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Abstract
Explicit numerical schemes are popular in multiphysics and multiscale simulations, yet their use in stiff problems often
requires time steps to be so small as to render simulations over large time horizons infeasible. Exponential time differencing
(ETD) has proved to be an efficient scheme for tackling differential operators with linear stiff and nonlinear non-stiff
parts. Such natural separation, however, is absent in many important applications, including multiphase flow and transport
in porous media. We introduce a strategy for using ETD in such problems and demonstrate its efficiency in numerical
experiments. We also compare the ETD performance to that of an explicit scheme. We conclude that the best outcome is
achieved by combining ETD with a fourth-order Runge-Kutta method. Although our methodology is demonstrated on two-
dimensional multiphase flow in porous media, it is equally applicable to other applications described by parabolic differential
equations of this kind.

Keywords Stiff · ETD · Explicit · Multiphase · Nonlinear

1 Introduction

While implicit numerical methods have a number of theoret-
ical advantages, many multiphysics and multiscale simula-
tions find it necessary to resort to explicit schemes [1]. The
latter are straightforward to implement, but are only condi-
tionally stable, placing a constraint on the time-step size. For
stiff problems, such as multiphase flow and solute transport
in porous media, the required step size can become so small
as to render numerical simulations over a time horizon of
interest prohibitively expensive.

Several numerical schemes for stiff problems have
been proposed [2], some of which found their way into
computational geosciences (see, e.g., [3–5] for some of
the more recent examples). Among these, exponential time
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differencing (ETD) [6, 7] has attracted a lot of attention as
an efficient approach to dealing with stiffness [8–11].

In its standard implementation, ETD leverages an
empirical observation that the stiffness of an equation
arrises from its linear elliptic part (e.g., the Laplace operator
representing diffusion, dispersion, viscous forces). That
precludes the direct application of ETD to multiphase flow
problems, including Richards’ equation for flow in partially
saturated porous media [12], in which the elliptic term is
highly nonlinear due to dependence of its coefficient on the
state variable (e.g., of relative permeability/conductivity on
fluid saturation).

A major goal of this study is to explore numerical
strategies for adopting ETD to problems, whose differential
operators do not possess linear stiff components. Our
strategy relies on defining the stiff linear operator via
linearization of its nonlinear stiff counterpart around
a reference value of the state variable. Conceptually
similar ideas of stiffness separation have been explored in
combination with other time-integration schemes [13, 14].
We are unaware of the use of this strategy in the context of
ETD.

In lieu of theoretical analysis, we conduct a series of
numerical experiments to ascertain the performance of
our ETD strategy for problems without natural stiffness
separation, in terms of both accuracy and computational
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efficiency. Multiphase flow equations, a coupled system of
highly nonlinear partial differential equations of parabolic
type, serve as our computational testbed. Following the
standard practice in the ETD literature (e.g., [7]), we
compare the performance of ETD with that of the standard
explicit (Runge–Kutta) and implicit (Newton–Raphson)
schemes. A detailed comparison with more advanced
techniques such as implicit/explicit (IMEX) methods [15],
which are tailor-made for multiphase flow equations, is left
for further studies. We do compare our method with the
implicit pressure, explicit saturation (IMPES) finite volume
approach [16].

The standard ETD method and its modification for prob-
lems without stiffness separation are presented in Section 2.
This modified ETD is used to solve two-phase flow equa-
tions, which are formulated in Section 3. Alternative numer-
ical implementations of our ETD approach are presented in
Section 4. Simulation results comparing the performance of
ETD with that of implicit and explicit solvers are presented
in Section 5. Main conclusions drawn from this analysis are
summarized in Section 6.

2 Exponential time differencing

Consider a d-dimensional simulation domain Ω ⊂ R
d and

a simulation time horizon [0, T ] ⊂ R
+. Dynamics of a

state variable u(x, t) : Ω × [0, T ] → R
+ defined on

this domain is described by a nonlinear partial-differential
equation (PDE)

∂u

∂t
= M(u, x, t), (x, t) ∈ Ω × (0, T ], (1)

subject to appropriate initial and boundary conditions.
Suppose, first, that the nonlinear differential operator

M(u, ·) = Lu + N (u, ·) (2)

can be decomposed into linear and nonlinear parts, L and
N , respectively. If the simulation domain Ω is discretized
into Ndis elements or nodes, then a suitable discretization
of the differential operators L and N yields a system of
ordinary differential equations (ODEs)

du
dt

= Lu + N(u, x, t), u(x, 0) = u0 (3)

where u is the vector of unknowns of length Ndis, L is an
Ndis × Ndis matrix, and N is a vector function with Ndis

components. Consider a set of Neig eigenvalues λi of the
matrix L, with i = 1, . . . , Neig. The system of ODEs (3) is
said to be stiff if the ratio

s = maxi{|�(λi)|}
mini{|�(λi)|} ,

which is referred to as stiffness, is large.

Consider the diagonalization of L such that L = PDP−1,
where P is an invertible matrix and

D =
⎡
⎢⎣

λ1
. . .

λNdis

⎤
⎥⎦ . (4)

Exponential of the matrix L is defined by

eL = ePDP
−1 =

∞∑
k=0

(PDP−1)
k

k! =
∞∑

k=0

PDkP−1

k!

= P

( ∞∑
k=0

Dk

k!

)
P−1 = PeDP−1, (5)

where exp(D) is the diagonal matrix whose non-zero
components are exp(Dii) = exp(λi) with i = 1, . . . , Ndis.
Multiplying (3) by the integrating factor exp(−Lt) and
integrating the resulting equation over a single time step τ ,
from tn to tn+1 = tn + τ , one obtains

un+1 = eLτun

+eLτ

τ∫

0

e−LsN(u(tn + s), x, tn + s)ds, (6)

with un ≡ u(tn). Formula (6) is exact; different
approximations of the integral term give rise to alternative
ETD schemes [7].

This study deals with problems in which the differential
operator M in Eq. 1 lacks a linear stiff component L, i.e.,
cannot be decomposed according to Eq. 2. A ubiquitous
example of this kind is a nonlinear diffusion equation, ut =
M(u), whose elliptic operator M(u) = ∇ · [D(u)∇u]
involves the diffusion coefficient D(u) that is an invertible
function of the concentration u(x, t). Our approach is to i)
replace this nonlinear stiff term with its linear counterpart
Lu, e.g., replace M(u) with its linearized counterpart Lu =
∇ · [D(ũ)∇u] where ũ can be the initial state uin, the
maximal or average value of u, etc.; ii) define the nonlinear
term N (u) = M(u)−Lu; and iii) use ETD in Eq. 6 to solve
the ODEs resulting from the spatial discretization of these
differential operators.

Selection of the linear stiff terms L or, equivalently, the
corresponding matrix L requires careful consideration. If
too much stiffness is delegated to the nonlinear term N
(or N), then the benefit of using ETD, i.e., the ability to
solve the large linear stiff part analytically, is quickly lost,
as shown in the numerical experiments reported below.

3 Two-phase flow in porousmedia

Our computational testbed deals with two-dimensional (d =
2) flow of two immiscible compressible fluids (e.g., oil
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and gas) of viscosity μl , density ρl , and compressibility
Bl (l = oil, gas) in a homogeneous anisotropic porous
medium of porosity φ and intrinsic permeability κ . Under
isothermal conditions, the flow is described by equations of
conservation of mass and momentum for each phase l,

φ ∂
∂t

(
Sl

Bl

)
+ ∇ ·

(
Ul

Bl

)
= ql, l = gas, oil (7a)

Ul = −κ
κrel,l
μlρl

(∇pl − g), l = gas, oil. (7b)

Here, Sl is the medium’s saturation with phase l, such that
Sgas +Soil = 1; Ul and pl are Darcy velocity of and pressure
in the lth phase, respectively; and ql denotes the source/sink
with the convention that ql > 0 for injection, and ql < 0 for
production; and g is the gravitational acceleration constant.
The saturation-dependent relative permeabilities of the two
phases, κrel,l , are defined by, e.g., [17]

κrel, gas = S2
gas, κrel, oil = (1 − Sgas)

1.5. (7c)

We neglect gravity and capillary forces, i.e., assume poil =
pgas ≡ p. The compressibility of oil and water satisfies
constitutive laws

Bgas = ecgasΔp, (7d)

Boil =
{

e−αoilΔp if p < pbub

e−αoilΔp−coil(p−pbub) otherwise
(7e)

where cgas = 1.7 · 10−3 psi−1; αoil = 8.0 · 10−5 psi−1;
coil = 8.0 · 10−6 psi−1; patm and pbub are the atmospheric
and bubbling pressure (in psi), respectively; and

Δp =
{

patm − p if p < pbub

patm − pbub otherwise.

Among the plethora of methods for solving (7), we took
an inspiration from an implicit pressure, explicit saturation
(IMPES) finite volume approach [16]. To simplify the
presentation, we use a square simulation domain that is
discretized with an N ×N grid, whose elements are indexed
alternatively either by (i, j) with 1 ≤ i, j ≤ N or by
1 ≤ k ≤ N2. Pressure in the oil phase and gas-phase
saturation are arranged into vectors of length N2,

p =

⎡
⎢⎢⎣

...
pk

oil
...

⎤
⎥⎥⎦ , S =

⎡
⎢⎢⎣

...
Sk

gas
...

⎤
⎥⎥⎦ , k = 1, . . . , N2. (8)

In the traditional IMPES method, Eq. 7 is formulated as (see
the Appendix for details)

Ď(pn+1, Sn)(pn+1 − pn) = Ť(pn+1, Sn)pn+1

− Q̌(pn+1, Sn). (9)

Its significant computational cost comes from the implicit
solver.

Instead, we modify this method in a way that enables us
to take advantage of the explicit ETD scheme:

D(u)
du
dt

= T(u)u − Q(u), (10)

where u ≡ p; the dependence on Sn, which is known
from the previous time step, is suppressed to simplify the
notation; T is the N2 × N2 penta-diagonal transmissibility
matrix; Q denotes a flow-rate vector of length N2; and D
is the product of the N2 × N2 diagonal compressibility
matrix and the time step size. These matrices are defined,
respectively, by Eqs. 48, 49, and 50 in the Appendix.

This system of ODEs does not lend itself to a direct ETD
treatment because it lacks a linear stiff part. Instead, we
rewrite it first as

du
dt

= D−1Tu − D−1Q, (11)

and then as Eq. 3 with

L = D−1(ũ)T(ũ) (12a)

and

N = [D−1T − L]u − D−1Q. (12b)

Alternative strategies for choosing the state ũ(t), which is
used to construct the linear operator L, are discussed in
Section 5. The nonlinear operator N retains some of the
stiffness of the original equation; specifically, the matrix
D−1T is not invertible. That is because, by construction,
the summation of any column of the transmissibility matrix
T is a zero vector. Thus, the transmissibility matrix T is
singular. Once the pressure un+1 is computed, the saturation
is updated explicitly, in accordance with Eq. 46, to obtain
Sn+1.

The formulation (11) and (12) is beneficial if one can
identify L that captures rapid changes in the solution, as
illustrated in Section 5.1.

Remark 1 In d = 3 spatial dimensions, the matrices
in Eqs. 8–12 are modified as follows. If a three-dimensional
simulation domain were discretized with a N ×N ×N grid,
then the vectors p and S would have length N3; T would
be the N3 × N3 hepta-diagonal transmissibility matrix; the
flow-rate vector Q would have length N3; and D would be
the product of the N3 ×N3 diagonal compressibility matrix
and the time step size.

Remark 2 Construction of the matrices in Eqs. 8–12 can
be readily generalized to account for different numbers
of elements in each spatial dimension. If the number of
elements in the ith direction is Ni (i = 1, . . . , d), then the
length of the vectors p and S is

∏d
i=1 Ni , etc.
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Remark 3 The matrices p, S, and Q in Eqs. 8–12 satisfy
the physics-imposed constraints, e.g., that saturation is a
non-negative number between 0 and 1. Additionally, the
transition from Eqs. 10 to 11 requires the matrix D to be
invertible. The latter requirement is not satisfied when one
of the phase saturation approaches 0, the derivatives of the
saturation-pressure curve that form the matrix D become
0, yielding a singular D. This phase-vanishing scenario can
be treated by introducing either negative saturation [18],
or a new set of primary variables [19] or a regularization
term [20]. The use of ETD in such a scenario requires
further exploration.

4 Numerical implementation

Explicit ETD schemes of arbitrary order have been derived
in [7]. We explore several alternative implementations of
the modified ETD approach, including its combination with
Runge-Kutta (RK) methods. This is done for second- and
fourth-order schemes, but higher-order approximations can
be derived in a similar manner. However, these numerical
schemes are not directly applicable to the multiphase flow
equations of Section 3, for which the matrix L in Eqs. 3
and 12 is not invertible. The possibility of combining ETD
with RK methods in this setting remains unexplored.

4.1 Multi-StepMethod: High-Order ETD Schemes

Alternative ways to approximate the integral term in Eq. 6
give rise to different ETD schemes. For example, one can
treat the operator N(·, t) as constant during each time step,
so that Eq. 6 reduces to

un+1 = eLτun + �1Nn, (13a)

where Nm = N(u(tm), x, tm) for any m ∈ N, and

�1 = L†(eLτ − I) + τeLτ (I − L†L), (13b)

where I is the (N2) × (N2) identity matrix, and L† is the
pseudo-inverse of L. We use a singular-value decomposition
to represent L as

L = VDU
, (13c)

where V and U are (N2) × (N2) orthogonal matrices, and
D is a (N2) × (N2) diagonal matrix. Then,

L† = UD†V
, (13d)

where D† denotes the inverse D except for its 0 elements.
For example, if D = diag(λ1, . . . , λr , 0, . . . , 0), then D† =
diag(1/λ1, . . . , 1/λr , 0, . . . , 0) [21, 22]. We refer to this
first-order ETD as ETD1.

4.1.1 Second-Order ETD

A second-order ETD scheme, ETD2, is constructed by
approximating N(u(tn + s), x, tn + s) on the interval 0 ≤
s ≤ τ with a linear function,

N ≈ Nn + Nn − Nn−1

τ
s, (14)

(recall that tn+1 = tn + τ ). Substituting Eq. 14 into Eq. 6
yields

un+1 = (eLτ + �1)un + �2
Nn − Nn−1

τ
, (15a)

where

�2 = (L†)2(eLτ − I − τL) + τ 2

2
eLτ (I − L†L). (15b)

4.1.2 Fourth-Order ETD

A fourth-order ETD scheme, ETD4, is a special case of
higher-order ETD schemes. A scheme of order τP+1 is
constructed by approximating N(u(tn + s), x, tn + s) on the
interval 0 ≤ s ≤ τ with a P th-degree polynomial in s.
Substituting this approximation into Eq. 6 leads to [7]

un+1 = eLτun + τ

P−1∑
m=0

gm

P∑
k=0

(−1)k
(

m

k

)
Nn−k, (16a)

where Lhg0 = eLh − I and, for m ≥ 0,

Lhgm+1 + I =
m∑

k=0

gk

m + 1 − k
. (16b)

ETD4 is derived by setting P = 3 in Eq. 16. The
equation above is valid for invertible L matrices. Its
generalization to the noninvertible case remains to be
explored. Consequently, we do not rely on ETD4 in the
numerical experiments reported below.

4.2 One-StepMethod: Fusion of ETD and RK

The ETD schemes in Section 4.1 fall under the category
of multistep methods, since they require prior evaluations
of the nonlinear term N. Initiation of such a scheme is
problematic because the previous state of N is not available
for the first time step. RK methods not only solve this
problem but also typically have smaller error constants and
larger stability regions than multistep methods [7]. An RK
method of order M yields a solution of Eqs. 3 and 11 in the
form

un+1 = un + τ

M∑
i=1

cif(un,i), un,i = u(tn,i). (17)

Here, ci are the weights, tn,i ∈ [tn, tn+1] for all i ≤ m, and
the vector function f is defined below.
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A second-order (M = 2) RK scheme, RK2, is

un+1 = un + τ
k1 + k2

2
, (18a)

where

k1 = Lun + N(un), (18b)

k2 = Lun + Lk1 + N(un + k1). (18c)

A fourth-order (M = 4) RK scheme, RK4, is

un+1 = un + τ
k1 + 2k2 + 2k3 + k4

6
, (19a)

where

k1 = Lun + N(un, ·), (19b)

k2 = Lun + N(un + k1/2, ·), (19c)

k3 = Lun + N(un + k2/2, ·), (19d)

k4 = Lun + N(un + k3, ·). (19e)

4.2.1 ETD-RK2

This scheme is constructed by augmenting RK2 in Eq. 18
with ETD1 in Eq. 13. First, we compute

an = eLτun + �1Nn. (20a)

Then, a solution is advanced to the next time step,

un+1 = an + �2
N(an) − Nn

τ
. (20b)

4.2.2 ETD-RK4 with Contour Integration

ETD-RK4 is constructed by augmenting RK4 in Eq. 19 with
the ETD approximation of u in between the current and
future time steps [7]. The resulting expressions are derived
with a symbolic manipulation system.

un+1 = eLτan + τ−2L−3[Ω1Nn+1/2

+Ω2Nab,n+1/2 + Ω3Nc,n+1]. (21a)

Here,

Nn+1/2 = N(un),

Nab,n+1/2 = Na,n+1/2 + Nb,n+1/2,

Na,n+1/2 = N(an),

Nb,n+1/2 = N(bn),

Nc,n+1 = N(cn);

(21b)

Ω1 = −4I − τL + eLτ (4I − 3τL + τ 2L2),

Ω2 = 4I + 2τL − 2eLτ (2I − τL),

Ω3 = −4I − 3τL − τ 2L2 + eLτ (4I − τL);
(21c)

and

an = en + ENn,

bn = en + ENa,n+1/2,

cn = eLτ/2an + E(2Nb,n+1/2 − Nn+1/2),

en = exp(Lτ/2)un

(21d)

with E = L−1[exp(Lτ/2) −I].

This form of ETD-RK4, and of any other ETD scheme
of order higher than two, is numerically unstable [23]. To
understand why, consider the expression

g(z) = ez − 1

z
. (22)

Its accurate computation is a well-known challenge in
numerical analysis [24]. That is because, for small z, it
suffers from cancellation error. The ETD-RK4 scheme (21)
is expected to suffer from the same problem because it
contains the terms

α = L−3Ω1

τ 2
, β = L−3Ω2

τ 2
, γ = L−3Ω3

τ 2
(23)

that can be thought of as higher-order analogs of Eq. 22.
The cancellation errors in these expressions are even more
pronounced, especially when the discretized linear operator
matrix L has eigenvalues close to zero. This vulnerability
to cancellation errors in the higher-order ETD and ETD-RK
schemes can render them effectively useless [23].

Complex analysis provides a means to combat this
cancellation problem. Instead of directly evaluating the
function g(z) at points z close to its singularity point z = 0,
one computes a contour integral

g(z) = 1

2iπ

∮
g(t)

t − z
dt . (24)

This strategy works also when z is not close to the
singularity point. If the matrix L replaces the scalar z, as
in Eq. 23, the term (t − z)−1 has to be replaced with the
resolvent matrix (tI − L)−1, giving rise to

g(z) = 1

2iπ

∮
(tI − L)−1g(t)dt . (25)

4.2.3 ETD-RK4 with Lie Group Analysis

The Lie group method [25] provides an alternative approach
to deriving a workable ETD-RK4 scheme. A key idea of this
method is to approximate the nonlinear term N in Eq. 3 with
an Mth degree polynomial in time,

N(u(t + τ), t + τ) =
M−1∑
k=0

τ k

k! Nk, Nk ∈ R
Ndis , (26)

which allows one to solve the resulting ODEs exactly.
Specifically, a solution of Eq. 3 with N in Eq. 26 is

u(t + τ) = eτLu(t) +
∫ τ

0
e(τ−s)L

M−1∑
k=0

τ k

k! Nkds (27)

or

u(t + τ) = eτLu(t) +
M∑

k=1

τ kφk(τL)Nk−1, (28a)
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where

φk(τL) =
∫ τ

0

sk−1

(k − 1)!e(τ−s)Lds. (28b)

To account for the possibility that the matrix L is not
invertible, the matrices φ1, φ2, and φ3 are modified to

φ1 = τA + L†(eτL − I)

φ2 = τ 2

2
A + (L†)2(eτL − I − τL) (28c)

φ3 = τ 3

3
A + (L†)3[2eτL − 2I − τL(2I + τL)],

where A = eτL(I−L†L). Hence, in accordance with Eq. 28,
the time-stepping from un = u(t) to un+1 = u(t + τ) in the
forth-order (M = 4) scheme is carried out as

un+1 = eτLun + τ(T 1 + T 2 + T 3). (29a)

Here,

T 1 = (φ1 − 3φ2 + 4φ3)N1,

T 2 = (2φ2 − 4φ3)(N2 + N3), (29b)

T 3 = (−φ2 + 4φ3)N4,

with

N1 = N(un, t), N2 = N(u(2)
n , t + τ

2 ),

N3 = N(u(3)
n , t + τ

2 ), N4 = N(u(4)
n , t + τ)

(29c)

and

u(2)
n = e

τL
2 un + τ

2 φ1
(

τL
2

)
N1,

u(3)
n = e

τL
2 un + τ

2 φ1
(

τL
2

)
N2,

u(4)
n = e

τL
2 u(2)

n + τφ1
(

τL
2

)
(− 1

2N2 + N3).

(29d)

Remark 4 Several of the numerical schemes described
above require multiple function evaluations. Their computa-
tional cost is negligible under conditions of time regularity,
which allows one to precompute certain matrices, e.g., �1

and �2 in Eq. 15 and the contour integral in Eq. 24, prior
to the simulation. Even in the absence of time regularity, the
scheme remains efficient as long as each chosen time step is
small enough to stay in the stability region [26]. Although
the benefit of pre-computing these matrices is lost, the cost
of their computation does not dominate the overall budget.

5 Simulation results

The simulations reported in this section represent a reservoir
with uniform initial pressure p(x, 0) = pin and oil
saturation Soil(x, 0) = 1. A production well, located at the
center of the square reservoir of size Lx = Ly = L, is
operated at a constant rate q. Once the pressure p(x, t) drops
below the bubble point pbub, some gas is produced. The
values of these and other parameters used in our simulations
come from [17]; they are collated in Table 1.

Figure 1 exhibits the temporal evolution of pressure,
p(xw, t), and flow rates of oil, Qoil(xw, t), and gas,

Table 1 Numerical values of
the parameters and other
quantities used in our
simulations are taken from [17]

Quantity Value Value (SI)

Square reservoir size, L 3500 ft 1066.8 m

Reservoir thickness, Lz 100 ft 30.5 m

Top depth, Dtop 5000 ft 1523.9 m

Longitudinal permeability, kx 200 md 0.197 μm2

Transverse permeability, ky 100 md 0.099 μm2

Porosity, φ 0.25

Rock compressibility, cr 0

Oil density, ρoil 49.1 lbm/ft3 786.5 kg/m3

Oil viscosity, μoil 2 cp 2 mPa·s
Initial pressure, pin 6000 psi 4.137 × 107 Pa

Bottom-hole pressure, pbth 2000 psi 1.379 × 107 Pa

Atmospheric pressure, patm 14.7 psi 1.013 × 105 Pa

Bubbling pressure, pbub 3400 psi 2.344 × 107 Pa

Number of grid blocks, N Nx = Ny = 35

Well location, xw = (Nxw , Nyw ) (18, 18)

Pumping rate, q 2000 STB/day 3.68 × 10−3 m3/s

The square reservoir, discretized with the equal numbers of grid blocks in each dimension, is
used for simplicity; the relevant matrices, such as transmissibility matrix, are readily computable
for more complex geometries (see the Appendix)
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Qgas(xw, t), at the extraction well xw = (Nxw , Nyw).
These quantities of interest were alternatives computed with
the ETD-RK4 scheme (29) and the commercial reservoir
simulation software Eclipse. The slight disagreement
between the two solutions stems, in part, from the difference
in the fluid properties: while our simulations describe them
with the closed-form relations in Eq. 7, Eclipse calculates
them by interpolating between the fluid properties from a
table. Since the discrepancy is negligible for the average
reservoir pressure pave(t) = L−2

∫
p(x, t)dx (Fig. 1a), we

carry out our assessment of the relative performance of the
ETD-RK schemes by focussing on the well-block pressure
p(xw, t). The latter is also used directly to calculate the oil
and gas flow rates in Fig. 1b.

5.1 Selection of the linear operator

As discussed earlier, the multiphase flow (7) do not have
a natural stiff linear part L required by ETD. Instead,
selection of L in Eq. 12 or, more precisely, of ũ is arbitrary.
We compare the performance of the ETD schemes with
three choices of the matrix L = D−1(ũ)T(ũ). These are
Lhigh, Llow, and Lmed corresponding, respectively, to ũ
given by the initial field pressure pin, bottom-hole pressure
pbth, and the average field pressure pavg = (pin + pbth)/2.

All these versions of the matrix L are penta-diagonal,
being the product of the inverse diagonal matrix D−1(ũ)

and transmissibility matrix T(ũ) in two dimensions.
Consequently, L is very sparse,
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c b 0 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 0

b a b · · · d
...

0 b a b · · · d
...

...
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . .

...
... d · · · b a b · · · d

...
...

. . .
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
...

... d · · · b a b 0

... d · · · b a b

0 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 0 b c

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

with the omitted elements being zeros. Values of the
constants a, b, c, and d for Lhigh, Lmed and Llow are given
in Table 2. Of the three matrices, Lhigh is the most strongly
diagonal. This implies that setting L = Lhigh transfers most
of the stiffness to the linear component of the multiphase
flow Eq. 11. On the other hand, choosing the constant matrix

L to be either Lmed or Llow provides less separation of
stiffness, i.e., the nonlinear component N retains much of
stiffness, which defeats the purpose of ETD.

We report the accuracy of the alternative ETD schemes
in terms of the normalized error over the simulation time
horizon [0, T ], with T = 600 days,

E(τ ) = |∫ T

0 p(xw, t)dt − ∫ T

0 pex(xw, t)dt |∫ T

0 pex(xw, t)dt
. (30)

In lieu of the exact solution, pex(xw, t), we use a numerical
solution obtained via the ETD-RK4 method (29) with the
smallest time step τ = 0.001 day as a close estimate. The
trapezoidal rule is used to evaluate the quadratures in Eq. 30.

Figure 2 demonstrates the relative performance of the
second- and fourth-order ETD, with and without RK. The
upper range in these plots (steep increase in the error
E) corresponds to the largest time step τ for which the
simulations fail to converge. The second-order methods,
ETD2, converge regardless of the choice of the linear
operator L (Fig. 2a). The choice of Lhigh ensures the
method’s convergence at much larger time steps τ relative to
Lmed and Llow. The importance of choosing an appropriate
matrix L is even more pronounced for higher-order ETD
schemes, such as ETD-RK4 (Fig. 2b). The Lie group-
based ETD-RK4 method fails to converge if L = Lmed

and Llow. Even when convergent, the higher-order schemes
with a suboptimal choice of L offers little advantage over
their second-order counterparts in terms of computational
efficiency: the allowable time steps for ETD2 and ETD4
are very similar for Lmed and Llow, while the performance
gains provided by Lhigh are massive. That is to be expected,
since the system is most stiff at its initial state when the
pressure gradient close to the well and, hence, the oil and gas
flow rates are large. For this reason, it is most appropriate
to construct the matrix L by using ũ to be the initial field
pressure pin. If the bottom-hole pressure and, hence, the
final solution pressure are drastically different from the
initial pressure pin, an optimal pressure to evaluate L would
be further from pin. However, Lhigh would still be the most
optimal choice among the three.

5.2 Comparison with explicit (RK) schemes

Figure 3 provides a comparison of the accuracy and
efficiency of the explicit second-order schemes with and
without ETD. The normalized error E grows approximately
linearly in the log-log scale for all the scheme considered
(Fig. 3a). The second-order RK scheme, RK2, provides
baseline; its maximum allowable time step is around τ =
0.15 day. Even without RK, the ETD methods outperform
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Fig. 1 Quantities of interest computed with the ETD-RK4 scheme (29) and the commercial reservoir simulation software Eclipse. (a) Pressure at
the extraction well, p(xw, t), and average reservoir pressure pave(t). (b) flow rates of oil, Qoil(xw, t), and gas, Qgas(xw, t), at the well

RK2, having the maximum allowable time step of around
τ = 0.75 day. The fusion of RK2 and ETD results in the
best performance; the largest possible time step of ETD-
RK2 is around τ = 1.5 day, i.e., it is ten times faster than
RK2 and twice as fast as ETD alone. For any time step size
τ , the normalized error E is lowest for the stand-alone ETD
scheme and highest for the RK2 method. The error of the
combined scheme, ETD-RK2, lies in between these two.

Direct comparison of the total simulation time is not
straightforward because it depends, in part, on the computer
architecture. Nonlinearity of the multiphase flow Eqs. 7
requires matrix initialization at every time step. Initializa-
tion speed could vary greatly across language platforms and
CPU. For this reason, we focus on the solver component
of the computation and ignore the initialization process.
This metric could heavily favor a scheme that requires a
high number of iteration if each iteration is cheap. In the
present context, such a favored scheme is RK2. At each time
step, the total simulation time of ETD2 and ETD-RK2 is
higher than that of RK2 because the former involve matrix
multiplication as opposed to matrix-vector multiplication
in RK2. The total simulation time of ETD-RK2 with the
maximum allowable time step τ is around half of that of
RK2 (Fig. 3b). Although the normalized error E of ETD-
RK2 with the maximum allowable time step τ is larger than
that of RK2, it is sufficient to accurately capture pressure
dynamics.

Figure 3 also provides a comparison of the accuracy
and efficiency of the explicit fourth-order methods with
and without ETD. Similar to the second-order schemes, the
fourth-order methods are robust to the extreme nonlinearity
of the pressure profile. The stand-alone RK4 serves as the
baseline algorithm, with the maximum allowable time step
τ ≈ 0.3 day. We compare the performance of two ETD-
RK4 variants: one based on the Lie group analysis, ETD-
RK4-Lie, and the other based on the contour integration,
ETD-RK4-TF. For sufficiently small time step sizes τ ,
the accuracy of ETD-RK4-Lie and ETD-RK4-TF is nearly
identical (Fig. 3a). ETD-RK4-TF fails to converge at the
time step size τ ≈ 1.25 day, while ETD-RK4-Lie remains
stable for τ up to 3.25 day.

At each time step, the total simulation times of both
ETD-RK4-Lie and ETD-RK4-TF are higher than that of RK4
because the former include matrix multiplication, as opposed
to matrix-vector multiplication used in RK4. The fourth-
order scheme requires more time for matrix initialization.
However, it has to be done only once in the beginning of
the time step loop. Similar to the second-order schemes,
the total solver computation time of the scheme of choice
(ETD-RK4-Lie) with its maximum allowable time step τ is
around half that of RK4. Our numerical experiments reveal
that the fourth-order scheme outperforms its second-order
counterpart. Maximum allowable time step is larger for each
corresponding scheme type (Fig. 3b).

Table 2 Non-zero components
of the penta-diagonal matrix L
for the three alternative choices
of the reference pressure ũ

Constant Lhigh Lmed Llow

a −4.47 −0.0050 −6.67 · 10−4

b 1.28 0.0015 1.90 · 10−4

c −3.20 −0.0038 0.00 · 10−4

d 1.92 0.0023 2.86 · 10−4
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Fig. 2 The normalized error E , defined in Eq. 30, as function of the time step τ , for (a) second-order and (b) fourth-order ETD methods

5.3 Comparison with an implicit scheme

Next, we compare the performance of our ETD-RK
algorithms with that of the standard implicit method Eq. 40.
One of the advantages of ETD is the absence of tuning
parameters. That is in contrast to implicit algorithms, whose
accuracy and efficiency typically depend on fine-tuning of
several parameters related to Newton iterations. Two main
design choices have direct impact on the performance of
an implicit computation. The first choice deals with the
residual matrix corresponding to each Newton iteration. In
order for the iterative process to stop, the infinity (max)
norm of the residual matrices Rl (l = oil, gas) [27],

‖Rl‖∞ = max
N

|Rl |, (31)

has to be smaller than a specified value ε1 (the first tuning
parameter). Two additional criteria specify convergence

tolerances ε2 and ε3 (the second and third tuning
parameters) for gas saturation and pressure,

max
m∈[1,N]

∣∣(Sgas)
n+1,ν
m − (Sgas)

n+1,ν−1
m

∣∣ ≤ ε2 (32)

max
m∈[1,N]

∣∣∣∣
(p)

n+1,ν
m − (p)

n+1,ν−1
m

pn+1,ν
avg

∣∣∣∣ ≤ ε3. (33)

Here (p)
n+1,ν
m represents pressure component in ûn+1 of

the mth gridblock in Eq. 40, ν denotes the number of
the iteration in the Newton method, and pn+1,ν

avg represents
the average pressure across the reservoir. The saturation is
defined in a similar manner [27].

The second choice determines how adaptive time-
stepping is performed. Ideally, the time step Δt should be
small in the beginning when changes in the state variables
are drastic, and large later on when these changes become
less significant. This procedure complicates comparison of
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Fig. 3 The accuracy (a) and efficiency (b) of the implicit method and the alternative explicit (RK) second- and fourth-order schemes with and
without ETD
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the relative performance of the implicit and ETD schemes
because the latter typically employs a constant time step
τ . The use of a constant time step Δt in the implicit
solver would introduce large errors in the beginning of
the simulation. An adaptive time-stepping picks an initial
time step Δt0 (the fourth tuning parameter) and computes
subsequent time steps from the relation

Δtn+1 = min[ΔtnT , Δtmax], (34a)

T = min
V

[
min
m

(1 + ω)ηV
|ΔV (m)| + ωηV

]
. (34b)

Here ΔV (m) is the observed change in the state variable
V (pressure, saturation) in the mth gridblock during the
nth time step; ηV is a maximum allowable change of the
variable V at any gridblock during any time step; and 0 ≤
ω ≤ 1. Values of these three tuning parameters and the other
four defined above are collated in Table 3.

Figure 3 provides a comparison of the performance
of the implicit scheme and the several variants of ETD-
RK. In general, the implicit scheme has higher errors E
than the ETD methods do; but, in the regions of high
nonlinearity such as when the pressure p approaches the
bubbling point pbub, the ETD methods are more accurate
than the implicit scheme only if they use relatively small
time steps τ (Fig. 3a). The total solver computation time of
the implicit scheme is dominated by the Jacobian iteration
loop. The solver computation at the same time step is
much larger in the implicit scheme. Therefore, even as the
time step increases, the total solver computation time of
the implicit scheme remains higher than that of the ETD
variants (Fig. 3b). In addition, increasing the time step size
does not always translates in less total computation time of
the implicit scheme. Although there are fewer time steps to
go through, each time step might take longer because it is
more difficult for the Newton iteration with a larger time
step to converge.

Remark 5 As expected, our numerical experiments show
that the number of Newton iterations required to meet

Table 3 Values of the tuning parameters in the implicit solver

Parameter Value

ε1 10−3

ε2 10−2

ε3 10−3

ηs 0.05

ηp 50.0

ω 0.5

Δt0 1.0

the convergence criterion increases with the time-step size.
While the phase-vanishing scenarios were not explored
in this study, one can expect the convergence of the
Newton method under such conditions to be similar to other
degenerate parabolic problems [20].

Remark 6 The Newton–Raphson method used in our
simulations to benchmark ETD can be replaced with
alternative iterative schemes such as Picard iteration or L-
scheme [28, 29]. We leave detailed comparison of ETD with
these and other implicit schemes for a follow-up study.

Finally, we compare our ETD method with a mixed
implicit/explicit scheme IMPES, which is often used in
simulations of multiphase flow in porous media. Figure 4
demonstrates that the ETD scheme is significantly more
accurate than the IMPES method for relatively small time
steps (Δt ≤ 0.3 days). Similar to the implicit scheme,
IMPES yields a lower error at large time steps. The IMPES
performance depends on many tuning parameters in the way
analogous to the implicit scheme discussed in Section 5.2.
We used the parameter values collated in Table 3, except for
ε2 and ηs which are not relevant in IMPES since the implicit
calculation is operated with the pressure matrix only while
the saturation matrix is treated explicitly (46).

6 Summary and conclusions

Stiff problems are notoriously hard to solve explicitly
because a required time step has to be sufficiently small
to capture fast changes in a quantity of interest. Stiff
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systems of partial differential equations often arise when
multiple physical processes are considered. Multiphase flow
of compressible fluids in porous media provides an example
of such stiff problems.

Exponential time differencing (ETD) is an efficient
scheme for stiff problems that can be separated into linear
stiff and nonlinear non-stiff parts. We extended the range of
applicability of ETD to problems, such as multiphase flow
in porous media, that do not exhibit this natural separation of
stiffness. Our approach is to isolate a linearized stiff elliptic
operator and relegate the rest of the stiffness to the nonlinear
term. The selection of the stiff linearized component
is crucial to the overall performance, in terms of both
accuracy and efficiency, of the resulting ETD algorithms.
Our numerical experiments confirmed the optimality of a
somewhat intuitive ETD design: the stiff linear operator
should be constructed via linearization around the state
where the solution changes most rapidly. In the context of
multiphase flow, such term should be chosen at the initial
field pressure.

We tested several variants of ETD, including its use
in conjunction with the Runge-Kutta (RT) method. Their
performance was compared with stand-along RK schemes
and an implicit algorithm. Our numerical experiments
revealed that the fusion of ETD and a fourth-order RK
scheme, ETD-RK4, provides the best overall performance
in terms of accuracy and computational efficiency.

Although we demonstrated that ETD can be employed to
solve nonlinear problems without natural stiffness separa-
tion, several research directions remain to be explored. For
example, it might be possible to increase the efficiency of
ETD-RK4 further by improving its treatment of the singular
matrices, e.g., via a combination of the contour integration
and the Lie group analysis.

Numerical experiments similar to those reported in [30]
can be used to investigate the asymptotic preserving
property of our ETD schemes. Such an analysis would
verify that a stiff-based scheme, such as ETD, performs
well in much less stiff scenarios. Since various variables
are involved in the calculation of each matrix in Eq. 11,
choosing a single variable that can be used to vary the
stiffness of a PDE is a complex task that is left for a
follow-up study.

AppendixA: Fully ImplicitMethod and IMPES

We start by rewriting Eq. 7 as

φ
∂

∂t

(
Soil

Boil

)
+ ∇ ·

(
Uoil

Boil

)
= qoil (35)

φ
∂

∂t

(
SoilRs

Boil
+ Sgas

Bgas

)
+ ∇ ·

(
UoilRs

Boil
+ Ugas

Bgas

)
= qgas.

where Rs is a solubility of the gas phase in the oil phase.
A two-dimensional simulation domain is discretized with
an N × N grid, whose cells are indexed alternatively either
by (i, j) with 1 ≤ i, j ≤ N or by k = N(i − 1) + j .
Each cell is of size Δx and Δy and thickness h. A finite-
volume discretization of these equations yields a vector of
unknowns (pressure and saturation) of length 2N2,

û =

⎡
⎢⎢⎢⎢⎣

...(
poil

sgas

)k

...

⎤
⎥⎥⎥⎥⎦

, k = 1, · · · , N2. (36)

Transmissibility of oil/gas (l = oil, gas) between the cells
(i, j) and (i−1, j) and between the cells (i, j) and (i, j −1)

is defined as

γ l

i− 1
2 ,j

= κΔyhκrel,l

ΔxμlBl

, γ l

i,j− 1
2

= κΔxhκrel,l

ΔyμlBl

, (37a)

respectively. We also introduce

βi,j = Rsγ
oil
i,j + γ

gas
i,j . (37b)

We define a 2N2 ×2N2 block penta-diagonal transmissibil-
ity matrix T̂. Each component of this matrix, corresponding
to the cell (i, j), is

T̂ij =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...(
β

i− 1
2 ,j

γ oil
i− 1

2 ,j

0
0

)

...(
β

i,j− 1
2

γ oil
i,j− 1

2

0
0

)

−
(

β
i− 1

2 ,j
+ β

i,j− 1
2

+ β
i,j+ 1

2
+ β

i+ 1
2 ,j

γ oil
i− 1

2 ,j
+ γ oil

i,j− 1
2

+ γ oil
i,j+ 1

2
+ γ oil

i+ 1
2 ,j

0
0

)

(
β

i,j+ 1
2

γ oil
i,j+ 1

2

0
0

)

...(
β

i+ 1
2 ,j

γ oil
i+ 1

2 ,j

0
0

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (37c)

Furthermore, we introduce a flow-rate vector of length 2N2,

Q̂ =

⎡
⎢⎢⎢⎢⎣

...(
qgas

qoil

)k

...

⎤
⎥⎥⎥⎥⎦

, k = 1, · · · , N2. (38)

and discretize the terms

φ
∂

∂t

(
Soil

Boil

)
and φ

∂

∂t

(
SoilRs

Boil
+ Sgas

Bgas

)
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in Eq. 7 as follows. Let d11 and d12 denote the change in
oil-phase volume due to change in pressure and gas-phase
saturation, respectively. Similarly, let d21 and d22 denote the
change in gas-phase volume due to changes in pressure and
gas-phase saturation, respectively. Then,

Δt

(
φSoil
Boil

)
= d21Δpoil + d22ΔSgas (39a)

Δt

(
φSoilRs

Boil
+ φSgas

Bgas

)
= d11Δpoil + d12ΔSgas, (39b)

where Δt is a suitable discretization of ∂t , e.g., ΔtX =
(Xn+1 − Xn)/Δt . Finally, we define a 2N2 × 2N2

compressibility matrix

D̂ =

⎡
⎢⎢⎢⎢⎣

. . . (
d11

d21

d12

d22

)

. . .

⎤
⎥⎥⎥⎥⎦

. (39c)

The fully implicit method results in a system of ODEs,

D̂(ûn+1)(ûn+1 − ûn) = T̂(ûn+1)ûn+1 − Q̂(ûn+1), (40)

Newton’s method can be used to solve Eq. 40. At each
iteration, the matrix ûn+1 is updated via the Jacobian matrix
until convergence.

Unlike the fully implicit method that combines the oil
and gas equations into a single large matrix equation,
IMPES solves Eq. 35 by recasting it into two separate
pressure and saturation matrix equations. In order to
construct the pressure equation, the saturation is eliminated
by rewriting Eq. 35 as

(
1 − d22

d12
Rs

)
∇ ·

(
Uoil

Boil

)
−

(
d22

d12

)
∇ ·

(
Ugas

Bgas

)

+
(

d21 − d22

d12
d11

)
Δpoil = qoil +

(
d22

d12

)
qgas.

(41)

Similar to Eq. 40, the matrix equation of the pressure
equation can be written as

Ďp(pn+1, Sn)(pn+1 − pn) = Ť(pn+1, Sn)pn+1

− Q̌(pn+1, Sn).
(42)

Hence, the solution for p at any time step depends
on S at the previous time step, i.e., the pressure and
saturation computations are decoupled. Similar to Eq. 37c,

the transmissibility matrix of the pressure equation, Ť, is the
N2 × N2 penta-diagonal matrix whose components are

Ťij =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...(
γ oil
i− 1

2 ,j
− d22

d12
β

i− 1
2 ,j

)

...(
γ oil
i,j− 1

2
− d22

d12
β

i,j− 1
2

)

( −γ oil
i− 1

2 ,j
− γ oil

i,j− 1
2

− γ oil
i,j+ 1

2
− γ oil

i+ 1
2 ,j

d22
d12

(β
i− 1

2 ,j
+ β

i,j− 1
2

+ β
i,j+ 1

2
+ β

i+ 1
2 ,j

)

)

(
γ oil
i,j+ 1

2
− d22

d12
β

i,j+ 1
2

)

...(
γ oil
i+ 1

2 ,j
− d22

d12
β

i+ 1
2 ,j

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (43)

The flow-rate vector of the pressure equation,

Q̌ =

⎡
⎢⎢⎢⎣

...(
qoil − d22

d12
qgas

)k

...

⎤
⎥⎥⎥⎦ , k = 1, · · · , N2. (44)

has length N2. Finally, we define a N2×N2 compressibility
matrix of the pressure equation as

Ď =

⎡
⎢⎢⎢⎣

. . . (
d21 − d22

d12
d11

)

. . .

⎤
⎥⎥⎥⎦ . (45)

Once the pressure is computed at the (n + 1)st time step,
the saturation is explicitly determined by

(
1

d22
Rs

)
∇·

(
Uoil

Boil

)
+

(
d21

d22

)
Δpoil + ΔSgas = qoil

d22
. (46)

The matrix of saturation equation is formulated as

Sn+1 = Sn + Ts(pn+1, Sn)pn+1

−Ds(pn+1, Sn)(pn+1 − pn) + Qs(pn+1, Sn).
(47)
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The N2 × N2 penta-diagonal transmissibility matrix of the
saturation equation, Ts , is defined as

Ts
ij =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...(
1

d22
γ oil
i− 1

2 ,j

)

...(
1

d22
γ oil
i,j− 1

2

)

(
− 1

d22
(γ oil

i− 1
2 ,j

+γ oil
i,j− 1

2
+γ oil

i,j+ 1
2
+γ oil

i+ 1
2 ,j

)

)

(
1

d22
γ oil
i,j+ 1

2

)

...(
1

d22
γ oil
i+ 1

2 ,j

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(48)

the flow-rate vector of length N2 as

Qs =

⎡
⎢⎢⎢⎣

...(
1

d22
qoil

)k

...

⎤
⎥⎥⎥⎦ , k = 1, · · · , N2. (49)

and the N2 × N2 compressibility matrix of the saturation
equation as

Ds =

⎡
⎢⎢⎢⎣

. . . (
d21
d22

)

. . .

⎤
⎥⎥⎥⎦ . (50)
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