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[1] Fickian models of diffusion often fail to describe
transport phenomena in heterogeneous environments due to
their inability to capture the sub-scale fluctuations. We
present an effective description of non-Fickian behavior that
reflects the dichotomy between the continuum nature of
Fick’s law and the finite (effective) observation scale as-
sociated with experimental studies of transport phenomena
in heterogeneous systems. This dichotomy gives rise to a
time delay between the cause and effect, i.e. between the
concentration gradient and the mass flux. Evolving scales
of heterogeneity induce a spectrum of such delay times that
can lead to anomalous behavior. The presented model is a
direct generalization of Fick’s law and the well-established
delay diffusion model. It complements effective modeling
frameworks based on stochastic non-local theories and
continuous time random walks. Citation: Dentz, M., and

D. M. Tartakovsky (2006), Delay mechanisms of non-Fickian

trans-port in heterogeneous media,Geophys. Res. Lett., 33, L16406,

doi:10.1029/2006GL027054.

1. Introduction

[2] Very few classical laws of physics are as ubiquitous
as Fick’s law of diffusion. Known by different names in
various disciplines ranging from electromagnetics (Ohm’s
law) to heat conduction (Fourier’s law) to flow in porous
media (Darcy’s law), it postulates a direct, instantaneous
relationship between the cause (the system state gradient
rc) and effect (the flux Jd).
[3] Despite apparent successes of Fick’s law of diffusion,

it fails to capture such key transport characteristics as long
tails and skewness, which are often observed in heteroge-
neous environments. Examples of the non-Fickian behavior
of diffusive transport in heterogeneous environments can be
found in almost every discipline in the natural sciences
ranging from biology [e.g., Upadhyaya et al., 2001], to
atmospheric physics and oceanography [e.g., Frisch, 1995].
Here we focus on the effective modeling of non-Fickian
contaminant transport in groundwater flow. Concentration
distributions observed in field and laboratory experiments are
in general non-Fickian and show spatial and temporal tailing
[e.g., Silliman and Simpson, 1987; Levy and Berkowitz,
2003; Berkowitz et al., 2006].
[4] Both microscopic and macroscopic models of anom-

alous transport have been proposed to account for the non-

Fickian nature of transport in heterogeneous environments.
Microscopic models, which include continuous time ran-
dom walk (CTRW) [e.g., Berkowitz et al., 2006], multirate
mass transfer (MRMT) [e.g., Haggerty and Gorelick, 1995;
Carrera et al., 1998; Haggerty et al., 2000] and fractional
diffusion models [e.g., Schumer et al., 2003], question the
validity of Fickian diffusion by re-examining Brownian
particle dynamics as a foundation of diffusion in heteroge-
neous environments. In particular, CTRW describes diffu-
sive transport as a random walk in both space and time [e.g.,
Berkowitz and Scher, 1997; Metzler and Klafter, 2000;
Berkowitz et al., 2006]; MRMT and time-fractional advec-
tion-diffusion models can be formally seen as subsets of
CTRW [e.g., Dentz and Berkowitz, 2003; Berkowitz et al.,
2006]. In these modeling frameworks, the impact of sub-
scale heterogeneity on macroscale transport is quantified in
terms of a generally unknown distribution of typical trans-
port times.
[5] Macroscopic models of non-Fickian transport in het-

erogeneous media generally result from averaging the
Fickian-diffusion-based local scale advection-dispersion
equation [e.g., Koch and Shaqfeh, 1992; Neuman, 1993;
Cushman, 1997; Dykhne et al., 2005]. Such approaches
typically require closure approximations for the average
concentration.
[6] We present an alternative macroscopic model of non-

Fickian anomalous diffusion that explicitly accounts for the
finite (and often quite large) support volume of a typical
transport experiment in porous media. This is in contrast
with standard diffusion models of contaminant migration,
which disregard inertia effects caused by both the finite
support volume and the effect of subscale heterogeneities.
[7] Delayed diffusion models have been proposed to

account for such inertia effects in reaction-diffusion systems
[see, e.g., Horsthemke, 1999; Fort and Méndez, 2002, and
references therein]. These and similar models postulate the
existence of a time delay (finite relaxation or response time)
td between the cause and effect in Fick’s law,

Jd x; tð Þ ¼ �Drc x; t � tdð Þ; ð1Þ

where D denotes the diffusion coefficient and c(x, t) is the
solute concentration. The standard Fick’s law Jd(x, t) =
�Drc(x, t) can be viewed as an approximation that is valid
for delay times td that are much smaller than the
observation time scale.
[8] Heterogeneity can also lead to a delay in the advec-

tive flux, which is expressed by

Ja x; tð Þ ¼ uc x; t � tað Þ; ð2Þ

where u(x, t) is the macroscopic fluid velocity. A time delay
ta in the advective flux can be caused by variable porosity
and adsorption properties of the porous medium, as well as
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by trapping mechanisms including diffusive or first-order
particle trapping in low flow zones and trapping in closed
streamlines [e.g., Frisch, 1995; Isichenko, 1992]. Since the
mechanisms leading to delay in the advective and diffusive
fluxes can be different, in general ta 6¼ td. If the medium
can be characterized by a single length scale, effective
transport can be described by a single delay time model in
which the delay time should be related to the finite ‘‘solute
particle’’ velocity and Lagrangian correlation time.
[9] In this letter, we explore the concept of delayed

advection and diffusion for the effective modeling of non-
Fickian transport in heterogeneous media, which are char-
acterized by a spectrum of typical heterogeneity scales. We
show that non-Fickian transport can be a consequence of a
distribution of delay times, which reflects the evolving
scales of the medium heterogeneities. Finally, we establish
a connection between the proposed model and the CTRW
and fractional diffusion models.

2. Delayed Transport

[10] In the absence of sources and sinks, mass balance
requires that @c(x, t)/@t = r � Ja(x, t) + r � Jd(x, t). Sub-
stitution of (1) and (2) into this equation yields a delayed
advection-diffusion equation

@c x; tð Þ
@t

þr � uc x; t � tað Þ½ 
 � Dr2c x; t � tdð Þ ¼ 0: ð3Þ

It is immediately clear that transport is Fickian as soon as
the transport time is larger than the delay scales. In fact, a
direct solution of (3) demonstrates that delayed advection-
diffusion with a single time delay cannot account for
anomalous transport.
[11] We argue that the key to understanding anomalous

transport within this framework is to realize that (i) anom-
alous diffusion has been observed exclusively in heteroge-
neous systems [e.g., Bouchaud and Georges, 1990;
Cushman, 1997], and (ii) the medium heterogeneity gives
rise to a distribution of typical delay times. On this basis, we
propose a natural generalization of the delay transport
model (3) that replaces a single delay time with a delay
time distribution by introducing advection and diffusion
kernels N(t) and D(t), such that

@c x; tð Þ
@t

þr �
Z t

0

N t � t0ð Þ � D t � t0ð Þr½ 
c x; t0ð Þdt0 ¼ 0: ð4Þ

The single delay model (3) is recovered for the Dirac-delta
kernels N(t) = uta

�1d(t/ta � 1) and D(t) = Dtd
�1d(t/td � 1).

The diffusion and advection kernels are written as

D tð Þ ¼ DPd tð Þ N tð Þ ¼ uPa tð Þ; ð5Þ

where D represents a diffusion scale and u is a drift
coefficient. The Pd(t) and Pa(t) denote the distribution
densities of typical diffusion and advection time scales,
respectively, which are normalized according to Pd(0) = td

�1

and Pa(0) = ta
�1; and td and ta denote characteristic

diffusion and advection time scales. A typical advection

length scale is given by l = kukta and a (microscopic)
Peclet number is defined by Pe = kukl/D.
[12] Note that the proposed time-delay models can be

readily generalized to account for the anisotropy of an
ambient environment by introducing a directional depen-
dence of delay. Then, the d-dimensional Fick’s law with a
delay time distribution takes the form

Jdi x; tð Þ ¼ �
Z

Dij t � t0ð Þ @c x; t0ð Þ
@xj

dt0; ð6Þ

for i, j = 1, . . ., d.

3. Resident Concentration and Effective
Dispersion

[13] Consider the response of a one-dimensional system
of infinite extent to an instantaneous point source c(x1, 0) =
d(x1) at time t = 0, and prescribe c(x1 = ±1, t) = 0. A
solution of the delay transport equation (4) in Laplace
space is

ĉ x1; sð Þ ¼
exp � PeP̂a

2P̂d

jx1 j
l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4 staP̂d

PeP̂2
a

r
� x1

l

� �� �

u

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4 staP̂d

PeP̂2
a

r : ð7Þ

The Laplace transform is defined as by Abramowitz and
Stegun [1972], s denotes the Laplace variable, and Laplace
transformed quantities are marked by the hat.
[14] The center of mass of the solute distribution c(x1, t)

is defined by

m tð Þ ¼
Z 1

�1
x1c x1; tð Þdx1; ð8Þ

the dispersion of c(x1, t) is quantified by the variance

k tð Þ ¼
Z 1

�1
x21c x1; tð Þdx1 �

Z 1

�1
x1c x1; tð Þdx1

� �2
: ð9Þ

These quantities are readily obtained by multiplying (4)
with x1 and x1

2, respectively, and integrating over space,

m tð Þ ¼
Z t

0

Zt0
0

n t00ð Þdt0dt00; k tð Þ ¼ kd tð Þ þ ka tð Þ: ð10Þ

The contributions kd and ka due to diffusion and advection
delay, respectively, are given by

kd tð Þ ¼ 2

Z t

0

dt0
Z t0

0

D t00ð Þdt00 ð11Þ

ka tð Þ ¼
Z t

0

Zt0
0

n t0 � t00ð Þ 2m t00ð Þ � m tð Þ½ 
dt0dt00: ð12Þ

The latter can be attributed to the stretching of c(x1, t) due to
retardation effects along the particle trajectory.
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4. Solute Arrival Time Distribution

[15] The distribution of solute arrival times at a control
plane at location x1 is defined by the flux of c(x1, t),

f x1; tð Þ ¼
Z t

0

n t � t0ð Þ � D t � t0ð Þ @

@x1

� �
c x1; t

0ð Þdt0; ð13Þ

which, for c(x1, 0) = 0, satisfies the transport equation

@f

@t
þ
Z t

0

n t � t0ð Þ � D t � t0ð Þ @

@x1

� �
@f x1; t

0ð Þ
@x1

dt0 ¼ 0; ð14Þ

as can be verified by inspection. For a semi-infinite domain
(x1 � 0), and subject to the boundary conditions f(0, t) = d(t)
and f(1, t) = 0, and the initial condition f(x1, 0) = 0, a
solution of (14) in Laplace space is

f̂ ¼ exp �PeP̂a

2P̂d

jx1j
l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

staP̂d

PeP̂2
a

s
� x1

l

 !" #
: ð15Þ

The mean arrival time T(x1) is defined by

T x1ð Þ ¼
Z1
0

tf x1; tð Þdt ¼ �@ f̂ x1; sð Þ
@s







s¼0

: ð16Þ

The latter equality can be shown by using the definition of
the Laplace transform. The mean arrival time is given by
T = Td + Ta, where

Td ¼
x1

l

sta
P̂a

d log P̂d

ds







s¼0

; ð17Þ

and

Ta ¼
x1

l

ta
P̂a

1� 2
d log P̂a

ds

 !





s¼0

; ð18Þ

correspond to the diffusive and advective fluxes, respec-
tively. In the absence of advective delay, the latter reduces to
Ta = x1/u. Note that at large times, i.e., for st � 1 with
t = max(ta, td), advective delay can lead to an increase of
the mean arrival time.

5. Delayed Diffusion in Quasi-Fractal Media

[16] Of particular interest is transport in random environ-
ments with a continuous hierarchy of heterogeneity scales.
These environments are characterized by long-range spatial
correlations. In such media one often observes super-diffu-
sion [e.g., Bouchaud and Georges, 1990; Dykhne et al.,
2005], which manifests itself by a power-law growth of the
variance

k tð Þ / t1þa; 0 < a < 1: ð19Þ

Such a behavior is typically observed in a certain time
regime t1 � t � t2 (where t1 and t2 are related to the
smallest and largest heterogeneity length scales) and can be
modeled by a diffusion kernel given in terms of a truncated
power-law distribution

Pd tð Þ ¼ t�1
d

exp �t=t2ð Þ
1þ t=t1ð Þ1�a ; ð20Þ

whose Laplace transform is P̂d = t1/td(st1 + �)�a exp(st1 +
�)G(a, st1 + �). Here � � t1/t2, G(a, s) is the incomplete
Gamma function [Abramowitz and Stegun, 1972], and td is
the normalization scale.
[17] To eliminate the effects of trapping and retardation,

we focus on systems that exhibit time delay in the diffusive
flux only, i.e., set Pa = ta

�1d(t/ta). We define a typical
advection length by l = ut1 and the Peclet number by Pe =
ul/D. Substituting P̂d and P̂a = 1 into (15) and expanding
the resulting expression into a Taylor series for t1

�1 � s �
t2
�1, we obtain

f̂ ¼ 1� x1

l
st1 þ

x1

l

t1
td

G 1þ að Þ st1ð Þ2�a

Pe
þO s2

� �
: ð21Þ

Using a Tauberian theorem to invert this expression, we find
the power-law behavior

f tð Þ / t=t1ð Þa�3 ð22Þ

in the time regime t1 � t � t2. The resident concentration
and the solute arrival time distribution—computed via
Laplace inversion of (7) and (15) with Pd given by (20)—
are displayed in Figure 1 for a = 0.5. Both exhibit clear
non-Fickian behavior.

6. Relation to Alternative Models

[18] We conclude our analysis of delay mechanisms of
non-Fickian transport by analyzing the relationships be-
tween the proposed model and fractional advection-diffu-
sion equations as well as CTRW. We focus on delayed
diffusion only by ignoring a possible time delay in the
advective flux.
[19] The connection to time fractional transport models is

obvious. Indeed, for t1 � t � t2 and a > 0, the transport
equation (4) together with the truncated power-law diffusion
kernel can be written as a time-fractional advection-diffu-
sion equation

@c

@t
þ u � rc ¼ Dt�a

1 G að Þr2D
�að Þ
t c; ð23Þ

where Dt
(�a)f(t) = G(a)�1

R t
0
f(t0) (t � t0)a�1dt0 is the so-called

Riemann-Liouville fractional integral [e.g., Metzler and
Klafter, 2000] and G is the Gamma function [e.g.,
Abramowitz and Stegun, 1972]. The equivalence between
(23) and (4) with (20) can be shown by Laplace
transforming the respective equations.
[20] A fully coupled CTRW results in the integro partial

differential equation [e.g., Berkowitz et al., 2006]

@c

@t
þ
Z t

0

vy t � t0ð Þ � rc�rDy t � t0ð Þrc
� �

dt0 ¼ 0; ð24Þ

where the Laplace transforms of the advection and diffusion
kernels are defined as v̂yi

= s
R
xiŷ(1 � ŷm)

�1 dx and D̂yij
=
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s
R
xixjŷ(1 � ŷm)

�1 dx, respectively. Here i, j = 1, . . ., d
with d denoting spatial dimension, ŷ(x, s) is the Laplace
transform of the coupled transition length and time
distribution y(x, t), and ŷm(s) is the Laplace transform of
the marginal transition time distribution

ym tð Þ �
Z

y x; tð Þdx: ð25Þ

The proposed delayed diffusion model and CTRW are
equivalent if

v̂y1
¼ kuk; v̂yi

¼ 0; ð26Þ

where i > 1. These conditions yields a hitherto unexplored
constraint for the coupled transition length and time
distribution

Z
xy x; tð Þdx ¼ u� u

Z t

0

ym t0ð Þdt0: ð27Þ

For the decoupled CTRW (i.e., y(x, t) = p(x)ym(t),), which
includes linear MRMT models [e.g., Dentz and Berkowitz,

2003], this constraint is fulfilled for an exponential
transition time distribution, ym(t) = x1 exp(�kukt/x1)/kuk
where x1 �

R
x1p(x)dx. Nevertheless, the exponential

transition time distribution describes Fickian transport [e.g.,
Berkowitz et al., 2006].
[21] Despite the similarity between the time-delay model

of non-Fickian diffusion and the approaches described
above, fundamental differences exist. Specifically, the
time-delay model accounts for the existence of genuine
sub- and super-diffusive fluxes as the sole property of
diffusion, i.e., in the absence of other transport mechanisms.
This is in contrast to the decoupled CTRW framework
and MRMT models which, in the absence of advection,
describe sub-diffusive behavior that reflects the combined
effects of retardation and diffusion of particles. In
these models, super-diffusion occurs in the presence of
advection [e.g., Metzler and Klafter, 2000; Berkowitz et
al., 2006], which gives rise to a dispersion term of the form
ka in (11).

7. Concluding Remarks

[22] We presented a macroscopic model to account for
non-Fickian transport in heterogeneous media based on
delay mechanisms for the advective and diffusive solute
fluxes. The phenomenological motivation for such a mod-
eling approach is the observation that a macroscopic effec-
tive transport framework must account for inertia effects
that are caused by the coarse resolution (i.e., large support
volume) in conjunction with unresolved subscale hetero-
geneities. The model generalizes the well-established delay
diffusion model by introducing a distribution of delay times
reflecting the spatial scales of heterogeneity. The delay
advection-dispersion equation (4) complements existing
transport frameworks such as CTRW and MRMT and
fractional advection dispersion equations, which model
non-Fickian solute transport in heterogeneous media.
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