
1.  Introduction
The need to delineate geological features, for example, lithofacies, is ubiquitous in subsurface application. 
Understanding subsurface geology is crucial to exploration of mineral resources and oil and gas reservoirs. 
It is also of central importance in subsurface hydrology since geologic makeup of the subsurface plays a 
crucial role in fluid flow and contaminant transport. A typical example is a problem of locating permeable 
zones in an aquiclude that separates two aquifers, the upper aquifer contaminated with industrial and/or 
agricultural pollutants, and the lower aquifer used for municipal water supplies (Guadagnini et al., 2004).

Geostatistics has long been used to gain insight into spatial distributions of physical properties of geologic 
formations (Isaaks & Srivastava, 1990). By adapting the probabilistic framework it accounts for inherent 
predictive uncertainty that arises from subsurface heterogeneity and data sparsity. In doing so, geostatistics 
relies on the ergodicity hypothesis, which postulates the equivalence between spatial statistics and its en-
semble counterpart. This hypothesis cannot be proven, but it does require a subsurface environment to be 
(weakly) stationary, that is, relevant subsurface properties to have both constant means and variances and 
translation-invariant correlation functions. Tools of the statistical learning theory (Vapnik, 1998), such as 
support vector machines (SVM) (Tartakovsky & Wohlberg, 2004), provide an attractive alternative to geo-
statistics (indicator Kriging). Specifically, SVM do not invoke ergodicity, are highly automated, and require 
fewer measurements to remain viable (Wohlberg et al., 2006). Like all machine learning-based approaches, 
the SVM training consists of identification of the model parameters by minimizing the discrepancy between 
the SVM's predictions and the training data; in contrast to many machine learning techniques, such as neu-
ral networks, the minimization problem is quadratic and, hence, has an easily computable unique solution. 
Once trained, the SVM model is verified by evaluating its performance on the test (unseen) data. Unlike 
Kriging, which also minimizes the difference between available data and model predictions, SVM minimize 
the difference between unseen data and model predictions (the so-called generalization error). The former 
does interpolation, while the latter performs regression (Tartakovsky & Wohlberg, 2004).

Relatively low data requirements are a key advantage that distinguishes SVM from other machine learning 
techniques, for example, deep neural networks, used for facies delineation (Zeng et al., 2018). Unlike neu-
ral networks, SVM possess rigorous performance guarantees and error bounds (Vapnik, 1998). A related 
attractive feature of SVM is that they result in a straightforward quadratic optimization problem whose 
unique solution is trivially obtained; this is in contrast with neural networks whose minimization function-
als have multiple local minima. Like many other machine learning techniques, such as k-nearest neighbors 
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(Tartakovsky et al., 2007) and deep neural networks, standard SVM provide only a “best” estimate of the 
spatial arrangement of geological features consistent with available data (Wohlberg et al., 2006). To the best 
of our knowledge, geostatistical techniques (Guadagnini et al., 2004) are the only means to quantify predic-
tive uncertainty in subsurface delineation from sparse data.

We develop probabilistic SVM (pSVM) in order to quantify uncertainty inherent in such reconstructions 
and to identify facies with a required degree of fidelity. While the original pSVM (Platt, 2000) were designed 
to quantify the probability of SVM misclassifying pixels of a complete image, our method is designed to cope 
with the sparsity of subsurface data, that is, with the task of reconstructing an image from a few pixels. Un-
like the geostatistical approach of Guadagnini et al. (2004) used for this purpose, the pSVM approach does 
not require the construction of a variogram and, hence, has significantly lower data requirements. Other 
advantages of the SVM framework over its geostatistical counterparts are discussed in detail by Wohlberg 
et al. (2006).

In Section 2, we formulate the problem of subsurface facies delineation from sparse data. Section 3 contains 
a brief overview of the standard SVM approach to this problem and introduces pSVM. The latter is used 
in Section 4 to probabilistically reconstruct facies from a synthetic data set, which enables us to study the 
method's accuracy, robustness, and data requirements. In Section 5, we deploy pSVM to analyze lithological 
data collected in multiple wells at a Southern California site. Main conclusions drawn from this study are 
summarized in Section 6.

2.  Problem of Facies Delineation
Consider a two-dimensional subsurface environment D consisting of two lithofacies M1 and M2 (D = M1 ∪ 
M2), for example, high- and low-permeability heterogeneous geologic materials. Our goal is to reconstruct 
a (single- or multi-connected) boundary between these facies from continuous parameter data  i iK K x  
collected at N locations,  ( , )i i ix yx  with i ∈ {1, …, N}, throughout the domain D. These locations form a 
set T = {x1, …, xN}.

To transform this task into a classification problem, we convert values Ki of the continuous function K(xi) 
into values of an indicator function (aka categorical variable)

   

1

2

1 ,
( )

1 .
i

i
i

M
J

M
x

x x� (1)

This step assumes that the data 1{ }N
i iK  are well differentiated, that is, each measurement Ki unambiguously 

identifies the measurement location xi as belonging either to facies M1 or M2. In the case of poorly differ-
entiated data, this step could be preceded by a nearest neighbor classifier (Wohlberg & Tartakovsky, 2009).

3.  Support Vector Machines
SVMs are often considered one of the best “out of the box” classifiers that yield great performance in a va-
riety of settings (James et al., 2014). In their simplest form, SVMs are applicable to linearly separable data, 
for example, data collected from perfectly stratified geologic media in which different geologic facies are 
separated by either planes in three dimensions or straight lines in two dimensions. Nonlinear SVMs enable 
one to deal with general subsurface environments by projecting them into higher-dimensional space in 
which the data are linearly separable by a hyperplane. Linear and nonlinear SVMs are briefly reviewed in 
Sections 3.1 and 3.2 for the sake of completeness.

3.1.  Linear SVM

A linearly separable data set 1{ }N
i iJ  implies the existence of a straight line, a ⋅x + b = 0, that separates the 

locations xi at which J = −1 from those at which J = 1 (Figure 1a). The unknown constants  1 2( , )a aa  
and b are computed by maximizing the distance (margin) between a ⋅x + b = 0 and the locations at which 
Ji = −1 and Ji = 1.
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The solid line in Figure 1a represents the optimum classifier line a ⋅x + b = 0, while the dotted lines indi-
cate the extent of the margin, the region within which the boundary could be shifted orthogonally while 
preserving the perfect classifying accuracy (James et al., 2014) (The points used to construct the margin are 
called the support vectors.) These two lines have the same slope as the classifier line (the vector a) but differ 
by the intercepts, that is, their equations are written as a ⋅x + b = ±1.

All the data points xi (i = 1, … , N) satisfy either a ⋅x + b ≥ 1 or a ⋅x + b ≤ −1. These inequalities are combined 
into one,

    ( ) 1, 1, , .i ib J i Na x� (2)

These inequalities become an equality for the support vectors xi. Let a = |a| denote the Euclidean length 
of a. The margin d is given by d = 2/a (Wohlberg et al., 2006). The SVM identifies the values of a and b by 
maximizing the margin d or, equivalently, by minimizing a/2 subject to the linear constraints (Equation 2). 
Introducing Lagrange multipliers γ = {γ1, … , γN}, this yields an optimization problem {a⋆, b*} = arg mina,b,γL, 
where the objective function L (a, b, γ) is given by




     
1

[( ) 1].
2

N

i i i
i

aL b Ja x� (3)

The indicator function at points x where measurements are absent is given by

  ( ) sgn( ).J bx a x � (4)

It is usually referred to as a decision function in the SVM literature.

The linear SVM can be augmented to account for slight deviations from a perfectly linear classification 
boundary by introducing slack variables ξi ≥ 0 (i = 1, … , N). The linear SVM minimization problem is re-
placed with the problem of minimizing the objective loss function   1/ 2 N

i ia C  subject to the constraints 
(a ⋅xi + b)Ji ≥ 1 − ξi with i = 1, …, N. Magnitude of the constant C determines the strength of the slack 
penalty. Introducing Lagrange multipliers γ = {γ1, … , γN} and δ = {δ1, …, δN} for i ∈ 1, …, N gives an objective 
function similar to (3). This optimization problem is rewritten as {a⋆, b⋆, ξ⋆} = arg mina,b,ξ,γ,δLξ, where Lξ(a, 
b, ξ, γ, δ) is defined as

  


    
1
( ) ,

N

i i i
i

L L Cξ� (5)

with L given by (3). To facilitate the solution of this optimization problem, one converts it into its dual,
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Figure 1.  (a) A linear SVM classifier maximizes the margin between the reconstructed boundary (straight line), a ⋅x + b = 0, and the locations xi at which 
Ji = −1 (blue circles) and Ji = + 1 (red circles). (b) The logistic fit of raw SVM output represents a probability  1[ ]Mx  conditioned on the SVM raw output 
being g*, that is,  [ ( ) 1 | ( ) ]J G gx x  .
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  
  

 
      

 1 1 1

1argmax
2

N N N

i i j j j i j
i i j

J J x xγγ � (6)

subject to constraints 0 ≤ γi ≤ C and  1 0N
i i iJ . Once γ⋆ is obtained, the solution of ∂Lξ/∂ak = 0 (k = 1, 2) 

in (5) is
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.
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Ja x � (7)

Let xn = x+ and xk = x−, for some n and k, denote support vectors for which J = 1 and J = −1, respectively. 
For these support vectors, the SVM inequality constraints (a ⋅xi + b)Ji ≥ 1 − ξi turn into equations, ±(a 
⋅x± + b) = 1 − ξ± with ξn = ξ+ and ξk = ξ−. Their solution is

         
1 ( ( ) ).
2

b a x x � (8)

Thus, a solution for the indicator function in (4) is
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3.2.  Nonlinear SVM

Boundaries of lithofacies in the subsurface are rarely, if ever, planes (straight lines). Hence, parameter data 
1{ }N

i iK  or its indicator counterpart 1{ }N
i iJ  belonging to different lithofacies cannot be separated by the line a⋆ 

⋅x + b⋆ = 0 in d = 2 or 3 spatial dimensions. Fortunately, it has been proven (Vapnik, 1998) that there exists 
a higher-dimensional space (whose dimension m is generally unknown) in which the data become linearly 
separable. Let : d mF    denote a map of the d-dimensional physical space onto that m-dimensional 
space (known as a feature space). In other words, every point x ∈ D corresponds to a point ˆ mx  , such 
that ˆ ( )x F x . The linear SVM in m  separates the data by a hyperplane    0ˆ ˆ ba x  , whose coefficients 
ˆ ma   and b  are determined from the transformed data set 1{ˆ , }N

i i iJx . This is accomplished by solving 
the quadratic optimization of the linear SVM in (3) and (5), in which a and x are replaced with â and x̂.  
Similar to (4), the indicator function is given by   ( ) sgn( ( ) )ˆJ bx a F x  .

While this indicator function is linear in the m-dimensional feature space, it corresponds to a nonlinear 
function in the physical space, whose specific form is determined by the mapping F. The latter is proven 
to exist, but its form is generally known and, hence, J(x) is not directly computable. Instead, one solves the 
dual constrained optimization problem in  (6) with xi and xj replaced by  )ˆ (i ix F x  and  )ˆ (j jx F x . The 
resulting inner product of the mapping functions, F(xi) ⋅F (xj), remains uncomputable and is replaced with 
an empirical function called a Mercer kernel,  ( , ) ( ) ( )i j i jx x F x F x . Examples of Mercer kernels include 
polynomials, sigmoid functions (e.g., hyperbolic tangent), and Gaussian functions (James et  al.,  2014). 
Based on our experiments, the exponential radial basis function kernel,

   ERB( , ) exp( | | / ),i j i jx x x x� (10)

where ℓ denotes the kernel's width or the radius of influence of the samples selected to be support vectors, 
yields the best results in terms of the error on the test set. A nonlinear kernel is generally expected to out-
perform its linear counterpart in capturing a nonlinear boundary between two classes. Although not done 
here, one can cycle through multiple kernels and select the one that has the smallest error on the test data 
set. Once a functional form for the Mercer kernel ( , )i jx x  has been selected, the dual optimization problem

  
  

 
     

 1 1 1

1argmax ( , )
2

N N N

i i j j j i j
i i j

J J x xγγ  � (11)

is solved subject to constraints 0 ≤ γi ≤ C and  1 0N
i i iJ .
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In analogy to (9), the indicator function is written as



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Combining (7) and (8), both written for their counterparts in m , yields a computable expression for the 
constant b⋆,

  
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N

i i i i
i
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3.3.  Uncertainty Quantification for SVM Predictions

To quantify uncertainty in SVM reconstruction, we repurpose the pSVM originally developed in the context 
of classification of nonperfectly separable data (Platt, 2000). The original SVM classifier J is binary, defined 
by the sign of the function g(x) in (12). Instead, we use a value of g(x) to estimate probability  1[ ]Mx  
of the point x belonging to the material M1. Let gi = g (xi) with i = 1, …, N constitute a training set. These 
numbers are thought of as realizations of the corresponding random variables G1, …, GN, which are charac-
terized by the (unknown) class-conditioned probability  [ | ( ) 1]i iG g J x   where g⋆ is a value of g (xi) 
at the point of interest xi. Instead of estimating this probability, we estimate the conditional probability 

 [ ( ) 1 | ]i iJ G gx   and extend this probability to any point x where measurements are not available, 
 [ ( ) 1 | ( )]i iJ G gx x .

Our parametric estimation strategy relies on the assumed functional form of  ( ( ) 1 | ( ) )J G gx x  . By 
way of example, we consider a sigmoidal function in Figure 1b,

  
 

1[ ( ) 1 | ( ) ] .
1 exp( )

J G g
Ag B

x x 
� (14)

The fitting parameters A and B are found by minimizing the negative log-likelihood of the training data. 
First, we map the training set 1{ , }N

i i iJx  onto a training set 1{ , }N
i i ig t , where ti = (Ji + 1)/2 are target proba-

bilities. Then, the negative log-likelihood function or a “cross-entropy error function” is minimized to find 
optimal values A⋆ and B⋆,

 
     

 
,{ , }  ln (1 )ln(1 ) ,

N

A B i i i i
i

A B arg min t p t p � (15)

where   ( ( ) 1 | ( ) )i i ip J G gx x  . We use the trust-region Newton algorithm (Fan et  al.,  2008; Lin 
et al., 2007) to solve this two-parameter minimization problem. Finally, (14) with A = A⋆ and B = B⋆ is used 
in place of  1[ ]Mx .

4.  Performance Analysis on Synthetic Data
4.1.  Synthetic Data Set

Our goal is to reconstruct probabilistically the lithofacies defined by, for example, the hydraulic conduc-
tivity field K(x) in Figure 2 from N measurements  i iK K x  collected at randomly selected locations xi 
(i = 1, …, N). The field K(x), originally used for similar purpose by Wohlberg et al. (2006), is constructed by 
superimposing two autocorrelated, weakly stationary, normally distributed random fields, representing two 
distinct spatial distributions of log-conductivity with the ensemble means of 0.1 and 7.0. When hydraulic 
conductivities are expressed in centimeters per day, this corresponds to clayey and sandy materials, respec-
tively. The two log-conductivity distributions are mutually uncorrelated, have unit variance and Gaussian 
autocorrelation with unit correlation scale. SGSIM software (Deutsch & Journel, 1998) is used to generate 
both fields on a 60 × 60 grid, using a grid spacing of 1/5 of the log-conductivity correlation length. Next, 
the composite porous medium is constructed by randomly choosing the shape of the internal boundary. 
The corresponding indicator field J(x) is constructed by assigning to each pixel either +1 or −1, that is, 
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identifying its membership in either facies M1 or M2, using a threshold value of 4.0. Given the vast difference 
between the means, this assignment is free of classification error.

4.2.  Probabilistic Facies Reconstruction

The boundaries between materials M1 and M2 reconstructed by the standard (deterministic) SVM from 
N = 50 data points (out of the total of Ntot = 3,600 pixels) are shown in Figure 3a. Even with this relatively 
sparse sampling, SVM mislabel some the data points in order to prevent the overfitting of the model (blue 
dots are corresponding to geological facie J = −1 that end up in the area in the middle area). That is because, 
similar to many other machine learning techniques (e.g., neural networks), SVM minimize the generaliza-
tion error rather than the observation error. The misclassification seen in Figure 3a is the result of a trade-
off between the classification error on the training set and the minimal classification error on the unseen 
data. Such mislabeling of pixels of a full image gave impetus to the original pSVM (Platt, 2000). Here we use 
it as a probabilistic classifier of incomplete images with the majority of pixels missing.

Figure 3b exhibits a representative probability map of facies M1 reconstructed by pSVM from N = 50 meas-
urements. It indicates the confidence in identifying each pixel as a member of M1. The dark blue areas 
represent subdomains where the probability  1[ ]Mx  is close to zero, that is, these areas are highly likely 
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Figure 2.  (a) Log-hydraulic conductivity field ln K(x) and (b) the corresponding indicator function J(x) used in our 
numerical experiments. The two heterogeneous facies are sufficiently distinct for the mapping ln K(x) → J(x) not to 
introduce a classification error.

Figure 3.  (a) Boundaries drawn by deterministic SVM with the slack penalty constant C = 1 and the kernel width 
ℓ = 2; blue and orange pixels represent samples from materials M1 (J = 1) and M2 (J = −1), respectively. (b) Probability 
map of facies M1 reconstructed by pSVM with the slack penalty constant C = 1 and the kernel width ℓ = 2 from N = 50 
pixels (out of the total of Ntot = 3,600).
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to consist of material M2. On the other hand, the yellow and light green 
areas represent subdomains that likely belong to material M1. SVM clas-
sification of the remaining parts of the simulation domain is highly un-
certain. Although not shown here, and as expected, this transition zone 
increases as the sampling density, N/Ntot, decreases. We also found that 
the measurement locations play smaller role on the confidence maps as 
the sampling density increases. To convert the probabilistic map into a 
deterministic one providing the “best” guess of the spatial extent of the 
hydrofacies, one can define the boundary between facies M1 and M2 as 
the probability isoline corresponding to the relative number of samples of 
facies M1 in the total number of samples. That is the strategy used in the 
geostatistical approach of Guadagnini et al. (2004).

One metric of pSVM output is the fractional number of uncertain pix-
els, Nunc/Ntot, defined for a given probability threshold P > 0.5. A pixel 
x is deemed uncertain with confidence P if its membership probability 

 1[ ]Mx  falls within the interval [1 − P, P]. Figure 4 shows Nunc/Ntot 
as function of the sampling density N/Ntot for two degrees of certainty, 

P = 0.75 and 0.95; this result represents an average over 20 realizations of the set T = {x1, … , xN} of random-
ly selected measurement locations, each of which yields a probability map similar to the one in Figure 3b. 
(The negligible computational cost of SVM training—less than a second on a laptop—facilitate their use in 
the ensemble setting.) As expected, the number of uncertain pixels increases with the probability threshold 
P and decreases with the sampling density.

4.3.  Comparison with Indicator Kriging

Indicator Kriging (IK) (Isaaks & Srivastava, 1990) provides an alternative means for probabilistic recon-
struction of hydrofacies (Guadagnini et al., 2004). This method defines the indicator function as I(xi) = 1 
for xi ∈ M1 and = 0 for xi ∈ M2, and treats it as a stationary random field. The best linear unbiased estimator 
(aka Kriging) interpolates between the measurement points, yielding   1[ ( )] [ ]I Mx x  . The correlation 
function (variogram) of I(x), which is inferred from the spatial data Ii = I(xi) with i = 1, … , N, determines 
the interpolation weights.

Figure 5 exhibits realizations of the probability maps of M1 alternatively identified with pSVM and IK from 
N = 50 measurements. (The measurement locations are chosen at random, varying between realizations 
shown in Figure 5 and differing from a realization depicted in Figure 3b; this allows us to illustrate the im-
pact of measurement locations on the quality and reliability of facies reconstruction.) The probability maps 
generated with pSVM and IK are qualitatively similar, even though pSVM generates a smoother map than 
that produced by IK. This suggests that pSVM provides a more conservative facies reconstruction (larger 
areas with probabilities other than 0 and 1). This finding is consistent among all the realizations of meas-
urement locations we have analyzed, including those shown in Figure 5.

The qualitative similitude between pSVM and IK argues in favor of the former. That is because IK is more 
complex and possesses more tunable parameters, such as lag, lag separation, lag tolerance, azimuth, dip, tol-
erance, and bandwidth. Manual fitting of data to an experimental variogram is highly subjective, requiring 
one to visually identify an appropriate nugget effect and sill. Finally, construction of a variogram requires 
a large number of samples collected at various degrees of spatial separation, while SVM theoretically work 
with as few as two data points (support vectors).

Figure 6 serves to quantify the discrepancy between the two methods for constructing the probability maps 
in Figure  5, and to compare them with their empirical counterpart for the ground truth in Figure  2. A 
metric for this assessment is computed as follows. First, for each map in Figure 5 corresponding to a given 
realization of the measurement locations, we construct a histogram of pixels whose probabilities fall within 
bins of size Δp = 0.1. Second, we compute the average probability for each bin: For example, let  0.1,0.2{ }k kx   
denote a set of N0.1,0.2 pixels with probabilities  0.1,0.2{ }k kp   that fall within the bin [0.1, 0.2); then the average 
probability for that bin is

DENDUMRONGSUP AND TARTAKOVSKY

10.1029/2021WR029622

7 of 13

Figure 4.  Relative number of uncertain pixels, Nunc/Ntot, as function of the 
sampling density, N/Ntot, for two degrees of certainty, P = 0.75 and 0.95, 
that is, for correspondingly wider confidence intervals.
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The values of p for each bin, inferred from the probability maps designated by Realization 1 in Figure 5, are 
plotted in Figure 6 against the corresponding probabilities ptrue. (Other realizations yield similar results.) 
These are computed as the fraction of the pixels in a given bin labeled as J = 1 in Figure 2. For example, if 
the number of the J = 1 pixels in the set  0.1,0.2{ }k kx   is 1

0.1,0.2
JN , then true 1

[0.1,0.2) 0.1,0.2 0.1,0.2/Jp N N . The 45° line 
in Figure 6 corresponds to the perfect agreement between the average probability p and the corresponding 

empirical probability ptrue inferred from the ground truth. The average 
probabilities p predicted by either pSVM or Kriging exhibit comparable 
deviations from the 45° line; this suggests that, according to this metric, 
the two methods for probabilistic reconstruction of geologic facies have 
comparable accuracy.

4.4.  Sensitivity to SVM Parameters

Performance of SVM is controlled by two parameters: The slack penal-
ty constant C in  (5) and the kernel width ℓ in  (10). The regularization 
parameter C provides a trade-off between the correct classification of 
training data and the minimization of generalization error. Larger values 
of C allow smaller margins if the decision function is better at correctly 
classifying all training points. Smaller values of C promote larger margins 
and, hence, a simpler decision function at the cost of training accuracy.

Small values of the parameter ℓ indicate a long-range influence of each 
observation, while its high values limit the overall impact of each data 
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Figure 5.  Probability maps of facies M1 constructed by pSVM (left column) and indicator Kriging (right column) from 
N = 50 measurements. The measurement locations are selected at random, giving rise to different realizations of the 
reconstructed fields.

Figure 6.  Comparison of the average probability p predicted by either 
pSVM ( SVMp ) or indicator Kriging ( IKp ) and the corresponding empirical 
probability ptrue inferred from the ground truth. The 45° line corresponds 
to the perfect agreement between the two.
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point. If ℓ is too small, the radius of influence of the support vectors includes only the support vector itself 
and no amount of regularization with C would prevent overfitting. When ℓ is very large, the model is too 
constrained and cannot capture the complexity or “shape” of the data. The region of influence of any select-
ed support vector would include the whole training set. The resulting model will behave similarly to a linear 
model with a set of hyperplanes separating the centers of two classes.

Figure 7a shows the impact of ℓ on the SVM accuracy, that is, on the relative number of misclassified pixels, 
Nmis/Ntot. Small values of ℓ are beneficial when sampling density is high, while its llithofaciesarge values 
yield a better performance when data are very sparse. In the latter case, small values of ℓ lead to overfit and 
result in low prediction accuracy.

Figure 8 exhibits representative reconstructions of geological facies obtained with two choices of the pa-
rameter ℓ (and C = 1.0) for two sampling densities. Large values of ℓ yield boundaries that are too smooth, 
while small values of ℓ cause boundaries to follow the training points too closely. Selecting a right value 
for ℓ is more crucial for low sample density (N/Ntot = 50/3600). As expected, this situation also gives rise 
to appreciable variation between realizations (different sample locations). Both the importance of selecting 

DENDUMRONGSUP AND TARTAKOVSKY

10.1029/2021WR029622

9 of 13

Figure 7.  (a) Relative number of misclassified pixels, Nmis/Ntot, as function of sampling density N/Ntot, for several 
values of the kernel width ℓ. (b) Classification accuracy  computed from the five-fold cross-validation. Light color 
elements correspond to the combinations of the SVM parameters C and ℓ that lead to well-performing models.

Figure 8.  Representative lithofacies reconstructions via SVM with C = 1 and either ℓ = 10.0 (top row) or ℓ = 1.0 (bottom row), for two sets of N samples 
(realizations 1 and 2).
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a value for ℓ and the between-realizations variability diminish when the sampling density increases to N/
Ntot = 360/3600.

4.5.  Strategy for Parameter Selection

Unlike IK, SVM possess a well-established framework for tuning its hyper-parameter. Specifically, optimal 
values of C and ℓ are chosen with the following algorithm.

•	 �Identify a region in the two-dimensional SVM parameter space (spanned by parameters C and ℓ), over 
which C and ℓ are allowed to vary. In our computational examples, we chose the intervals C ∈ [10−2, 103] 
and ℓ ∈ [10−2, 103] to exclude parameters for which poor performance is expected a priori

•	 �Discretize this region with a regular grid and carry out the SVM reconstruction for all pairs of the param-
eter values. We used the mesh size Δlog  C = 1 and Δlog  ℓ = 1, which results in 36 reconstructions

•	 �Perform five-fold cross-validation to evaluate the test error of each parameter combination. The data are 
split into k = 5 subsets or “folds” i  with i = 1, …, k. For every i, the model is trained on all folds except 
for the ith fold. The test error on the ith fold is computed as

�

where Jn is a true label of pixel xn, and /
ˆ
n iJ  is a prediction for the pixel xn obtained without using the fold 

i  of the data set to fit the model. Next, cross-validation error is obtained by averaging the test errors of 
individual folds,


 cv

1

1 .
k

i
ik

 �

•	 �Finally, the classification accuracy is defined as   cv1 

Figure 7b exhibits the classification accuracy  for the 36 combinations of the SVM parameters C and ℓ. 
The best-performing SVM models are parameterized with the values of C and ℓ that lie on the diagonal 
of the plot. Possible spurious variations of the classification accuracy  between different chosen param-
eters can be smoothed out by increasing the number of folds, k, used in cross-validation at the expense of 
computational time. While the analysis was not performed on the most optimal hyper-parameters from 
cross-validation, the cross-validation accuracy obtained with the chosen parameters C = 1 and ℓ = 2 is not 
far from that of the optimum.

5.  Application to Field Data
To demonstrate the applicability of pSVM to real-world groundwater problems, we consider a data set from 
a site in Southern California. The raw lithological data, collected from 107 cone penetrometer tests (CPTs) 
spread over approximately 3 km × 3 km area, can be found in the file rawdata. txt available for download 
with this submission. The CPT data consist of vertical profiles of 1s and 0s, labeling geologic materials of 
low and high conductivity, respectively (Figure 9a). We say that a CPT location lies in the aquitard (facies 
M1) if the vertical average of these measurements exceeds a certain threshold δth; otherwise, it is said to 
belong to a high-permeability inclusion (facies M2). The data points corresponding to threshold δth = 0.5, 
marked as “low” for facies M1 and “high” for facies M2, are shown in Figure 9b.

A visual comparison of Figures 3a and 9b reveals a qualitative similarity between the synthetic and field 
data. In order to select the most appropriate hyper-parameters, we perform cross-validation, whose results 
are depicted in Figure 10. In addition, the performance analysis is made possible by the availability of the 
ground truth in Section 4 guides our selection of the hyper-parameters C and ℓ here. In particular, we set 
the slack penalty constant C = 1 and the kernel width ℓ = 0.1 for the pSVM approach (Otherwise, prior 
knowledge about the geological structure of an aquifer could assist in choosing appropriate values of hy-
per-parameters: The presence of large continuous lithofacies calls for the use of small values of the param-
eters C and ℓ, while an aquifer with a large number of inclusions is represented by large values of C and ℓ.) 
Fitting the boundary requires two hyper-parameters, A and B in (14). Yet they need not be pre-determined 
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for the probability calculation in the pSVM, being determined from data by solving the optimization prob-
lem in (15).

While pSVM involve only two hyper-parameters (C and ℓ), IK has seven tunable parameters: lag (set to 6.0), 
lag separation (0.005), lag tolerance (0.001), azimuth (20.0), dip (0.0), tolerance (70.0), and bandwidth (0.1). 
Additional IK parameters (range, sill, and nugget) are obtained from the variogram fitting, in a procedure 
akin to determination of the parameters A and B in pSVM.

Figure 11 exhibits probability maps of the aquitard (facies M1) generated by pSVM and IK from the PCT 
data in Figure 9b. The predicted probability,  1[ ]Mx , of a point x far removed from data locations belong-
ing to the aquitard is close to 1. That is to be expected since the data set in Figure 9b contains many more 
points from M1. This emerging feature of pSVM is consistent with the built-in characteristic of the geostatis-
tical approach to probabilistic facies delineation (Guadagnini et al., 2004). The pSVM-based classification is 
more conservative since, being a regression rather than interpolation (as Kriging is), it aims to minimize the 
generalization error rather than the interpolation error. Normalization before fitting pSVM is crucial in this 

case because the distribution of each feature (x and y values) is far from 
the standard Gaussian distribution. IK provides a more aggressive predic-
tion, which is controlled by such unobservable hyper-parameters as the 
size of the search ellipsoid. If the latter is set to be small, a large portion of 
the space is left unclassified because the ellipsoid would not contain any 
data points. On the other hand, too large of an ellipsoid would result in 
a prediction that is unrealistically uniform. A more aggressive prediction 
provided by IK is likely to result in an unjustifiably overconfident inter-
pretation of the field data.

6.  Conclusions
We introduced probabilistic support vector machines (pSVM) as a means 
of delineation of subsurface lithofacies from sparse data. The method re-
places the binary classifier with its continuous counterpart that is con-
structed by fitting a logistic curve to observations. The result is a prob-
ability map that provides the likelihood of a pixel belonging to a facies, 
rather than a deterministic pixel label provided by standard SVM. Our 
numerical experiments lead to the following major conclusions.
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Figure 9.  (a) Raw binary data collected with 117 cone penetrometer tests. (b) Vertically averaged CPT data with 
threshold δth = 0.5; these data are used to delineate high-permeability inclusions (facies M2) in the aquitard (facies M1) 
in the horizontal plane of a groundwater model.

Figure 10.  Classification accuracy  computed from the five-fold cross-
validation. Light color elements correspond to the combinations of the 
SVM parameters C and ℓ that yield well-performing models.
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�(1)	� Probability maps generated with pSVM and indicator Kriging (IK), the current method of choice for 
probabilistic forecasting, are qualitatively similar

�(2)	� pSVM generate smoother probability maps than those produced by IK, suggesting that pSVM provide 
a more conservative facies reconstruction (larger areas with probabilities other than 0 and 1) to ensure 
more reasonable classification of the unseen space

�(3)	� The qualitative similitude between pSVM and IK argues in favor of the former, because IK is more 
complex, has more tunable parameters, and has higher data requirements

�(4)	� Performance of SVM is controlled by two parameters: The slack penalty constant C and the kernel 
width ℓ

�(5)	� Small values of ℓ are beneficial when sampling density is high, while its large values yield a better per-
formance for sparse data

More work remains to be done in the area of probabilistic image reconstruction from sparse data. In addi-
tion to their use as a classifier, SVM can be deployed as a regressor to estimate the parameter values between 
points where the parameter is sampled (Wohlberg et al., 2006). One line of future research is to develop 
pSVM for quantification of uncertainty in the estimates of a parameter of interest (hydraulic conductivity, 
in our examples).

Another venue is to explore the conformal prediction (Hechtlinger et al., 2018) as an alternative to pSVM 
for quantification of uncertainty in subsurface delineation from sparse data. This approach uses past ex-
perience to determine precise levels of confidence in new predictions. It is designed for an on-line setting 
in which labels are predicted successively, each one being revealed before the next is predicted (Shafer & 
Vovk, 2008). Such a strategy might indicate regions in space where a prediction with a required degree of 
certainty is not possible due to the lack of information.

One drawback of SVM in general and pSVM in particular is the sampling bias problem. SVM algorithm 
could be modified by assigning different weights to each sampled point (Yang et al., 2007). Such weighted 
classification could be easily achieved by scikit-learn (Pedregosa et al., 2011). However, unlike in Kriging, 
a principled way to determine the weights for SVM is still lacking. We leave this challenge for a follow-up 
study.

In our experiments, pSVM have outperformed the IK-based approach by being highly automated and pro-
ducing consistent results. When training images (either from raw outcrop data or processed technique) are 
available, multi-point geostatistics (Tahmasebi, 2018) might be a more suitable approach than its two-point 
counterpart (IK). Incorporation of training images into pSVM is needed to provide a fair comparison be-
tween these two strategies.
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Figure 11.  Probability maps of the aquitard (facies M1) generated by (a) pSVM and (b) indicator Kriging from the PCT 
data shown in Figure 9b.
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Data Availability Statement
The field data used in Section 5 are provided in the file rawdata.txt accompanying this article.
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