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Abstract Ubiquitous hydrogeological uncertainty undermines the veracity of quantitative predictions of
soil and groundwater contamination due to accidental hydrocarbon spills from onshore pipelines. Such
predictions, therefore, must be accompanied by quantification of predictive uncertainty, especially when
they are used for environmental risk assessment. We quantify the impact of parametric uncertainty on
quantitative forecasting of temporal evolution of two key risk indices, volumes of unsaturated and saturated
soil contaminated by a surface spill of light nonaqueous-phase liquids. This is accomplished by treating the
relevant uncertain parameters as random variables and deploying two alternative probabilistic models to
estimate their effect on predictive uncertainty. A physics-based model is solved with a stochastic collocation
method and is supplemented by a global sensitivity analysis. A second model represents the quantities of
interest as polynomials of random inputs and has a virtually negligible computational cost, which enables
one to explore any number of risk-related contamination scenarios. For a typical oil-spill scenario, our
method can be used to identify key flow and transport parameters affecting the risk indices, to elucidate
texture-dependent behavior of different soils, and to evaluate, with a degree of confidence specified by the
decision-maker, the extent of contamination and the correspondent remediation costs.

Plain Language Summary Ubiquitous hydrogeological uncertainty undermines the veracity of
quantitative predictions of soil and groundwater contamination due to accidental hydrocarbon spills from
onshore pipelines. We quantify the impact of parametric uncertainty on quantitative forecasting of temporal
evolution of two key risk indices, volumes of unsaturated and saturated soil contaminated by a surface spill
of light nonaqueous-phase liquids. For a typical oil-spill scenario, our method allows one to identify key
flow and transport parameters affecting the risk indices, to elucidate texture-dependent behavior of differ-
ent soils, and to evaluate, with a degree of confidence specified by the decision-maker, the extent of con-
tamination and the correspondent remediation costs.

1. Introduction

Accidental releases of nonaqueous-phase liquids (NAPLs) into the environment pose significant risks of sub-
surface contamination, affecting human health, ecosystems, and water quality. Onshore pipelines provide
the safest way to transport hydrocarbons and other NAPLs over long distances. Yet even though accidental
spills from such pipelines are relatively rare (e.g., OECD, 1997), they might have severe environmental conse-
quences due to large quantities of NAPL released. While risk of human exposure to such contamination is
routinely assessed in the context of quantitative risk analysis (QRA) (e.g., CCPS, 1995; TNO, 1999), identifica-
tion and computation of proper metrics or indices for environmental risk proved to be more elusive. For
example, the environmental damage index (Bonvicini et al., 2015) is formulated in terms of the expected
overall cost of remediation, Crem, as

Crem � Cdis1Ccle1Cgwt5VdisĈdis1VcleĈcle1VgwtĈgwt; (1)

where Cdis; Ccle, and Cgwt are the costs associated with soil disposal, soil clean-up, and groundwater treat-
ment, respectively. Each of these costs is computed as the product of an average contaminated volume, Vi,

Key Points:
� Impact of parametric uncertainty on

temporal evolution of risk indices is
quantified
� Key flow and transport parameters

affecting the risk indices are
identified
� Extent of contamination and

correspondent remediation costs are
estimated

Correspondence to:
D. Tartakovsky,
tartakovsky@stanford.edu

Citation:
Ciriello, V., Lauriola, I., Bonvicini, S.,
Cozzani, V., Di Federico, V., &
Tartakovsky, D. M. (2017). Impact of
hydrogeological uncertainty on
estimation of environmental risks
posed by hydrocarbon transportation
networks. Water Resources Research, 53,
8686–8697. https://doi.org/10.1002/
2017WR021368

Received 22 JUN 2017

Accepted 20 SEP 2017

Accepted article online 27 SEP 2017

Published online 3 NOV 2017

VC 2017. American Geophysical Union.

All Rights Reserved.

CIRIELLO ET AL. ESTIMATION OF RISKS POSED BY PIPELINES 8686

Water Resources Research

PUBLICATIONS

http://dx.doi.org/10.1002/2017WR021368
http://orcid.org/0000-0001-9554-0373
http://orcid.org/0000-0001-9019-8935
https://doi.org/10.1002/2017WR021368
https://doi.org/10.1002/2017WR021368
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1944-7973/
http://publications.agu.org/


and the unitary cost of the corresponding remediation action, Ĉ i , where i5dis, cle, and gwt. The volumes Vi

are averaged over a number of spill events, differentiated with respect to a cause of the release and the
safety barriers present on site. Hence, for a given segment of a pipeline and N spills, the affected volume is
estimated by

Vi5
XN

k51

pk V̂ i;k ; i5dis; cle; and gwt; (2)

where pk is the probability of occurrence of the kth spill event and Vi;k is the unsaturated/saturated volume
of soil affected by that contamination event.

Estimation of the contaminated volumes V̂ i;k requires computationally intensive numerical solutions of mul-
tiphase flow equations, which are parameterized with soil hydraulic and transport parameters. Since the lat-
ter are always uncertain, the resulting estimates of V̂ i;k are uncertain as well. This uncertainty might
significantly, and often unexpectedly, affect estimates of the remediation cost in equation (1), yet its impact
remains largely unexplored in risk assessment analyses (Tartakovsky, 2007, 2013). We present a comprehen-
sive framework for dealing with this problem and apply it to estimate probabilistically the soil and ground-
water volumes contaminated by (repeated) spills of oil from an overland pipeline; governing equations
used to model the latter phenomenon are presented in section 2. Our probabilistic framework comprises a
stochastic collocation (SC) approach (section 3.2) to accelerate, relative to brute-force Monte Carlo simula-
tions, sampling of the parameter space; a global sensitivity analysis (GSA) based on Sobol’ indices (section
3.3) to identify the most relevant parameters, thus reducing the dimensionality of the parameter space; and
construction of a polynomial surrogate model (section 3.2) to dramatically reduce the computational cost of
estimating the spatiotemporal extent of soil and water contamination due to a surface spill.

2. Mathematical Models of Subsurface Contamination

Fate and downward migration of an LNAPL, from the Earth surface toward the water table, can be described
by several alternative models with various degrees of fidelity. We start by formulating general multiphase
flow equations and an advection-dispersion equation (section 2.1), which describe, respectively, subsurface
transport of a contaminant’s nonaqueous and dissolved phases with a minimal number of simplifications
but are often computationally prohibitive in the probabilistic context. Instead we use a simplified version of
this general formulation, the hydrocarbon soil screening model (HSSM) developed by the US EPA (Charbe-
neau et al., 1995; Weaver et al., 1994) (section 2.2), as our physics-based model. Quantitative comparisons of
these two descriptors can be found in Jang et al. (2013). A surrogate polynomial representation, which car-
ries virtually no computational cost, serves as a reduced-complexity model (section 3.2).

2.1. General Formulation
2.1.1. NAPL Migration in the Vadose Zone
Three distinct phases, water, air, and NAPL, are present in the vadose zone; their respective saturations at
any ‘‘point’’ (a representative elementary volume) x and time t are denoted by Swðx; tÞ; Saðx; tÞ and SNðx; tÞ
such that Sw1Sa1SN51. At the continuum scale, qiðx; tÞ, flow velocity of the ith phase (i5a;w;N), is related
to wiðx; tÞ, pressure head in the ith phase, by the generalized Darcy law,

qi52Ks;iKr;iðSiÞrðwi1x3Þ; i5a;w;N; (3)

where Ks;iðxÞ and Kr;iðx; SiÞ are the saturated and relative hydraulic conductivities, respectively, with the
explicit dependence on x5ðx1; x2; x3Þ> accounting for soil heterogeneity (spatial variability); and x3 is the
vertical coordinate positive upward. Multiphase flow equations are derived by combining these relations
with mass conservation,

/
@qi Si

@t
52r � ðqiqiÞ1fi; i5a;w;N; (4)

where /ðxÞ is the soil porosity, qi is the density of the ith phase, and fi is a generic source term (mass per
unit volume). The multiphase flow equations are closed by specifying constitutive laws wi5wiðSiÞ and
Kr;i5Kr;iðSiÞ. The van Genuchten’s model provides one example of such laws,
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Hw5 11ðawwÞ
1=ð12mÞ

h i2m
; Hw �

Sw2Sw;res

Sw;sat2Sw;res
; (5a)

Kr;w5
ffiffiffiffiffiffiffi
Hw

p
12ð12H1=m

w Þm
h i2

; (5b)

where the soil parameter a, the exponents m, and the saturated (Sw;sat) and residual (Sw;res) water saturations
are fitting parameters. Similar constitutive laws are used for the NAPL phase.

Once equations (3)–(5) are solved subject to appropriate initial and boundary conditions, the volume of the
soil contaminated with NAPL is computed as VNðtÞ5fx : SNðx; tÞ � S?Ng where S?N is the maximum allowable
NAPL saturation.
2.1.2. Solute Migration Below Water Table
Dissolved component migrates in groundwater following an advection-dispersion-reaction equation,

@c
@t

5r � Drcð Þ2r � vcð Þ1R cð Þ; (6)

where cðx; tÞ is the solute concentration, vðx; tÞ is the macroscopic flow velocity of groundwater flow,
Dðx; jvjÞ is the dispersion coefficient tensor, and Rðc; jÞ is the reaction term parametrized with a reac-
tion rate constant jðxÞ. The longitudinal, Dl , and transverse, Dt, components of the dispersion coeffi-
cient D characterize the spread of the contaminant plume in the directions collinear and
perpendicular to the velocity vector v, respectively. For example, if the groundwater flow direction is
aligned with the x1 coordinate, then it is common to define these components as Dl � D115Dm1kljvj
and Dt � D225D335Dm1ktjvj, where Dm is the coefficient of molecular diffusion of the solute in the
soil, and alðxÞ and atðxÞ are the longitudinal and transverse dispersivities (typically, these fitting
parameters satisfy the condition at � al).

Once equation (6) is solved subject to appropriate initial and boundary conditions, the volume of the aqui-
fer contaminated with the dissolved contaminant is computed as VgwðtÞ5fx : cðx; tÞ � c?Ng where c?N is the
maximum allowable contaminant concentration.

In the deterministic setting, i.e., when all the relevant soil properties and forcings are assumed to be known
with certainty, equations (3)–(6) are often used to predict subsurface fate and transport of NAPLs (e.g.,
McLaren et al., 2012, and references therein).

2.2. Physics-based Model
We use the hydrocarbon soil screening model (HSSM) (Charbeneau et al., 1995; Weaver et al., 1994) as our
physics-based reduced-complexity model of LNAPL migration in the subsurface. Developed by the US EPA,
this code is widely used to model LNAPL contamination of soils and groundwater (e.g., Charbeneau &
Weaver, 1992; Yoon et al., 2009). The code comprises three modules working in series: (i) one-dimensional
vertical multiphase transport in the vadose zone (from the near surface to the capillary fringe); (ii) one-
dimensional radial horizontal spreading of the contaminant lens through the capillary fringe; and (iii) two-
dimensional, vertically averaged, transport of the dissolved component in the aquifer. Basic assumptions of
the code consist in considering the liquid phases to be incompressible and the porous medium as homoge-
neous and nondeformable. Jang et al. (2013), among others, provide a detailed comparison of the predic-
tions obtained with HSSM and the full model (equations (3)–(6)).

The first module (named KOPT for kinematic oil pollutant transport) simulates the flow of the LNAPL and
the transport of its key chemical constituent through the vadose zone. Soil is characterized by a uniform
water content since water saturation is computed from the average annual recharge rate. This assumption
allows neglecting the continuity equation for water. The generalized method of characteristics is applied to
solve a set of approximated hyperbolic governing equations obtained by neglecting the capillary pressure
gradient. As a consequence, gravity acts as the only driving force and the leading edge of the LNAPL is rep-
resented as a sharp front. Lateral spreading due to capillary forces is not addressed.

The second module (named OILENS) simulates a radial spreading of the hydrocarbon on the water table.
The unsteady motion is represented as a sequence of steady states based on the assumptions of incom-
pressible flow and vertical equilibrium for the fluids at any location. A simplified description of the LNAPL
lens (e.g., a semianalytical solution of Sudicky et al. (2013)) is then provided, together with the mass flux
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toward the aquifer against time. This is used as a boundary condition for the third module (named
TGSPLUM) representing the migration of the dissolved component in the aquifer based on a Gaussian-
source plume model. Advection-dispersion processes are assumed to govern transport in two dimensions.
Effect of dilution produced by natural recharge is modeled as a decay term. Furthermore, steady state is
considered and velocity is assumed to be uniform in the flow direction.

These approximations simplify the computation of the contaminated volumes VNðtÞ and VgwðtÞ. The
assumption of one-dimensional (vertical) flow in the vadose zone implies that, for a given (and possibly
uncertain) surface spill of area Aspill, the former is given by VNðtÞ5AspillzNðtÞ, where zNðtÞ is the depth of soil
within which the NAPL saturation is S � S?N. The assumption of two-dimensional (horizontal) transport
below the water table leads to VgwðtÞ � DzAgwðtÞ, where Dz is the unit thickness used in the TGSPLUM
module and AgwðtÞ is the aquifer’s area within which the concentration cðx; tÞ � c?N.

Selection of an ‘‘optimal’’ model depends on the complex interplay between quantities of interest and avail-
ability of (never sufficient) site-specific data and computational resources; a complex model with a large
number of uncertain parameters might yield less accurate predictions than its reduced-complexity counter-
part that allows for exhaustive exploration of the parameter space (Sinsbeck & Tartakovsky, 2015). The latter
study demonstrates that the HSSM model, which can be sampled extensively due to low computational
cost of individual deterministic solves, is likely to outperform the full model (equations (3)–(6)), whose high
computational cost typically makes it possible to compute no more than 10s realizations (Maji & Sudicky,
2008; McLaren et al., 2012), when it comes to computing cumulative distribution functions of the quantities
of interest.

2.3. Model Parametrization
Virtually every parameter in equations (3)–(6) and, hence, in our physics-based model (HSSM) is space- and
scale-dependent, reflecting the multiscale heterogeneity of subsurface environments. While some of these
parameters, e.g., the fitting parameters in the constitutive relations (equation (5)), are often determined at
the laboratory scale from a few soil samples, others, e.g., the dispersivities in equation (6), are inferred at the
field scale by calibrating the model’s predictions to an observed spatial extent of the plume. Given this dis-
parity of scales and the ubiquitous scarcity of data, the standard practice is to assign a statistical model (a
probability density function or PDF) to such parameters and to compute its statistical parameters (e.g.,
mean and variance) from measurements.

Statistical properties of the key parameters affecting contaminant transports in the vadose and saturated
zones are presented in Table 1. Rather than treating these parameters as random fields, we adopt a zona-
tion approach which uses soil types to subdivide a subsurface environment into regions whose properties
are modeled as random variables. Such a conceptualization is often used in practice, where one has to con-
tend with data scarcity or, in the absence of data, rely on regional soil maps. To be specific, in the simula-
tions reported below we assume that the soil consists of a single uniform stratum of either sand or sandy-

Table 1
Statistical Distributions (PDFs) and Properties (Mean, h�i, and Standard Deviation, r) of the Uncertain Model Parameters in
Equations (3)–(6)

Parameter PDF Sand Sandy loam Loam

a (1/m) Lognormal hai514:5 hai57:5 hai53:6
ra52:9 ra53:7 ra52:1

n5ð12mÞ21 Lognormal hni52:68 hni51:89 hni51:56
rn50:29 rn50:17 rn50:11

Ks (m/d) Lognormal hKsi57:1 hKsi51:1 hKsi50:25
rKs 53:7 rKs 51:4 rKs 50:44

/ Normal h/i50:43 h/i50:41 h/i50:43
r/50:06 r/50:09 r/50:10

J Normal hJi50:001 rJ50:0003
al (m) Lognormal hali510:0 ral 53:0

Note. All but the last two parameters depend on soil texture and are separated into three classes representing dis-
tinct soil types: sand, sandy loam, and loam. The data are from Carsel and Parrish (1988).
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loam or loam, and assign to each the means and standard deviations identified by Carsel and Parrish
(1988). (A layered soil structure can be readily accommodated as well by adopting the random domain
decomposition (Lin et al., 2010; Winter & Tartakovsky, 2000).) The regional groundwater head gradient J is
assigned a normal distribution with a range of variation consistent with typical values in the application
area. Finally, the longitudinal dispersivity al is assumed to follow a lognormal distribution with a mean and
standard deviation selected on the basis of an estimation of the characteristic domain length; the transverse
dispersivity is set to at50:1al .

There is an ongoing debate about whether the soil properties reported in Table 1 are mutually correlated
(see Carsel & Parrish, 1988; Tartakovsky et al., 1999, 2003 and references therein). An often used argument
for their independence is that the saturated hydraulic conductivity Ks is controlled by macrovoids, while the
reciprocal of the capillary length a depends on the entire continuum of pore sizes (see Tartakovsky et al.,
1999, and references therein). Adopting these hypotheses, and given the weak correlation exhibited by the
parameters (and their logarithms) in the most of the tests analyzed, we assume all the uncertain parameters
in Table 1 to be mutually independent.

Since we focus on the effects of uncertain hydrogeological parameters on risk-based assessment of subsur-
face contamination, the hydrocarbon properties are assumed to be known with certainty, i.e., are treated as
deterministic quantities. However, the probabilistic framework introduced in section 3 can also account for
uncertainty in the latter parameters, as well as for the probability of pipeline rupture.

3. Probabilistic Framework for Subsurface Contamination Assessment

3.1. Random Parameter Space
We start by representing the six-dimensional parameter space in Table 1 in terms of Npar56 standard Gauss-
ian variables, P5fP1; . . . ; P6g, such that

P15
ln a2hln ai

rln a
; P25

ln n2hln ni
rln n

; P35
ln Ks2hln Ksi

rln Ks

; (7a)

P45
/2h/i

r/
; P55

J2hJi
rJ

; P65
ln al2hln ali

rln al

: (7b)

The statistics of ln a (or other logarithms) are related to that of a (or other log-normally distributed variables
in Table 1) by ln hai5hln ai1rln a=2 and r2

a=hai
2
5exp ðr2

ln aÞ21.

Solving for any quantity of interest (QoI) Q is equivalent to identifying the functional relation Q5Qðx; t; PÞ.

3.2. Polynomial Chaos and Stochastic Collocation Method
A truncated polynomial chaos expansions (PCE) Wiener (1938) approximates the QoI Qðx; t; PÞ with an Npol-
degree polynomial

Qðx; t; PÞ �
XNQ21

j50

ajðx; tÞWjðPÞ; NQ5
ðNpar1NpolÞ!

Npar!Npol!
; (8)

where WjðPÞ denotes multivariate Hermite polynomials. We use the SC method (Webster et al., 1996) to
compute the deterministic expansion coefficients ajðx; tÞ. The details of our implementation of the SC can
be found in Ciriello et al. (2013).

The leading coefficient in equation (8), a0ðx; tÞ, corresponds to the mean of the QoI Qðx; tÞ, i.e.,
hQðx; tÞi5a0ðx; tÞ. The variance of Qðx; tÞ is computed from as

r2
Qðx; tÞ5

XNQ21

j51

a2
j ðx; tÞhW2

j ðPÞi; (9)

which is derived from equation (8) by accounting for the orthogonality of the Hermite polynomials, hWiWki
50 for all i 6¼ k; the Gaussian quadratures involved in the averages hW2

j ðPÞi are computed analytically. In
addition to these moments, the full PDF of Q can be readily computed from equation (8) once the determin-
istic coefficients ajðx; tÞ are found via the SC.
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While the SC might underperform Monte Carlo when the hydraulic properties are spatially varying random
functions with relatively short correlation lengths and/or relatively high variances (Barajas-Solano &
Tartakovsky, 2016), it is well suited for the low-dimensional probability spaces, such as Npar56 considered in
the present study (e.g., Ciriello et al., 2013, 2015, and references therein).

We deal with two quantities of interest (QoIs), V?
vz5Vvzðt?Þ and V?

gw5Vgwðt?Þ, where V?
vz and V?

gw are the sub-
surface volumes defined in section 2.1, and t? is the number of days from the contaminant release required
to detect the occurrence of contamination. Second-degree polynomial representations of these QoIs, given
by equation (8) with Npol52, have the form

V?
vz5

XNpar22

i51

aiPi1
XNpar22

i51

aiiðP2
i 21Þ1

XNpar22

i51

XNpar22

k>i

aik PiPk ; (10)

and

V?
gw5

XNpar

i51

bi Pi1
XNpar

i51

biiðP2
i 21Þ1

XNpar

i51

XNpar

k>i

bik Pi Pk : (11)

As before, the coefficients in these polynomials are obtained with the SC. The so-called ‘‘surrogate models’’
(equations (10) and (11)) serve as low-fidelity probabilistic predictors of our QoIs V?

vz and V?
gw, respectively. If

necessary, one can improve the accuracy of these surrogate models by increasing the polynomial order.

3.3. Global Sensitivity Analysis
The Sobol’ indices (Sobol’, 1993) provide a metric of the relative impact of each of the uncertain parameters
in Table 1 on the overall predictive uncertainty, as quantified by the QoI variance r2

Q in equation (9). Specifi-
cally, the contribution of the ith parameter, Pi, to the total variance r2

Q is quantified by a ‘‘principle sensitivity
index’’ Si , which is defined as (Sudret, 2008)

Si �
r2

Q;i

r2
Q

; r2
Q;i �

X
c2Ci

a2
chW2

cðPiÞi; (12)

where Ci5fc 2 ð1; . . . ;NQ21Þ : WcðPiÞg. This definition can be easily extended to evaluate the joined influ-
ence of a subset of model parameters, in case that principle sensitivity indices do not provide a full descrip-
tion of the QoI variance. The Sobol’ indices computed for all the possible subsets of parameters sum up to
one (Sobol’, 1993).

The random variables Pi in equations (10) and (11), whose contribution to the total variances r2
V?vz

and r2
V?gw

falls below a prescribed value (e.g., 1%), are replaced with their respective means. This reduces the

Figure 1. Cumulative distribution function, Fz?N
ðfÞ, of the depth of soil contamination after t?5180 days from the spill, z?N,

computed with the surrogate model (10) for three soil-texture types. The adjacent dashed lines depict the corresponding
Gaussian distribution.
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dimensionality of the polynomials in equations (10) and (11) and further decreases the computational cost
of the surrogate models.

4. Case Study

Following Bonvicini et al. (2015), we consider a benzene spill from a pipeline, of length 16 km and diameter
6 inch that is equipped with automatic shut-down valves. A volume of Vspill5291:7 m3 of benzene is
released, forming a circular pool of radius Rspill517:6 m and height hspill50:3 m; the height of the pool is
kept constant for one minute and then gradually decreases to zero as the substance infiltrates into the soil.
Benzene is classified as a carcinogenic and mutagenic substance, whose maximum allowable concentration
in groundwater is set, e.g., in Italy, to c?N51:0 lg/L (Legislative Directive, 2010).

We consider two contamination scenarios. The first (section 4.1) deals with an aquifer that is sufficiently
deep for the benzene plume to remain in the vadose zone during a given timeframe (in the simulations
reported below we set t?5180 days). The second (section 4.2) represents a shallow aquifer, whose water
table is located 5.0 m below the ground surface. In both cases, our aim is to relate, probabilistically, the spa-
tial extent of subsurface contamination to soil types and other parameters whose statistical properties are
reported in Table 1.

4.1. Scenario 1: Deep Water Table
For a given area of surface spill Aspill , the physics-based model of section 2.2 determines the volume of con-
taminated soil after t?5180 days in terms of z?N5zNðt?Þ. The latter is described probabilistically in terms of
its cumulative distribution function (CDF), Fz?N

ðfÞ � Pðz?N � fÞ, which is constructed with a kernel density
estimator (KDE) from the NSC solutions (collocation points), z?N;i for i51; . . . ;NSC, of the surrogate model
(equation (10)). Specifically, we use a Gaussian kernel with a filter size h50:0255, so that a KDE of Fz?N

ðfÞ is
given by

Fz?N
ðfÞ � 1

NNC

ffiffiffiffiffiffiffiffiffiffi
2ph2
p

XNSC

i51

exp 2
ðf2z?N;iÞ

2

2h2

" #
: (13)

Figure 1 exhibits the resulting CDFs, alongside the corresponding Gaussian CDFs, for the three soil types
whose statistical properties are given in Table 1. As expected, the average (ensemble mean) depth of con-
tamination increases with the grain size since they correspond to higher values of hydraulic conductivity
and, hence, higher rates of NAPL migration. Perhaps less expected, is the concomitant decrease in predic-

tive uncertainty, which is quantified by the standard deviation of z?N
(the CDF width). This reflects higher variability of the hydrogeological
properties of finer-grained soils (Table 1).

Figure 1 also reveals that, depending on soil type and composition,
the CDF of z?N can significantly deviate from the Gaussian distribution.
Consequently, the mean (lz?N

) and standard deviation (rz?N
) of z?N are

insufficient for probabilistic assessment of soil contamination. The lat-
ter calls for knowledge of the full CDF or such statistics as the median
contamination depth (the depth that occurs with probability P50:5)
and the depth predicted with a given degree of certainty (e.g., proba-
bility P50:99). Such statistics are obtained by inverting the CDFs in
Figure 1; a few examples are presented in Table 2. Conservative

Table 2
Statistics of the Depth of NAPL Contamination, z?N, for Three Soil Types: Mean lz?N

, Median mz?N
, Standard Deviation rz?N

,
Contamination Depth z?

99% Occurring With P50:99, and the Probability P That Contamination Depth Does Not Exceed 5 m

Soil type lz?N
(m) mz?N

(m) rz?N
(m) z?

99% (m) Pðz?N � 5 mÞ

Sand 6.48 6.33 0.98 4.76 0.04
Sandy loam 6.00 5.68 1.57 3.81 0.30
Loam 4.03 4.24 2.10 0.30 0.68

Table 3
Sobol’ Sensitivity Indices Si for Porosity (i5/), Saturated Hydraulic Conductivity
(i5Ks), and Parameters a and n51=ð12mÞ in the van Genuchten Constitutive
Laws (Equation (5))

Soil type S/ SKs Sa Sn

Sand 9:6731021 2:9231022 3:4431027 3:6331023

Sandy loam 9:7031021 3:1431022 1:1731024 7:0731024

Loam 3:2931021 6:6431021 1:6631024 9:5931023

Note. The indices are defined by equation (12) with respect to predictions
of the soil contamination depth z?N, for three soil types.
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estimates (P50:99) of soil contamination can be up to an order of
magnitude smaller than their average counterparts.

Since predictive uncertainty and, ultimately, quantification of the risk
posed by a surface NAPL spill stem from uncertainty in multiple soil
properties, the relative impact of these uncertain parameters is impor-
tant to understand and mitigate by a targeted data collection. Table 3
demonstrates the contribution of each uncertain hydraulic parameter,
as described by their Sobol’ indices in equation (12), to the overall
uncertainty in predictions of the contamination depth z?N. The impact
of uncertainty in the values of porosity / and saturated hydraulic con-
ductivity Ks is orders of magnitude higher than that of parameters a
and n in the van Genuchten constitutive laws (equation (5a)). That is
reassuring, since both / and Ks are significantly easier to measure
than a and n and consequently their data are more widely available
and correlated with soil types. This finding also suggests the possibil-
ity of replacing the uncertain (random) parameters a and n (and, for
coarse soils, Ks) with their average values, thus appreciably reducing
the random dimension of the problem and, hence, the computational
cost. (It is worthwhile emphasizing that the observed relative impact
of uncertainty in the various soil properties on the predictive uncer-
tainty is predicated on our model selection; replacing the HSSM with
the full model (equations (3)–(6)) might lead to different conclusions.)

4.2. Scenario 2: Shallow Water Table
Consider the case of a shallow phreatic aquifer whose water table is located 5 m below the earth surface.
We focus on subsurface environments composed of either sand or sandy loam, in which the probability of
NAPL reaching the water table is high: P � 0:96 or 0.70, respectively (Table 2). Figure 2 shows CDF of the
groundwater area A?gw, within which the concentration cðx; t?Þ exceeds c?N51:0 lg/L after t?5180 days from
the spill occurrence. The CDF is constructed with the KDE analogous to equation (13) from the NSC solutions
(collocation points), A?gw;i for i51; . . . ;NSC, of the surrogate model (equation (11)). As expected, at any prob-
ability level, the contaminated area of the sandy aquifer is significantly larger than that of its counterpart
comprised of sandy loam (the CDF for the former is to the right of the latter). Uncertainty in predictions of
the plume size is appreciably higher in sandy-loam than in sand; this is evidenced by the widths of their cor-
responding CDFs and their standard deviations (rA?gw

) reported in Table 4.

Figure 2 reveals that the CDFs of the plume size are reasonably close to Gaussian CDFs for both sand and
sandy loam. Discrepancy between the computed CDFs and its Gaussian counterparts is illustrated by the
difference between the mean (lA?gw

) and median (mA?gw
) of the plume size (Table 4). The two statistics are

identical for Gaussian distributions, but differ by 2% and 18% for sand and sandy-loam, respectively.

Similar to the deep water-table case, the Sobol’ indices indicate that uncertainty in the values of porosity /
and saturated hydraulic conductivity Ks dominates the overall predictive uncertainty, with uncertainty in
the direction of hydraulic gradient playing an important role in the sandy aquifer (Table 5). The latter would
play a larger role in the aquifer consisting of sandy loam if the simulation horizon t? were longer because
both the NAPL in the vadose zone and its dissolved phase in the aquifer migrate slower in sandy loam.
Second-order effects are detected in case of a sandy soil as follows: SKs;al 52:7431022, and

SKs;J54:0231022. Once again, uncertainty in hard-to-measure param-
eters, such as the parameters in the van Genuchten constitutive laws
(a and n), is relatively unimportant, because their Sobol’ indices are
orders of magnitude smaller than those of / and Ks.

4.3. Model Verification
The preceding probabilistic analysis of the depth of contaminated
soil, z?N, and area of contaminated aquifer, A?gw, relies on the surrogate
models (equations (10) and (11)), respectively. To ascertain the

Figure 2. Cumulative distribution function, FA?gw
ðaÞ, of the plume size after t?5

180 days from the spill, A?gw, computed with the surrogate model (11) for two
soil-texture types. The adjacent dashed lines depict the corresponding Gauss-
ian distribution.

Table 4
Statistics of the Plume Size in Groundwater, A?gw, for Two Soil Types: Mean lA?gw

,
Median mA?gw

, Standard Deviation rA?gw
, and Plume Size A?

99% Occurring With
P50:99

Soil type lA?gw
(m2) mA?gw

(m2) rA?gw
(m2) A?

99%

Sand 3:083103 3:013103 5:473102 1:953103

Sandy loam 1:593103 1:953103 1:243103 1:303101
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predictive accuracy of these polynomial representations, we generate 40 realizations of the QoIs (z?N;k and
A?gw;k with k51; . . . ; 40 per soil type) by randomly selecting 40 realizations of the parameters in equations
(10) and (11), Pk with k51; . . . ; 40. Each of these parameter sets is then used to compute a solution of the
physics-based model (section 2.2) and postprocess the results to construct high-fidelity estimates of z?N;k
and A?gw;k . Figure 3 provides a comparison of the 40 estimates obtained with these two alternative models
for several soil types. A perfect agreement between the two models corresponds to points (realizations)
that fall on the 45

	
(dashed) line; the (solid) regression lines are close to the 45

	
lines, with the coefficient of

determination R250:976 and 0.980 for the predictions of z?N (left) and A?gw, respectively. This demonstrates
the accuracy of the surrogate models for both QoIs.

The accuracy improves as the soil becomes coarser, yielding a virtually perfect agreement with the
physics-based models for sand. This is because the variances of the input parameters increase as the
grain size decreases (Table 1), affecting the accuracy of the PCEs (equations (10) and (11)). The latter can
be improved by increasing the polynomial order and, hence, the computational cost of SC. For the
purposes of screening analysis and risk assessment, the agreement shown in Figure 3 is deemed to be
sufficient.

4.4. Probabilistic Environmental Risk Indices
The results presented in sections 4.1 and 4.2 demonstrate how uncertainty in the soil hydraulic properties
propagates through the modeling process, giving rise to uncertainty in predictions of volumes of the

Table 5
Sobol’ Sensitivity Indices Si for the Six Uncertain Parameters Whose Statistics Are Collated in Table 1

Soil type S/ SKs Sa Sn Sal SJ

Sand 0.16 0.54 4:5831024 8:5831025 8:4231022 0.12
Sandy loam 0.45 0.52 7:7631026 3:0531025 1:5231023 1:2631023

Note. The indices are defined by equation (12) with respect to predictions of the aquifer contamination area A?gw, for
two soil types.

Figure 3. Realizations (k51; . . . ; 40) of the quantities of interest z?N;k (left) and A?gw;k (right) computed with the reduced-complexity surrogate model (the horizontal
axis) and the physics-based model (the vertical axis), for several soil types. Data falling on the 45

	
(dashed) lines indicate the perfect agreement between the two

models. The closeness of these lines to the regression (solid) lines indicates a close agreement between the models, with the coefficient of determination R25

0:976 and 0.980 for the predictions of z?N (left) and A?gw, respectively.
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contaminated soils and aquifers. Hence, computation of the environ-
mental risk indices (Bonvicini et al., 2015) must account for uncer-
tainty in estimation of the subsurface volumes Vi;k in equation (2). For
a single surface spill (k 5 1) with area Aspill5p17:62 m2 in scenario 1
(section 4.1), the deep aquifer is unaffected by contamination after t?

5180 days, and estimates of the volumes of contaminated soil in the
vadose zone, V?

vz5Aspillz?N, are reported in Table 6 for probability levels
P50:5 (a median estimate, mV?vz

� V?
vz;50%) and P50:99 (an estimate

V?
vz;99%). Since this scenario deals with a deep aquifer, no contamina-

tion of groundwater takes place.

The same NAPL spill in scenario 2 (section 4.2) can contaminate both
the vadose zone and shallow aquifer. The probability of occurrence
of these two events, V?

vz and V?
gw, is characterized by their joint

CFD FV?vz V?gw
ðv1; v2Þ � PðV?

vz � v1; V?
gw � v2Þ512PðV?

vz > v1; V?
gw � v2Þ.

The latter is expressed in terms of conditional probability
PðV?

vz > v1; V?
gw � v2Þ5PðV?

gw � v2jV?
vz > v1ÞPðV?

vz > v1Þ. Since V?
vz5Aspillz?N and Aspill is deterministic,

PðV?
vz > v1Þ5Pðz?N > zÞ. For the vadose zone of thickness z 5 5 m and composed of sand or sandy loam, Pð

z?N > 5 mÞ50:96 or 0.70, respectively (see Table 2). Once the NAPL reached the water table, the probability of
the groundwater plume having the size smaller than v1 is given by PðV?

gw � v2jV?
vz > v1Þ. Given the modeling

assumptions, PðV?
gw � v2jV?

vz > v1Þ5PðA?gw � ajz?N > 5 mÞ. The latter is the CDF plotted in Figure 2 and has
the statistics presented in Table 4. With these preliminaries, V?

vz;r%5Aspillz?N;r% is presented in Table 6
for r 5 50 and 99; and the corresponding values of V?

gw;r%5bA?
gw;r% are obtained (for the aquifer of unit thick-

ness, b 5 1.0 m) by solving for a the equation PðA?gw � ajz?N > 5 mÞPðz?N > 5 mÞ5ð12rÞ=100. This is
done numerically by defining A?

gw;r% as the abscissa of the graph in Figure 2 at which
FA?gw

5ð12rÞ=½100Pðz?N > 5 mÞ
. The results are presented in Table 6.

Finally, we consider three remediation techniques—excavation of the top 1.2 m of soil accompanied by
subsequent landfill disposal, soil clean-up by means of vapor extraction, and groundwater clean-up with
air sparging—whose unitary costs are Ĉdis5150 e/m3, Ĉcle5100 e/m3, and Ĉgwt565 e/m3, respectively
(Bonvicini et al., 2015). Figure 4 depict 50 and 99% probability estimates of the overall costs of subsurface
remediation, computed with equations (1) and (2). Uncertainty in the hydrogeological parameters
strongly affects predictions of the remediation costs even within a single texture class and especially for
fine-grained soils.

Table 6
Probabilistic Estimates, at P50:5 and 0.99 Probability Levels, of the Volumes of
the Vadose Zone (V?

vz) and Groundwater (V?
gw) Contaminated by a Surface Spill

of NAPL After t?5180 Days

Contaminated
volume (m3) Sand Sandy loam Loam

Scenario 1: V?
vz;50% 6:163103 5:533103 4:133103

V?
vz;99% 4:633103 3:713103 2:923102

V?
gw;50% 0 0 0

V?
gw;99% 0 0 0

Scenario 2: V?
vz;50% 6:163103 5:533103 4:133103

V?
vz;99% 4:633103 3:713103 2:923102

V?
gw;50% 3:033103 2:503103

V?
gw;99% 1:943103 1:173102

Figure 4. The 50 and 99% probability estimates of the overall costs of subsurface remediation in scenarios 1 (top) and 2
(bottom).
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5. Conclusions

We quantified the uncertainty affecting predictions of environmental impact due to an accidental oil spill
from an onshore pipeline in case of three different texture classes: sand, sandy loam, and loam. The environ-
mental impact is defined through the computation of volumes of unsaturated and saturated soil affected
by the contamination within a given timeframe. Volumes are computed by means of PCE-based metamo-
dels defined over a selected full model solving multiphase flow problems. We found that uncertainty in
model predictions increases when grain-size decreases. This is mainly due to the variability of key hydro-
geological parameters that increases in case of fine-grained soils. By developing a GSA, we quantified the
influence of parameter variability on model predictions. This analysis revealed the main role played by the
porosity and saturated hydraulic conductivity when multiphase flow affects the unsaturated zone. In particu-
lar, variability in the porosity explains almost completely the uncertainty associated with the contaminated
unsaturated volume in case of sand and sandy loam, while the saturated hydraulic conductivity becomes
more relevant when a loamy soil is considered. If the contamination reaches the saturated zone, volumes of
groundwater affected by the plume are mainly influenced by the hydraulic conductivity, especially in case of
sand; the porosity, hydraulic gradient and dispersivity also play a significant role with similar magnitude. On
the contrary, when sandy loam is considered as texture class, the influence of the hydraulic gradient and dis-
persivity decreases by about two orders of magnitude, while porosity assumes a role comparable with that of
the hydraulic conductivity. In case of loamy soils, the probability of groundwater to be affected by the con-
tamination is significant only if the water table depth is very high. In general, the impact of uncertainty in the
unsaturated soil parameters is almost negligible in each scenario we considered. Note that these results
depend on the interpretation provided by the selected full model of the physical and chemical processes
occurring in the subsurface. Uncertainty in predictions of the volumes significantly affects predictions of the
remediation costs. This is relevant when computing the environmental risk indices of Bonvicini et al., (2015).
Our results indicate that reducing uncertainty in the parameters toward which model responses are most sen-
sitive increases the accuracy of predictions and facilitates design of appropriate remediation actions.
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