vertical
position of the resulting interface between CO2 and water (Fig. 1). Setting the time at which
the injection commenced to t = 0, the total volume of CO2 injected into the porous medium
at time t is given by

V (t) =
t∫

0

Q0(t
′)dt ′ = φ

∫

�c

dx, (4)

where φ is the porosity of the medium, and �c is the part of the medium occupied by CO2.
The second equality is the consequence of the incompressibility of both fluids in the absence
of internal sources and sinks, and assumes that the pores in �c are completely occupied with
CO2. In general, the pores in �c can contain the trapped host fluid with a residual saturation
Sr . This phenomenon can be accounted for by replacing the porosity φ with the drainable
porosity φd ≡ (1 − Sr)φ (Bear 1972, p. 88).

3 Interface Dynamics

An analytical treatment of the CO2 injection is facilitated by realization of mathematical
similarities between this problem and that of saltwater intrusion into coastal aquifers. The
latter problem has been the subject of numerous analytical studies (Bear 1972).

Integrating (3) over the aquifer thickness yields

∇h ·
ζ∫

0

qh
wdz − ∇hζ · qh

w(z = ζ ) + qwz(z = ζ ) − qw z(z = 0) = 0, (5)

where ζ is the interface height; ∇ is the nabla operator; and the superscript h denotes the
horizontal component of the vectors ∇ and qw, with qwz representing the vertical component
of the latter. The vertical velocity at the interface is given by

qw z(z = ζ ) = φ
dζ

dt
= φ

∂ζ

∂t
+ ∇hζ · qh

w(z = ζ ). (6)

Combining (5) and (6), while assuming that the top and bottom boundaries are impermeable,
i.e., qw z(z = 0) = 0, leads to a flow equation for the water phase,

∇h · Qh
w + φ

∂ζ

∂t
= 0, Qh

w ≡
ζ∫

0

qh
wdz. (7)
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Abrupt-Interface Solution for Carbon Dioxide Injection 19

With the same reasoning, we obtain for the CO2 phase

∇h · Qh
c + φ

∂(d − ζ )

∂t
= 0. (8)

Equations (7) and (8) imply that in the absence of other sources, Qh
0 = Qh

c +Qh
w is divergence-

free

∇h · Qh
0 = 0. (9)

Employing the Dupuit assumption of horizontal flow yields

Qh
w = ζqh

w, Qh
c = (d − ζ )qh

c . (10)

The horizontal Darcian fluxes qh
w and qh

c are obtained from (1) by setting the two relative
permeabilities ki = 1 (i = c, w), which gives

Qh
w = −ζ

kρwg

µw

∇hhw, Qh
c = −(d − ζ )

kρcg

µc
∇hhc. (11)

Setting ki = 1 (i = c, w) implies that the advancing interface separates the regions of a
porous medium where saturations of CO2 are 1 (behind the front) and 0 (ahead of the front).
In order to account for the presence of the host fluid trapped behind the advancing CO2 front,
i.e., for the residual saturation Sr �= 0, one should replace µc with µc/k�

c in (11) and below.
Here, k�

c is the relative permeability for CO2 evaluated at the residual saturation Sr .
According to (2), the condition pc = pw at the interface z = ζ implies that

ζ = ρwhw − ρchc

ρw − ρc
. (12)

By partial differentiation, we obtain

∇hζ = ±
∣∣∣∣ ρw

�ρ
∇hhw − ρc

�ρ
∇hhc

∣∣∣∣ , �ρ ≡ ρw − ρc. (13)

Note that for a lighter fluid displacing a heavier fluid, the slope of the interface is positive,
and vice versa. Thus, the plus sign in (13) corresponds to the injection scenario in which
a lighter fluid displaces a heavier fluid (Fig. 1a). Injection under the opposite conditions
(Fig. 1b) is described by the minus sign. Combining (7)–(13), we obtain

∇h ·
[
ζ

Qh
0 ± �ρ k

µc
(d − ζ )∇hζ

ζ + λ(d − ζ )

]
+ φ

∂ζ

∂t
= 0, (14)

where λ = µw/µc is the viscosity ratio. The derivation of exact analytical solutions to this
nonlinear equation for interface displacement was deemed impossible (Bear 1972, p. 535).
One of our goals is to obtain approximate analytical solutions of (14). Another goal is to
contrast these solutions with those obtained with the variational approach of Nordbotten et
al. (2005). The latter goal is accomplished in Sect. 4.3.

4 Analytical Solutions

The analytical solutions derived in this section rely on the Dupuit assumption of predomi-
nantly horizontal flow, and are similar in spirit to the Ghyben-Herzberg solution for static
interface position in seawater intrusion problems (Bear 1972, Sects. 9.7.2 and 9.7.3). We start
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by deriving in Sect. 4.1 an approximate solution for interface dynamics in two spatial dimen-
sions, which is of direct relevance to seawater intrusion. In Sect. 4.2, we derive a solution
for three-dimensional flow in radial coordinates, which can be used to model CO2 injection.
Section 4.3 contains a comparison of our solutions with those obtained via the variational
approach of Nordbotten et al. (2005).

4.1 Two Dimensions

Consider two-dimensional planar flow in a homogeneous porous medium, as shown in Fig. 1,
wherein r is to be replaced with x . We set the width of the injection interval to rw ≡ xw = 0
and denote the trailing edge of the moving interface by x0(t). The Darcy equations (1) for
each fluid i under the Dupuit assumption read as

qi 1(x) = −kρi g

µi

dhi (x)

dx
. (15)

A two-dimensional version of (13) is given by

dζ(x)

dx
= ±

∣∣∣∣dhw(x)

dx

ρw

�ρ
− dhc(x)

dx

ρc

�ρ

∣∣∣∣ . (16)

Substituting (15) into (16) yields

dζ(x)

dx
= ±

∣∣∣∣µwqwx (x) − µcqcx (x)

�ρk

∣∣∣∣ . (17)

The total volumetric fluxes of water and CO2 in (11) are given by

Qw(x, t) = ζqw1, Qc(x, t) = (d − ζ )qc1. (18)

At the same time, the total volumetric fluxes of CO2 and water are given by the proportion
of the total volumetric flux that corresponds to the fraction of the medium cross-section
occupied by the respective fluid, i.e.,

Qw(x, t) = ζ

d
Q0(t), Qc(x, t) = d − ζ

d
Q0(t). (19)

Comparison of (18) and (19) reveals that the Darcy velocities are constant,

qw1(x) = qc1(x) = Q0

d
. (20)

The subsequent derivations use the plus sign in (17), which corresponds to injection of
CO2 (a lighter fluid) into a brine (a heavier fluid) formation. Substituting (20) into (17) and
integrating from x0(t) to x , we obtain an expression for the interface dynamics

ζ(x) = γ (2d)
cw (x − x0) or x(ζ ) = ζ

γ
(2d)
cw

+ x0. (21)

The dimensionless group γ
(2d)
cw , which is defined by

γ (2d)
cw = Q0�µ

kdg�ρ
, �µ = µw − µc, (22)
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Abrupt-Interface Solution for Carbon Dioxide Injection 21

quantifies the relative importance of viscous, gravity, and pressure forces. It follows from (4)
and (21) that the total injected volume of CO2 is

V (t)

φ
=

d∫

0

x(ζ )dζ = d2

2γ
(2d)
cw

+ x0(t)d. (23)

This allows one to determine the position of the trailing edge of the interface, x0(t), as

x0(t) = V (t)

φd
− d

2γ
(2d)
cw

. (24)

Substituting (24) into the first expression in (21) yields the final expression for the interface
dynamics

ζ(x, t) = γ (2d)
cw

[
x − V (t)

φd

]
+ d

2
, x ≥ x0(t). (25)

Equation (25) is a traveling wave solution of the general equation (14), which hitherto had
to be solved numerically (Bear 1972, p. 535). It predicts that the interface separating the two
fluids is a straight line. The slope of this straight line depends on the relative importance of
viscous, gravity, and pressure forces, as quantified by the dimensionless parameter γ

(2d)
cw .

4.2 Three Dimensions

In three dimensions, we consider a radially symmetric injection scenario. Under the Dupuit
assumption, the hydraulic head in each phase depends only on the radial coordinate, hi (x) =
hi (r). For the i-th phase (i = w, c), the Darcy equation (1) yields in radial coordinates

qi r = −kρi g

µi

dhi (r)

dr
, i = w, c. (26)

In radial coordinates, (13) takes the form

dζ(r)

dr
= ±

∣∣∣∣dhw(r)

dr

ρw

�ρ
− dhc(r)

dr

ρc

�ρ

∣∣∣∣ . (27)

For a lighter fluid displacing a heavier fluid, the slope of the interface is positive, and vice
versa. Substituting (26) into (27) yields

dζ(r)

dr
= ±

∣∣∣∣ 1

�ρkg

[
µwqwr (r) − µcqcr (r)

]∣∣∣∣ . (28)

The Dupuit assumption suggests that the radial Darcy velocities do not depend on the
vertical position, and therefore the total fluxes of the respective fluids are given by

Qw(r, t) = 2πrζqwr , Qc(r, t) = 2πr(d − ζ )qcr . (29)

At the same time, the total volumetric fluxes of CO2 and water are given by the proportion
of the total volumetric flux that corresponds to the fraction of the medium cross-section
occupied by the respective fluid, i.e.,

Qw(r, t) = ζ

d
Q0(t), Qc(r, t) = d − ζ

d
Q0(t). (30)
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Combining (29) and (30) gives

qwr (r) = qcr (r) = Q0

2πrd
. (31)

Substituting (31) into (28) and integrating from r0 to r yields

ζ(r, t) = dγcw ln

[
r

r0(t)

]
, γcw = Q0

2πkd2g

�µ

�ρ
. (32)

In order to find the radius rd at which the interface intersects the upper domain boundary,
we set ζ = d in (32). This gives

rd = r0 exp(1/γcw). (33)

We obtain the radius r0 from mass conservation using (4). To this end, we invert (32), which
yields

r = r0 exp

(
ζ

dγcw

)
. (34)

Substituting (34) into the second integral in (4) and recalling that r0 � rw , we obtain

V (t) = π

d∫

0

r2dζ = r2
0
πφdγcw

2

[
exp

(
2

γcw

)
− 1

]
(35)

or

r0(t) =
√

2V0(t)

πφdγcw

[
exp

(
2

γcw

)
− 1

]−1

. (36)

For a constant total volumetric flux, the total injected volume is given by V0(t) = Q0t , which
implies that the interface propagates as r0(t) ∼ √

t .
Inserting (36) into (32) and defining the dimensionless height and radius as

ζ ′ ≡ ζ

d
, r ′ ≡ r

√
πφd

V0(t)
, (37)

respectively, (32) can be written in a dimensionless form as

ζ ′(r ′) = γcw ln

[
r ′

√
γcw

2

(
e2/γcw − 1

)]
. (38)

We consider the limits of small and large γcw in (32). This parameter accounts for both
the difference between the physical properties of two fluids (their densities and viscosities)
and the injection rate relative to the formation conductivity. Small γcw corresponds to flow
regimes in which gravity forces dominate viscous forces and large γcw vice versa. In order
to derive an approximation for ζ ′(r ′) for |γcw| 	 1, we rewrite (38) as

ζ ′(r ′) = γcw

{
ln

(
r ′) + 1

2
ln

[γcw

2

(
e2/γcw − 1

)]}
. (39)
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Fig. 2 Interfaces predicted by
(38) for (a) γcw = 10−2, 10−1, 1
and 10, i.e., for a less dense fluid
injected into a denser fluid and
(b) for γcw = −10−2, −10−1,
−1 and −10, i.e., for a denser
fluid injected into a less dense one
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The expansion of the last term depends on the sign of γcw . For small |γcw| 	 1, the dimen-
sionless interface position (32) can be approximated by

ζ ′(r ′) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 + γcw

2

[
2 ln

(
r ′) + ln (γcw) − ln(2)

] + . . . , γcw > 0

γcw

2

[
2 ln

(
r ′) + ln (|γcw|) − ln(2)

] + . . . , γcw < 0

(40)

where the dots indicate subleading contributions that decrease exponentially fast as γcw tends
to zero. Expression (40) describes the spreading of a thin layer of CO2 on top/bottom of the
denser/less dense fluid.

For large |γcw| � 1, (38) reduces to ζ ′ = γcw ln(r ′). Since ζ ′ must be positive, r ′ must
be greater than 1. This yields

ζ ′(r ′) = H(r ′ − 1), (41)

where H(·) is the Heaviside function defined as H(a) = 1 for a ≥ 0 and H(a) = 0 for
a < 0. Equation (41) demonstrates that, for injection regimes with |γcw| � 1, the CO2 front
advances as a vertical plug.

Figure 2 illustrates the shapes of the CO2-host fluid interface computed with (38) for
several values of the dimensionless parameter γcw. Since the dimensionless radius r ′ in (37)
is time-dependent, this figure also describes the interface dynamic. For large values of |γcw|,
the interface shape is close to the vertical line r ′ = 1, which is consistent with the plug flow
predicted by the asymptotic solution (41).

As γcw > 0 decreases, the trailing edge of the interface r0(t) recedes towards the well,
while its leading edge rd(t) moves further ahead, and the interface becomes more convex
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(Fig. 2a). For sufficiently small γcw > 0, CO2 advances as a horizontal layer located at the
top of the flow domain.

For negative γcw, the situation is reversed (Fig. 2b). As γcw < 0 decreases, r0(t) advances
further inside the flow domain, while rd(t) trails behind; the interface becomes more concave.
For sufficiently small γcw 	 −1, CO2 advances as a horizontal layer located at the bottom
of the flow domain.

It is worthwhile recalling that the positive and negative γcws correspond to the two injection
scenarios shown in Figs. 1a and 1b, respectively. Positive values of γcw imply the injection
of CO2 into a formation occupied by a heavier host fluid, and negative values indicate that
the host fluid is lighter.

4.3 Comparison with Variational Solutions

The solutions described above explicitly incorporate the buoyancy effects but rely on the
Dupuit approximation. The semi-analytical variational solution of Nordbotten et al. (2005)
does not explicitly invoke the Dupuit approximation but accounts for the buoyancy effects
indirectly. This is done by postulating that the injected body of CO2 advances in a way that
minimizes its potential energy. In this section, we compare our solutions with their variational
counterparts and examine the validity of the minimum energy postulate.

4.3.1 Three Dimensions

Rewriting (14) in radial coordinates, disregarding gravity (i.e., setting �ρ = 0), and rescaling
ζ and r according to (37) gives,

1

r ′
∂

∂r ′
ζ ′

ζ ′(1 − λ) + λ
+ t

∂ζ ′

∂t
+ r ′ ∂ζ ′

∂r ′ = 0. (42)

This is similar to Eq. 11 of Nordbotten and Celia (2006) wherein gravity is disregarded (note
that we rescale r differently). Equation (42) has the following stationary solution

ζ ′(r ′) = λ

λ − 1

(
1 − 1

r ′√λ

)
, (43)

which was also obtained by Nordbotten et al. (2005) using a variational approach.
In order to include buoyancy, Nordbotten et al. (2005) postulate that the interface ζ ′(r ′, t)

takes the shape, which minimizes “the energy required to submerge the lighter CO2 into the
denser water” (see the following section for a detailed implementation of this approach to
two-dimensional flow). The resulting variational analysis yields a solution for the interface,
whose shape is defined as a real root of an algebraic equation

− λ − 1

r ′ [λ − ζ ′(λ − 1)]2 + 2�r ′(1 − ζ ′) + 2�r ′ = 0. (44)

Here, the Lagrange multiplier � is given by a solution of the transcendental equation

(λ − 1)� + λ�

λ − 1
ln

(
� + �

�λ

)
− 2λ

(
� − �

λ − 1

)2

= �, (45)

and the dimensionless group � is defined by

� = 2πkd2g�ρ

Q0
. (46)

123



Abrupt-Interface Solution for Carbon Dioxide Injection 25

Fig. 3 Interfaces calculated
using Eq. 38 (solid lines) and
with the variation scheme of
Nordbotten et al. (2005) (dashed
lines) for � = 10; (a) λ = 2 and
(b) λ = 10
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For � = 0 (i.e., �ρ = 0), the solution of (44) and (45) reduces to (43).
Figure 3 compares our analytical solution (38) with numerical solutions of (44)–(46) for a

buouancy-dominated scenario with � = 10, and λ = 2 and 10. The solutions are qualitatively
similar, with (38) predicting the trailing edge closer to and the leading edge further away
from the injection well. Solution (38) predicts more mass at the top of the domain than the
variational approach.

In order to understand the quantitative differences between the two approaches, we apply
the variational approach of Nordbotten et al. (2005) to a two-dimensional injection scenario.
This allows us to elucidate the veracity of the minimum energy postulate.

4.3.2 Two Dimensions

We now consider CO2 injection into a two-dimensional semi-infinite aquifer employing the
variation approach of Nordbotten et al. (2005). Average pressure p satisfies the flow equation

− k
∂

∂x
λ∗ ∂

∂x
p = 1

d
Q0δ(x − xw), (47)

where λ∗ is defined by

λ∗ = b

µcd
+ d − b

µwd
. (48)

The interface elevation is ζ = d − b(x). A solution of (47) is given by

p(xw) − p(xd) = Q0µw

kd

xd∫

xw

dx ′

(λ − 1)b + d
. (49)
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The (potential) energy needed to submerge lighter CO2 into denser brine can be expressed
as

�E p = Q0

V (t)

d∫

0

�ρgbx(b)db. (50)

The dimensionless energy functional E{x(b)} is obtained by combining (50) with the volume
work associated with the injection by pressure (49) and the volume constraint

V (t) = φ

1∫

0

x(b)db. (51)

After rescaling and change of variables, one obtains

E{x(b)} = −
1∫

0

(λ − 1)x(b′)db′

[(λ − 1)b′ + 1]2 + �

1∫

0

b′x(b′)db′ + �

1∫

0

x(b′)db′. (52)

Since the boundary terms independent of x(ζ ) do not contribute to the variation, they are
suppressed here for simplicity. Variation of (52) with respect to x(b) leads to

− λ − 1

[λ − (λ − 1)ζ ]2 + �ζ + � = 0, (53)

which implies that the elevation ζ = 1 − b of the interface does not depend on x .
This can occur either if the interface is horizontal or vertical. The former requires an

infinite amount of injected CO2, and is thus unphysical. Thus, the vertical interface, i.e., plug
flow, is the only possible outcome of the energy optimization approach. Such a behavior
is likewise unphysical, since the CO2 front is expected to advance further into the top of
aquifer than its bottom, as predicted by our solution (25). This leads one to conclude that
the minimum energy postulate is not valid in two dimensions. This finding suggests that it is
also invalid in three dimensions.

5 Summary and Conclusions

We derived closed-form analytical solutions describing the dynamics of interfaces in two-
and three-dimensional porous media. A typical interface separates two fluids with different
physical properties, i.e., density and viscosity. Examples include seawater intrusion in coastal
aquifers, where an interface separates saline and fresh groundwater, and carbon dioxide seque-
stration in the subsurface, wherein CO2 is injected into a deep aquifer. Our two-dimensional
solution describes the former phenomenon, while its three-dimensional counterpart models
the latter. The solutions hold either when a less dense fluid is introduced into a porous
medium occupied by a denser fluid or when the situation is reversed. For the solutions to
remain valid, flow has to reach a quasi-steady regime after the initial injection phase, and the
Dupuit approximation has to be valid.

Our analysis leads to the following major conclusions.

1. Two-dimensional flow regimes are characterized by a linear interface, whose slope is
determined by a single dimensionless parameter that accounts for the viscosity and
density contrasts of the two fluids.
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2. Three-dimensional flow regimes are characterized by a logarithmic interface, whose
curvature is controlled by a single dimensionless parameter that compares the relative
strength of viscous and buoyancy forces.

3. Our two-dimensional analysis casts doubt on the validity of the postulate that the injected
body of CO2 advances in a way that minimizes its potential energy.
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