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Many biochemical processes at the sub-cellular level involve a small number of molecules. The local
numbers of these molecules vary in space and time, and exhibit random fluctuations that can only
be captured with stochastic simulations. We present a novel stochastic operator-splitting algorithm
to model such reaction-diffusion phenomena. The reaction and diffusion steps employ stochastic
simulation algorithms and Brownian dynamics, respectively. Through theoretical analysis, we have
developed an algorithm to identify if the system is reaction-controlled, diffusion-controlled or is in
an intermediate regime. The time-step size is chosen accordingly at each step of the simulation. We
have used three examples to demonstrate the accuracy and robustness of the proposed algorithm. The
first example deals with diffusion of two chemical species undergoing an irreversible bimolecular re-
action. It is used to validate our algorithm by comparing its results with the solution obtained from
a corresponding deterministic partial differential equation at low and high number of molecules.
In this example, we also compare the results from our method to those obtained using a Gillespie
multi-particle (GMP) method. The second example, which models simplified RNA synthesis, is used
to study the performance of our algorithm in reaction- and diffusion-controlled regimes and to in-
vestigate the effects of local inhomogeneity. The third example models reaction-diffusion of CheY
molecules through the cytoplasm of Escherichia coli during chemotaxis. It is used to compare the
algorithm’s performance against the GMP method. Our analysis demonstrates that the proposed al-
gorithm enables accurate simulation of the kinetics of complex and spatially heterogeneous systems.
It is also computationally more efficient than commonly used alternatives, such as the GMP method.
© 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4764108]

I. INTRODUCTION

Randomness plays an important role in the behavior of
many biological phenomena, such as cellular signaling and
gene regulatory networks.1–3 While deterministic ordinary
differential equations (ODEs) often provide accurate predic-
tions of the dynamics of biochemical pathways with large
numbers of reacting molecules, they fail when the concen-
trations of reactants and/or their products become small and
the law of mass action becomes invalid. When this occurs,
the randomness associated with the dynamics of individ-
ual molecules becomes pronounced, necessitating the use of
stochastic simulations. Standard stochastic techniques, e.g.,
Gillespie’s stochastic simulation algorithm4 and its computa-
tionally efficient modifications,5, 6 are routinely used to model
biochemical reactions in such systems. Such algorithms as-
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sume that reactants and their products are well mixed, i.e.,
distributed uniformly in space.

The latter assumption is problematic when the number
of molecules is small. This is especially so in crowded envi-
ronments with complex internal geometry, wherein stochas-
ticity and spatial variability are inseparable. Partial differ-
ential equations (PDEs) provide accurate macroscopic pre-
dictions of the dynamics of spatially heterogeneous systems
with large numbers of molecules. Yet, similar to ODE-based
models, they fail to account for the randomness inherent in
a system comprised of small numbers of molecules. It is es-
sential that computational methods for reaction-diffusion sys-
tems with small numbers of molecules are capable of handling
both stochasticity and heterogeneity.

A number of micro- and meso-scale methods have been
developed for the simulation of reaction-diffusion systems.
The micro-scale approaches, e.g., the Green’s function re-
action dynamics7 and Smoldyn’s algorithm,8 are based on
Brownian dynamics and require the reacting molecules to
diffuse within a certain distance from each other in order
for bimolecular reactions to take place. The latter require-
ment necessitates the use of a numerical mesh and the track-
ing of individual particles and/or distances between them,
which renders such algorithms computationally expensive.
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Mesoscopic approaches, e.g., MesoRD9 and the Gillespie
multi-particle (GMP) method,10, 11 trade representational ac-
curacy for computational efficiency. They are based on a
reaction-diffusion master equation,12 which generalizes a
chemical master equation developed for well-mixed chem-
ical reactions by discretizing the space into a collection of
cells and treating each cell as a well-mixed system. MesoRD9

treats diffusion as a unimolecular reaction whose reaction rate
is related to the corresponding diffusion coefficient. The GMP
method10, 11 employs an operator-splitting scheme in which
the Gillespie algorithm and cellular automata13 handle reac-
tions and diffusion, respectively.

We present a numerical algorithm to simulate stochas-
tic reaction-diffusion processes with a small number of
non-uniformly distributed molecules. It employs an operator-
splitting, in which the Gillespie algorithm (or its acceler-
ated versions) and Brownian dynamics (or the Smoluchowski
equation) are used to simulate reactions and diffusion, re-
spectively. Our algorithm is conceptually similar to the GMP
method in that it relies on operator-splitting. However, it of-
fers a number of computational advantages in terms of both
accuracy and efficiency. First, the cellular automata used in
the GMP method restrict a particle’s movement during one
fixed time-step to the adjacent cells only; while Brownian
motion places no restrictions on the distance particles can
travel during one time-step, thus gaining in computational ef-
ficiency. Second, Brownian dynamics provides a more accu-
rate representation of diffusion than cellular automata. Third,
our algorithm offers the flexibility of an “on-the-fly” adaptive
selection of the time-step size for operator-splitting, depend-
ing on whether the system is reaction- or diffusion-controlled.
The outline of this paper is as follows.

Our stochastic operator-splitting approach is described
in Sec. II. This section contains a brief description of the
stochastic simulation algorithm for modeling reactions and a
comparative analysis of the two approaches—Brownian mo-
tion and cellular automata—to deal with diffusion. It also
contrasts our operator-splitting algorithm with that used in
the GMP method (Sec. II B). Section III presents three
computational examples, which demonstrate the accuracy
and robustness of the proposed algorithm. The first example
(Sec. III A) considers diffusion of two chemical species un-
dergoing an irreversible bimolecular reaction in order to val-
idate our algorithm and to analyze its performance and ac-
curacy in terms of the time-step and the cell size. This is
done by comparing the stochastic simulation results with so-
lutions of the corresponding deterministic PDEs. The detailed
comparison elucidates the effects of the finite (small) num-
ber of molecules and space-time discretization on the simula-
tion accuracy and efficiency. The second example (Sec. III B)
models an idealized gene expression system.7 It serves to in-
vestigate the performance of our algorithm in reaction- and
diffusion-controlled regimes and the effects of local inhomo-
geneity. The third example (Sec. III C) considers reaction
and diffusion of CheY molecules through the cytoplasm of
Escherichia coli during chemotaxis.14 In addition to its bio-
chemical significance, this example poses additional compu-
tational challenges by introducing a specific local structure.
In all the three cases, we demonstrate that our algorithm out-

performs the GMP method in terms of computational time.
In Sec. IV, we summarize the simulation results and provide
conclusions.

II. METHODS: NUMERICAL APPROACH

A. Operator-splitting method

We consider M species that undergo diffusion and N
(bio)chemical reactions. Spatiotemporal evolution of their
concentrations {ci(x, t)}Mi=1 can be described by a system of
reaction-diffusion equations

∂ci

∂t
= Di∇2ci + fi(c1, . . . , cM ), i = 1, . . . , M, (1)

where Di is the molecular diffusion coefficient of the ith
species, and fi is the corresponding net production rate
through reactions. Our focus is on reaction-diffusion sys-
tems with small numbers of molecules, in which continuum
representations such as Eq. (1) are inadequate. Such phe-
nomena are typically handled with stochastic simulations.
While stochastic, particle-based methods for modeling both
reactions in well-mixed environments (e.g., the Gillespie
algorithm4) and diffusion of chemically inert molecules (e.g.,
Brownian dynamics) are relatively mature, the same cannot
be said about chemical reactions in spatially heterogeneous
(reaction-diffusion) systems.

We propose an operator-splitting method that enables one
to take advantage of the considerable advances in modeling
chemical reactions and molecular diffusion by treating these
two phenomena separately. We use the (modified) Gillespie
algorithm and Brownian dynamics to represent the reaction
and diffusion steps, respectively, in lieu of their continuum
representations in Eq. (1). The relative order of these steps is
determined dynamically depending on whether the system is
in diffusion- or reaction-controlled state.

This raison d’être for employing an operator splitting
is different from the use of operator-splitting algorithms to
model deterministic reaction-diffusion systems. In the lat-
ter case, the goal is to handle the stiffness of the reaction-
diffusion equations in which diffusion and reaction processes
have different time scales. A typical operator-splitting method
for solving deterministic reaction-diffusion equations em-
ploys an implicit method to handle the (stiff) reaction sim-
ulations and an explicit method to handle diffusion. Exam-
ples of deterministic operator-splitting approaches include the
Douglas-Gunn alternating direction implicit (ADI) method15

and the method of lines (MOL).16 The former applies an
explicit Euler scheme to diffusion and an implicit Crank-
Nicholson method to reactions. The latter converts partial-
differential equations (PDEs) into ordinary differential equa-
tions by discretizing the spatial derivatives and leaving the
time variable continuous.

We employ an operator-splitting algorithm17 to approxi-
mate Eq. (1) with

∂c′
i

∂t
= Di∇2c′

i , (2a)
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FIG. 1. (a) Schematic representation of the diffusion-reaction operator-
splitting. The final value after diffusion process at time t + "t is used as
the initial value for the reaction process. Final value of reaction process is
the final value at the end of diffusion-reaction process. (b) and (c) Cellular
automata neighborhoods in d = 2 dimension: in the von Neumann automata
the probability of staying in a cell or diffusing to its neighbors is 1/5 (b), in
the Moore automata this probability is 1/9 (c).

∂c′′
i

∂t
= fi(c′′

1, . . . , c
′′
M ) (2b)

during the time interval [t, t + "t]. Here c′
i(t) = ci(t)

and c′′
i (t) = c′

i(t + "t), so that the concentration of the ith
species at the end of the time-step "t is c′′

i (t) = ci(t + "t).
Fig. 1(a) provides a graphical representation of this operator-
splitting algorithm. The resulting stochastic operator-splitting
algorithm will enable us to analyze the effects of intrinsic
noise in spatially heterogeneous biological systems (Sec. III).
Our implementation of the reaction process using Gillespie
algorithm, the diffusion process using either Brownian dy-
namics or cellular automata, and the GMP algorithm is de-
scribed in the supplementary material.18 Briefly, in Gillespie
algorithm,4 to advance the system from state X(t), two ran-
dom numbers r1 and r2 distributed uniformly on the unit in-
terval [0, 1] are generated. Then, a discrete random value j
and continuous random value τ are selected probabilistically
in accordance with Eq. (S3) (supplementary material18) as

τ = 1
asum

ln
(

1
r1

)
,

j−1∑

j ′=1

aj ′ ≤ r2asum ≤
j∑

j ′=1

aj ′ , (3)

where asum is the sum of all propensity functions. The system
state at t + τ is updated according to X(t + τ ) = X(t) + νj

where the entries of the vector ν j are the change in the number
of molecules of various species due to the jth reaction.4

In Brownian dynamics, a species diffuses from its
current location X(t) ∈ R3 at time t to its new location at time
(t + &t) according to Ref. 19: X(t + &t) = X(t)
+

√
2Di&t ξ , where ξ = (ξ1, ξ2, ξ3)T is a normal ran-

dom displacement vector (supplementary material18).

In cellular automata, the ith species can diffuse to one
of its neighboring cells (Figs. 1(b) and 1(c)) during the time
interval equal to its diffusion-time constant τDi

given by
τDi

= ("x)2/(2Did) (supplementary material18).

B. Algorithm for the stochastic operator-splitting
method

To deal with reaction-diffusion systems composed of
a small number of molecules, we propose the following
stochastic operator-splitting algorithm.

1. Lattice: The space is discretized into a lattice of cells.
Within each cell (lattice element), each species is as-
sumed to be distributed homogeneously.

2. System state: Determine whether the system is at
diffusion- or reaction-controlled state to decide the time-
step size "tj at the jth time-step.

3. Diffusion process: Diffusion of species between cells is
modeled via Brownian dynamics with a fixed time-step
by treating the space as a continuum.

4. Reaction process: Reactions within each cell are simu-
lated via the Gillespie algorithm or its accelerated ver-
sions.

5. Time is increased by the time-step size and the above
steps are repeated till the final desired time.

1. Dynamic identification of system’s state

A key feature of our algorithm is its ability to determine
at each time-step the system’s state (reaction- or diffusion-
controlled) and to set the time-step size accordingly. For an ith
cell (i = 1, . . . , C where C is the number of cells in a numerical
grid) at the jth time-step "tj, we define a macroscopic time
constant

TRij
= 1

a
ij
sum

, aij
sum ≡

N∑

k=1

ak(Xij ), (4)

where Xij is the state X of the ith cell at the jth time-step,
and ak(Xij ) is the propensity function for the kth reaction.
At each time-step, we find the minimum value of the macro-
scopic time constants over all the cells,

T min
Rj

≡ min
i

TRij
(5)

and define

τRj
= T min

Rj
ln

(
1
r

)
. (6)

Figs. 2(a) and 2(b) show a frequency chart of ln (1/r) and the
corresponding cumulative probability distribution. They re-
veal that the cumulative probability of ln (1/r) ≤ 1 is 0.63 (also
see Table I), i.e., the probability of τRj

≤ T min
Rj

is 63%. Then,
a time fraction

F ≡
T min

Rj

τD

(7)

can be used to classify the system as reaction- or diffusion-
controlled as explained below.
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FIG. 2. (a) Histogram of ln (1/r), where r is a uniformly distributed random variable in [0,1]. (b) Cumulative fraction of counts out of total counts (one million).
About 63% of the numbers have values less than 1 and 86% of the numbers are less than 2.

It follows from Eqs. (6) and (7) that

τRj

τD

= F ln
(

1
r

)
, (8)

which allows one to compute the cumulative probability of
τRj

/τD ≤ 1 as

P
[

τRj

τD

≤ 1
]

= P
[
F ln

(
1
r

)
≤ 1

]

= P
[

ln
(

1
r

)
≤ 1

F

]
= 1 − e−1/F . (9)

This is the same as the waiting time probability in the Gille-
spie algorithm.4 It becomes clear that the magnitude of F
determines the state of the system. For example, F = 1
corresponds to P[ln (1/r) ≤ 1] = 0.63 (Fig. 2(b)), so that
P[τRj

/τD ≤ 1] = 0.63 as well. In other words, F = 1 im-
plies that τRj

≤ τD in about 63% cases (Table I), i.e., the sys-
tem is diffusion-controlled. Similarly, F = 0.5 (even faster
reactions) translates into P[ln (1/r) ≤ (1/F) = 2] = 0.86
(Fig. 2(b)) and P [τRj

/τD ≤ 1] = 0.86. We classify a system
as diffusion-controlled, if P [τRj

/τD ≤ 1] ≥ 0.5. According

TABLE I. The tunable parameter k1 is used as a criterion to decide if the
system is diffusion- or reaction-controlled. As the probability of τ R being
less than τ D increases, the system becomes more diffusion-controlled. The
other parameter, k2, is related to the probability of a reaction taking place
during "t. As k2 increases, the probability of a reaction occurrence during
"t increases. In our algorithm, k1 = 0.5, k

′
1 = 3, k2 = 2, and k

′
2 = 3 are

used. Please refer to Fig. 2.

F, k1, or k
′
1 Relation Meaning

0.5 T̄R = 0.5τD 86% of τ R is less than τ D

1 T̄R = τD 63% of τ R is less than τ D

1.44 T̄R = 1.44τD 50% of τ R is less than τ D

3 T̄R = 3τD 28% of τ R is less than τ D

k2 Probability for the reaction to occur during "t
1 63%
2 86%
3 95%

to Table I, this corresponds to F ≤ 1/ln (2) = 1.44. We in-
troduce a parameter 0 < k1 ≤ 1/ln (2) and say that the system
is diffusion-controlled if F < k1. The smaller the value of k1,
the more stringent the criterion becomes. Essentially, as the
probability of τ R < τ D increases, i.e., k1 decreases, the sys-
tem becomes more diffusion-controlled. Similarly, we define
a related parameter k

′

1 so that if F > k
′

1, then the system is
reaction-controlled.

In diffusion-controlled systems, many reactions may be
fired during "tj. We set the time-step "tj = k2τ D, where k2

is a tunable parameter representative of the cut-off (or crit-
ical) value of ln (1/r) for a desired cumulative probability
(Fig. 2(b) and Table I). For example, k2 = 2 corresponds to
0.86 probability of a reaction taking place during "tj.

For the reaction-controlled system, τRj
(or T min

Rj
) is much

larger than τ D. For example, k
′

1 = 3 corresponds to P[ln (1/r)
≤ (1/F) = 1/3] = 0.28 (Fig. 2(b)), i.e., P [τRj

/τD ≤ 1]
= 0.28. To ensure the firing of some reactions, larger "tj
should be chosen. Based on several simulations, we found that
"tj = 10τ D provides good results.

We also define an intermediate regime that is character-
ized by values of F that prevent one from classifying a sys-
tem as being diffusion- or reaction-controlled. In this regime,
the time-step "tj should be chosen between k2τ D and 10τ D.
Our numerical experimentation suggests that setting k

′

2 = 3
provides a good balance between accuracy and computational
efficiency.

2. Algorithm

A detailed algorithm for the numerical implementation of
the above steps of our stochastic operator-splitting method is
provided below.

1. For a given space dimension d and cell size "x, calcu-
late the diffusion time τDi

= ("x)2/(2Did) of diffusing
species i = 1, . . . , M and set τD = min{τDi

}.
2. Initialize t = 0.
3. While t ≤ tfinal
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(a) Define whether system is diffusion- or reaction-
controlled at every time-step.! Calculate T min

Rj
through Eq. (5).! Calculate F through Eq. (7).

(b) Compute the time-step according to the classification
of the system. The multiplicative factors k1, k

′

1, k2,
and k

′

2 are selected based on Fig. 2 and Table I.
(i) If F < k1 (diffusion-controlled),! Set "tj = k2τ D.

(ii) Elseif k1 < F < k
′

1 (mixed zone),! Set "tj = k
′

2τD .
(iii) Else F > k

′

1 (reaction-controlled)! Set "tj = 10τ D.
(c) Reset told = t.
(d) Perform the diffusion step first followed by the reac-

tion step.
(i) Diffusion step: Use Brownian dynamics to ad-

vance the species with time-step "tj.
(ii) For each cell: Reaction step:

A. While (t − told) ≤ "tj
Calculate τ R using Eq. (3).
• If "tj ≥ τ R, find which reaction takes place
within τ R using Eq. (3). Update the number of
molecules of different species and time as

x ← x + νj , t ← t + τR. (10)

• Else, do not update the state vector since no
reaction was fired.
end while

B. Reset t = told for the next cell.
end for

(e) Set: t = told + "tj (synchronize t across all cells).
end while

In the supplementary material,18 our approach and the
GMP algorithm are compared. A synthetic example has
also been used to demonstrate the salient features of both
Brownian dynamics and cellular automata (supplementary
material,18 Section “Comparison with GMP method,” Table
S1, and Fig. S1).

III. RESULTS: CASE STUDIES

We start with a synthetic example (Sec. III A) to vali-
date our stochastic operator-splitting method by comparing
its results with both the GMP approach and a deterministic
solution of the underlying reaction-diffusion equation com-
puted with COMSOL. Next, we use our algorithm to model
a gene expression system (Sec. III B) and CheY diffusion in
E. coli (Sec. III C). The last two examples were carried out on
a Linux-based Triton cluster of the San Diego Supercomputer
Center at University of California, San Diego.

A. Synthetic reaction-diffusion case study

Suppose that at time t = 0, A0 molecules of species A
and B0 molecules of species B are distributed uniformly over
the left-half of the computational domain in Fig. 3(a). At

FIG. 3. A + B → C case study: (a) Initially, species A and B exist only in left-
hand side. All A and B molecules and their product P diffuse with the same
diffusion constant. (b) Comparison of results from analytical solution, cellu-
lar automata (CA) and Brownian dynamics (BD). The Brownian dynamics
results agree with the analytical solution, while the cellular automata results
do not. The increasing curves represent the number of molecules in the right
half of the domain and the decreasing ones in the left half.

t > 0, they diffuse into the rest of the domain and undergo
a (bio)chemical reaction whose reaction product is species C,

A + B
k−→ C. (11)

The three species are assumed to have the same molecular
diffusion coefficient D = 10−13 m2/s. In a more biologically
realistic case study of CheY diffusion in E. coli (Sec. III C),
the diffusion coefficients are different for different species.
Here, we use a forward reaction rate constant of k = 3
× 109 M−1 s−1. The computational volume is V = 10−15 L
(V = 10−18 m3).

1. Performance analysis

First, we simulate diffusion (no reactions) with the cel-
lular automaton and Brownian dynamics. Fig. 3(b) demon-
strates that the numbers of molecules of A and B predicted
with cellular automata approach their equilibrium values
faster than those computed with the Brownian dynamics. The
results from Brownian dynamics approach are more accurate
and are in good agreement with the PDE solution. This is be-
cause Brownian dynamics provides a better approximation of
the diffusion process. Furthermore, Brownian dynamics sim-
ulations are computationally more efficient than their cellular
automaton counterparts (Table S1).18
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TABLE II. A synthetic reaction-diffusion system A + B → C with diffusion constant D = 10−12 m2/s. The
system is reaction-controlled for L = 4 and 8. In these cases, we set the average value of all "t to "t = 10τD .
Computational time increases with smaller "t or larger L (smaller cell size). For L = 16, the system undergoes
transitions between the mixed and diffusion-controlled regimes. In this case, "t ∈ [2τD, 10τD]. As L increases,
τ D (or "t) decreases and computational time increases for both algorithms. However, for any L, our method is
faster than the GMP method. The relative error-rate is also shown (see Eq. (12) and related text). As L increases,
the relative error-rate decreases for both methods. However, our algorithm is more accurate than the GMP method.
In a similar way, for a given L, as D increases, τ D (or "t) decreases, and computational time increases for both
algorithms.

D = 10−12 m2/s Computational time (s) ("t (s)) Relative error-rate (%)

L τ D (s) GMP Our method GMP Our method

4 1 × 10−2 16 1.4 (1 × 10−1) 5.2 1.17
8 2.6 × 10−3 167 32 (2.6 × 10−2) 4.8 0.95
16 6.5 × 10−4 4602 4022 (1.4 × 10−3) 4.7 0.91

L = 8 Computational time (s) ("t (s))

D (m2/s) τ D (s) GMP Our method
10−11 2.6 × 10−4 1660 304 (2.6 × 10−3)
10−12 2.6 × 10−3 167 33 (2.6 × 10−2)
10−13 2.6 × 10−2 17 3.6 (2.6 × 10−1)
10−14 2.6 × 10−1 1.7 0.7 (1.56)

Second, we analyze the impact of a time-step and lat-
tice size on simulations of the full reaction-diffusion system.
A numerical solution (obtained using COMSOL software) of
the corresponding PDEs is treated as a yardstick. First, we an-
alyze the effect of lattice size and diffusion constant on com-
putational time (Table II) and then we study the accuracy. For
a fixed diffusion constant D = 10−12 m2/s, as L increases,
τ D (or "t) decreases, and computational time increases for
both algorithms. However, for any L, our method is faster than
the GMP method. Similarly, for increasing diffusion constant
for a given cell size (L = 8), τ D (or "t) decreases and com-
putational time increases for both algorithms (Table II and
Fig. 4). Our algorithm is faster than the GMP method be-
cause our algorithm can apply larger time-steps according to
the state of the system. For example, for D = 10−12 m2/s,
τ D (= 2.6 × 10−3s) is 10 times larger than that for D = 10−11

m2/s. Hence, the computational time for D = 10−12 m2/s is

about 10 times smaller than that for D = 10−11 m2/s. In Fig. 4,
as D increases, τ D (or "t) decreases (Fig. 4(a)), and compu-
tational time increases (Fig. 4(b)) for both algorithms. For
D = 10−14 m2/s, the system transitions from diffusion-
controlled ("t = k2τ D; k2 = 2) to reaction-controlled regime
during the time-course. For D ≥ 10−13 m2/s, the system be-
comes reaction-controlled ("t = 10τ D). This explains the in-
crease in the absolute value of the slope of "t or computa-
tional time vs. D plots at D = 10−13 m2/s for our method.

As should be expected, the accuracy of our stochastic
operator-splitting algorithm increases as the time-step and/or
the cell size become smaller for both the diffusion-controlled
(D = 10−13 m2/s) and reaction-controlled (D = 10−12 m2/s)
scenarios in Figs. 5(a) and 5(b). The results are based on av-
erage of 8 realizations. The relative error-rate, defined as the
ratio of the integrated absolute difference between a method
and the PDE solution to the integrated absolute value of the

(a) (b)

FIG. 4. A + B → C case study: Effect of diffusion constant, D (m2/s), on (a) τ D (or "t) and (b) computational time for our method and the GMP method. As
D increases, τ D (or "t) decreases and computational time increases for both algorithms. For D = 10−14 m2/s, the system transitions from diffusion-controlled
("t = k2τ D; k2 = 2) to reaction-controlled regime during the time-course. For D ≥ 10−13 m2/s, the system becomes reaction-controlled ("t = 10τ D), explaining
the increase in the absolute value of the slope of "t or computational time vs. D plots at D = 10−13 m2/s for our method.
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(a) (b)

(c) (d)

(e) (f)

FIG. 5. A + B → C case study: (a) and (b) As cell size becomes finer, the results from our approach converge to the numerical solution. L is the number of
cells along each direction (larger L represents finer cell size). The vertical axis shows the number of C molecules produced in the left half of the domain. The
results are based on average of 8 realizations. (a) shows the results of reaction-controlled system, whereas (b) is for a diffusion-controlled system. (c) and (d)
Dashed line is the result of reaction-first and diffusion-later order and dotted line is the reverse order. Diffusion-reaction ordering has better agreement with
PDE solution than the reaction-diffusion order. It is because molecules cannot diffuse during the time-step if we treat reaction first. This ordering is effective for
both diffusion-controlled and reaction-controlled systems. (e) Black line denotes the result of PDE solution. Three gray lines are for the GMP method. In the
GMP method, time-step "t is related to the cell size. So, it takes longer time to simulate the system with finer cell size. (f) As the initial number of molecules
gets lower, the difference rate between deterministic solution and our stochastic solution increases. The fluctuations also increase. This result proves that the
stochastic solution approaches the deterministic solution as the number of molecules (or concentration if volume is fixed) increases. In other words, randomness
or stochasticity is less important at higher concentrations.

PDE solution over the time-course (ratio of the areas),

Relative error-rate =
∑

t |(method - deterministic PDE)|∑
t |(deterministic PDE)|

,

(12)
is shown in Table II. For a given D, as L increases, the time
step and the relative error-rate decrease for both methods. The
smaller the time-step, the smaller the errors introduced by the
operator-splitting procedure. However, for any L, our algo-
rithm is more accurate than the GMP method.

Third, we investigate the impact of ordering the diffusion
and reaction steps on the simulation accuracy (Figs. 5(c) and
5(d)). Both diffusion-controlled and reaction-controlled sys-
tems are considered. If the reaction step is selected to be the
first part of the operator-splitting algorithm, then a diffusion
process does not contribute to the system evolution during

the first time-step. Hence, the reaction-first approach intro-
duces larger errors if there is excessive inhomogeneity at the
beginning. Thus, the diffusion-first (followed by the reaction
step) approach is suited for both diffusion-controlled as well
as reaction-controlled processes.

We further compare the accuracy of the results from
our algorithm and the GMP method. Simulation results in
Fig. 5(b) demonstrate an excellent agreement between our
solution and the PDE solution, while the GMP method
significantly underestimates both the peak number of
molecules and the time it takes for the system to equi-
librate (Fig. 5(e)). This finding is consistent with the re-
sults shown in Fig. 3(b), which reveal that the number of
molecules estimated with cellular automata reach their equi-
librium levels faster than those computed with Brownian
dynamics.
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2. Effect of number of molecules

Having established the agreement between our stochas-
tic (discrete) operator-splitting algorithm and its continuum
(PDE-based) counterpart for a large number of molecules, we
proceed to analyze their ability to handle reaction-diffusion
systems composed of small numbers of molecules. The
premise here is that the smaller the number of molecules,
the more inadequate the deterministic (continuum) models be-
come and the more pronounced are the stochastic effects.

We rely on an absolute difference rate (DR),

DR = |our method - deterministic PDE|
deterministic PDE

, (13)

to quantify the difference between the concentrations (relative
numbers of molecules) computed with the two approaches. As
expected, the DR decreases as the initial number of reacting
molecules increases (Fig. 5(f)). It drops from DR ≈ 0.1 for
A0 = 60 to DR ≈ 0.01 for A0 = 600 or 6000. Hence, stochas-
tic and deterministic simulations yield similar results, when
the number of molecules becomes large. This expected result
is consistent with many other studies of randomness in react-
ing perfectly-mixed systems.2

B. Gene expression case study

The van Zon and ten Wolde model7 of gene regulation
serves as an ideal model system for studying the stochastic-
ity effects due to both the low number of molecules and the
spatial inhomogeneity. Similar to Fig. S1(a) (supplementary
material18), RNAp molecules initially occupy the left-bottom
cell of a numerical mesh, and at t > 0 diffuse towards a DNA
molecule that is fixed in the center cell (“operator site”). Upon
reaching the operator site, the RNAp molecules bind with
DNA with a forward reaction rate constant ka, forming the
DNA-RNAp complex and this complex can dissociate with
a backward rate constant kd (supplementary material,18 Table
S2). In addition, it can produce a mRNA at a production rate
constant kprod and mRNA degrade with a decay rate constant
kdec. In the following, we use A, B, C, and P to denote DNA,
RNAp, DNA-RNAp, and the produced mRNA, respectively.

Assuming that RNAp is the only diffusing species (i.e.,
DNA-RNAp and the produced mRNA do not leave the op-
erator site), and that the molecular diffusion coefficient and
reaction rates are constant (i.e., neglect anomalous diffusion
due to the crowding effect and hydrodynamic effect), a con-
tinuum representation of the process is provided by a system
of three ordinary differential equations and one partial differ-
ential equation,

d[A]
dt

= −ka[A][B] + kd [C] + kprod [C], (14)

∂[B]
∂t

= D∇2[B] − ka[A][B] + kd [C] + kprod [C], (15)

d[C]
dt

= ka[A][B] − kd [C] − kprod [C], (16)

d[P ]
dt

= kprod [C] − kdec[P ], (17)

where the square brackets denote concentrations of the re-
spective species.

1. Reaction- vs. diffusion-limited processes

We set the molecular diffusion coefficient to D = 10−12

m2/s. Then the average time for RNAp molecules to arrive
at the operator site is 0.04 s, i.e., RNAp molecules diffuse
quickly throughout the system that becomes “well-mixed.”
Diffusion does not have a significant impact on the sys-
tem’s dynamics since the system is reaction-controlled. In
other words, D = 10−12 m2/s can result in a reaction-limited
(reaction-controlled) system.

Let us define a dimensionless Damköhler number Da
as the ratio of typical diffusion (τ D) and reaction (τ̄R) time
scales,

Da = τD

τ̄R

. (18)

A system is diffusion-limited, if Da . 1 and reaction-limited
otherwise. For D = 10−12 m2/s, the average diffusion time
τ D ∈ [10−2 s, 10−1 s]. Since τ̄R is of the same order of
magnitude, the system is reaction-limited. On the other hand,
the diffusion coefficient D = 10−15 m2/s corresponds to
Da ∼ 103, resulting in the diffusion-limited behavior.

Fig. 6(a) demonstrates the salient features of these two
transport regimes with L = 5. For D = 10−12 m2/s, the num-
ber of protein molecules computed with the Gillespie algo-
rithm (a perfectly mixed system with no diffusion) and with
our operator-splitting algorithm are in close agreement. For
D = 10−15 m2/s, diffusion becomes important with the pro-
tein beginning to burst around 20 s after the RNAp molecules
encounter DNA at the central operator site. Our results differ
from their counterparts obtained by the Gillespie algorithm
mainly in terms of fluctuations.

2. Time-step selection

The magnitude of the molecular diffusion coefficient
D affects the choice of the time-step "t in the stochastic
operator-splitting algorithm. Figs. 6(a) and 6(b) show the
number of mRNA molecules computed for a wide range of
the diffusion coefficients, 10−15 ≤ D ≤ 10−12 with L = 5 and
L = 20, respectively. In the case study with L = 5 and D
= 10−12 m2/s, the time scales are τ̄R = 0.012 s and τ D = 6
× 10−3 s; fast diffusion quickly homogenizes the system so
that its behavior is reaction-controlled. Our numerical exper-
iments suggest that setting "t = 10τ D decreases the simula-
tion time and guarantees that a reasonable number of reactions
take place during the simulation time-step.

For small diffusion coefficients (D = 10−15 m2/s),
τ D = 6.67 s, and τR = 0.012 s, which means that almost all
τ R < τ D. To ensure that a sufficient number of reactions take
place during the time interval "t, we selected "t = 2τ D. Sim-
ilar rules are applied for L = 20 as well.
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(a)

(b)

FIG. 6. Gene expression case study: (a) Dash-dotted line shows the result of
Gillespie algorithm which deals with only reaction process. For D = 10−12

m2/s with L = 5, our results are similar to those obtained with the Gillespie
algorithm, because it is a reaction-limited process so that diffusion does not
have serious impact on the system. On the contrary, the case of D = 10−15

m2/s with L = 5 exhibits long time lag to reach the steady-state value due
to diffusion effect and has much larger fluctuations. (b) In case of L = 20,
the mesh is much finer than the above cases. The results are similar to those
in (a) as our algorithm is able to adjust time-steps according to the system
characteristics even though L is increased from 5 to 20.

3. Comparison with GMP method
and stochastic effect

The mRNA production, predicted with the GMP algo-
rithm and our approach on the meshes with several degrees of
refinement (L = 5, 10, 20), are shown in Figs. 7(a) and 7(b),
respectively. In a display of the lack of self-consistency, the
finest mesh (L = 20) results in predictions that are quanti-
tatively wrong in that the system fails to reach its equilib-
rium state of about 1000 proteins. It is worthwhile recall-
ing that in the GMP algorithm, "t is defined as the minimal
diffusion time (supplementary material18) that cannot be ad-
justed. In the system under consideration, τ̄R > "t so that
all the reactions cannot take place during the time interval
"t (τ̄R = 0.65 s and τ D = 0.417 s). These results demon-
strate one of the advantages of our algorithm: unlike the GMP
algorithm, our approach is capable of handling different mesh
sizes by adapting appropriate time-steps.

The effects of stochasticity (noise) become apparent in
predictions averaged over a smaller number of realizations
(Fig. 7(c)). As should be expected from the central limit the-
orem, the standard deviation from the mean prediction de-
creases as 1/

√
Nr . By ignoring the spatial variability, the

Gillespie algorithm dampens considerably the noise present

(a)

(b)

(c)

FIG. 7. Gene expression case study: (a) The result of GMP algorithm for
various L and the corresponding "t (=τ D) values. Diffusion constant has a
fixed value, D = 10−15 m2/s. For L = 20 (τ̄R = 0.65 s and τ D = 0.417 s), the
number of P molecules does not reach its steady-state value of around 1000
because τ̄R > "t = τD (Table III). This means reactions cannot fully take
place during "t. (b) Our algorithm performs well for both cases of L because
it classifies the system as diffusion- or reaction-controlled and decides the
appropriate time-steps accordingly. (c) Fluctuations become smaller as the
number of realizations become larger. In comparison to the Gillespie algo-
rithm, our method has much higher fluctuations because it considers spatial
randomness as well as randomness due to the small number of molecules.

TABLE III. Gene expression case study: Reaction time is averaged over
256 realizations of a simplified gene expression process. As cell sizes be-
come smaller reaction times increase, since fewer molecules in each cell im-
ply lower probability for reactions to take place within a cell. The time-step
"t in the GMP method equals τ D, whereas "t in our method can vary accord-
ing to the system classification as reaction- or diffusion-controlled. Since the
cases of L = 5 and 10 are diffusion-controlled, we set "t = 2τD . For L = 20,
the system changes from diffusion- to reaction-controlled as time progresses.

D = 10−15 m2/s GMP Our method
L "x (µm) τ̄R τD = "x2

2Dd (s) "t (s)

5 0.2 0.012 6.67 13.33
10 0.1 0.095 1.667 3.33
20 0.05 0.65 0.417 2.34
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in the system. The protein production continues to fluctu-
ate in time even after it reaches its equilibrium (steady-state)
value because it depends on the frequency of the encounter
of RANp and DNA in the central cell. The statistics of the
equilibrium protein production, i.e., its mean µ, standard de-
viation σ , and noise level (coefficient of variation) ν = σ /µ,
are presented in Table S3 (supplementary material18).

C. CheY diffusion case study

1. System description

As a final example, we consider a chemotaxis pathway in
E. coli. A mathematical model of this process has been devel-
oped earlier.14 The species included in the model14 and their
simplified spatial arrangement within a cell are presented in
Table S4 (supplementary material18) and Fig. 8(a), respec-
tively. Table S5 (supplementary material18) lists a set of re-
actions considered in this model. The diffusing species are
CheY, CheYp, and CheZ. The species CheA* (active CheA)
and CheAp do not diffuse into the cytoplasm, being con-
fined in the inner receptor cluster. The molecules of CheY
and CheA* are phosphorylated in the receptor cluster located
on the anterior cell wall. Once diffused into the cytoplasm, the
CheYp molecules bind with four flagellar motors FliM1, . . . ,
FliM4 and the FliM · CheYp complex is produced. The four
motors are located on the side walls, ordered FliM1 to FliM4
from the anterior wall (Fig. 8(a)). The reactions in the FliMs
induce E. coli’s forward or backward motion and/or rotation.

The diffusion step in our stochastic operator-splitting al-
gorithm is implemented in a way that the molecules reaching
the cell’s surface are reflected back into the cell without loss
of momentum. The diffusion step is followed by the reaction
step, which employs the Gillespie algorithm to simulate reac-
tions between the molecules within each cell of a numerical
mesh. We investigate the effects of varying the length of cell,
Lsv (sv denotes subvolume) and time-step "t on the perfor-
mance of our algorithm, and compare it to that of the GMP
algorithm.

Both GMP and our approach are conceptually different
from the Smoldyn method.14 The latter approach simulates
diffusion with Brownian dynamics and keeps track of indi-
vidual molecules. Unlike our algorithm, it allows for multi-
molecular reactions between two or three molecules only
within a certain radius from each other. This reduces the com-
putational speed and increases storage requirements, because
positions of all molecules have to be stored and distances be-
tween all molecules must be calculated at each step in order
to check if reactions can take place.

2. Simulation results

The time-course of FliM · CheYp complexes simulated
with both the GMP algorithm and our stochastic operator-
splitting approach is shown in Figs. 8(b) and 8(c). The
GMP algorithm overestimates the equilibrium levels of the
FliM · CheYp complexes and underestimates the transition-
to-equilibrium times in both Fig. 8(b) (M1 and M2) and
Fig. 8(c) (M3 and M4). As established in the two previous

(a)

(b)

(c)

FIG. 8. CheY diffusion case study: (a) E. coli has length [2.48 0.88 0.88]
µm along x, y, and z direction. R denotes receptor cluster located on the ante-
rior wall and is represented by [x_min x_max; y_min y_max; z_min z_max]
= [0 0.08; 0.16 0.64; 0.16 0.64] µm. CheY molecules are phosphorylated in
the receptor cluster and diffuse into the cytoplasm. M1∼M4 show the loca-
tion of the four flagellar motors on side walls and are located in M1 = [0.48
0.56; 0.40 0.48; 0 0.08] µm, M2 = [0.96 1.04; 0 0.08; 0.40 0.48] µm, M3
= [1.44 1.52; 0.40 0.48; 0.80 0.88] µm, and M4 = [1.92 2.00; 0.80 0.88;
0.40 0.48] µm. The remaining domain is considered as cytoplasm. (b) and
(c) The simulation results from both the GMP method and our method are in
good agreement although there are some differences in rise-time because the
GMP method and our method use cellular automata and Brownian dynamics,
respectively, to model the diffusion process (as explained in Fig. 3).

computational examples, this discrepancy is due to the errors
associated with the cellular automaton treatment of diffusion
in the GMP algorithm. In addition to being more accurate,
our approach is also computationally more efficient than the
GMP algorithm. In both algorithms, the reaction step con-
sumes close to 99% of the total computational time. There-
fore, in order to reduce the simulation time, larger "t should
be selected because the execution of the Gillespie algorithm
accounts for most of the computational time. For a given mesh
size Lsv , the time-step in the GMP algorithm is fixed by the
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molecular diffusion coefficient D, while in our algorithm it
is more flexible according to whether the system is reaction-
controlled or diffusion-controlled. The simulation time for our
algorithm is 12 h, whereas it is 26 h for the GMP method.
Computational time increases with decreasing Lsv and "t ac-
cording to O(L−3

sv · "t−1).

IV. SUMMARY AND DISCUSSION

Complex multi-scale biological systems can be analyzed
with microscopic approaches, such as Green’s-function reac-
tion dynamics and the Smoldyn algorithm. These methods
are accurate albeit computationally expensive and often pro-
hibitive. On the other hand, macroscopic kinetic modeling ap-
proaches that use PDEs are amenable to numerical compu-
tation, but fail to model the physics of systems with small
number of molecules accurately. Mesoscopic approaches,
e.g., reaction-diffusion master equation and MesoRD, dis-
cretize space into a collection of lattice elements and extend
the chemical master equation normally used in well-mixed
chemical reactions into the stochastic regime for inhomoge-
neous systems. To facilitate faster and more accurate solutions
within the mesoscopic scale framework, we have developed
a stochastic simulation method which is based on operator-
splitting for modeling the reaction-diffusion system. In our
methodology, the time-step size is chosen automatically at
each step depending upon whether the system is reaction- or
diffusion-controlled. We use the Gillespie stochastic simula-
tion algorithm for modeling the reactions and Brownian dy-
namics approach for modeling the diffusion process. We thus
account for both spatial heterogeneity and the fluctuation in
concentrations arising from the small number of molecules.
Our method yields highly accurate results and has the merit
of modeling both the reaction and diffusion processes in the
system.

In order to validate accuracy and efficiency of our algo-
rithm, a simple reaction-diffusion system, A + B → C, is
studied first. We concluded that Brownian dynamics provides
much more accurate results while being faster than a Cellu-
lar automata approach. For example, Table II reveals that the
error-rates for our approach and the GMP algorithm are about
1% and 5%, respectively. The average speed-up by using our
method is about 5 times as compared to the GMP method for
a wide range of the values of the diffusion constant. More-
over, we compared the stochastic ensemble average with the
deterministic result and found out that our results converge
to the deterministic result when smaller "t and larger L are
used in the simulation. We also concluded that the fluctua-
tions become larger in case of smaller number of molecules
and spatial inhomogeneity.

Towards modeling biologically realistic systems, a sim-
plified gene expression system and CheY diffusion in E. coli
bacteria are studied. In gene expression case study, the sys-
tem is classified based on the Damköhler number, Da. If it is
larger than 1, it is regarded as a diffusion-limited system and
reaction-limited otherwise. In order to simulate the system ac-
curately, the time-step, "t, should be selected according to
the dominant process. In addition, noise levels concerning the
number of molecules and number of realizations are studied.

It is shown that as the number of molecules or number of re-
alizations become smaller, the noise level increases. We then
simulated a more complicated system, viz., CheY diffusion
in E. Coli, through both the GMP method and our operator-
splitting algorithm. We have shown that the operator-splitting
approach provides more accurate results and is faster as com-
pared to the GMP algorithm. For a more accurate analysis
of movement of E. coli bacteria, the chemotaxis process in
which molecules move towards higher or lower concentra-
tion according to the concentration gradient should also be
analyzed.20

In conclusion, we present a hybrid numerical method,
also known as, operator-splitting method, for stochastic
reaction-diffusion process with a small number of heteroge-
neously distributed molecules. Our approach is conceptually
similar to the GMP algorithm that applies Gillespie algorithm
for reaction process and Cellular automata for diffusion pro-
cess. However, our method provides computational advan-
tages in terms of accuracy and efficiency. First, molecules in
Brownian dynamics can move freely without the restriction of
lattice or time-step, whereas molecules in cellular automata
move only to the adjacent lattices during the fixed time-step.
Second, Brownian dynamics offers a more accurate simula-
tion result than the cellular automata approach. Third, our al-
gorithm has the flexibility of changing time-steps, depending
on whether the system is reaction- or diffusion-controlled.
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NOMENCLATURE

ODE ordinary differential equation
PDE partial differential equation
SSA stochastic simulation algorithm
CA Cellular automata
BD Brownian dynamics
GMP Gillespie multi-particle method
ADI alternating direction implicit
MOL method of line
DR Difference rate
E. Coli Escherichia Coli
Da Damköhler number
NN Neumann neighborhood
NM Moore neighborhood
Nr number of realizations of simulations
P [X; t] the probability of the system being in the

state X at time t
P0[τ |X, t] the conditional probability that no reactions

occur during the time interval [t, t + τ )
D diffusion coefficient
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F fraction value
L number of cells along each direction
Lsv cell length or sub-volume length
TR time-constant, reciprocal of asum (time-

interval which is not affected by random
variables)

V fixed cellular volume
"t time-step
X(t) state vector representing number of

molecules of each species
Y(t) continuous counterpart of X(t)
Zj independent random variables on (0,1)
aj (X) the propensity function of the j-th reaction

channel
k1, k

′

1, k2, k
′

2 parameters used to decide "t
p(τ, j |X, t) the probability that the next reaction will

be the jth reaction and will occur during
[t + τ , t + τ + dτ )

Greek Letters
ν noise level
ξ normally distributed random number
τ D diffusion time constant
τR reaction time constant (averaged value of re-

action time over all firings)
τ R time-interval until next reaction takes place
σ standard variation

µ mean value
τ time-interval

1U. S. Bhalla, P. T. Ram, and R. Iyengar, Science 297, 1018 (2002).
2T. Choi, M. R. Maurya, D. M. Tartakovsky, and S. Subramaniam, J. Chem.
Phys. 133, 165101 (2010).

3J. M. Pedraza and A. van Oudenaarden, Science 307, 1965 (2005).
4D. T. Gillespie, J. Phys. Chem. 81, 2340 (1977).
5M. A. Gibson and J. Bruck, J. Phys. Chem. 104, 1876 (2000).
6Y. Cao, D. T. Gillespie, and L. R. Petzold, J. Chem. Phys. 124, 044109
(2006).

7J. S. van Zon and P. R. ten Wolde, J. Chem. Phys. 123, 234910 (2005).
8S. S. Andrews and D. Bray, Phys. Biol. 1, 137 (2004).
9J. Hattne, D. Fange, and J. Elf, Bioinformatics 21, 2923 (2005).
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1 Methods

1.1 Reaction process: Gillespie algorithm

We consider a well mixed system consisting of Xi(t) molecules of the i-th species (i = 1, . . . ,M) at
time t, i.e., it is at a state X(t) ≡ (X1, . . . , XM ). Let P0[τ |X, t] denote the (conditional) probability
of no reactions taking place during the time interval [t, t+τ) provided that the system is at state X
at time t. Furthermore, let us assume that the reacting system is Markovian, i.e., the probability
that no reactions occur during [t, t+ τ +dτ) equals the product of the probabilities of no reactions
occuring during [t, t+ τ) and during [t + τ, t + τ + dτ). Recalling the definition of the propensity
function aj(X), i.e., aj(X)dτ is the probability that both the next reaction will be j-th reaction
and it will occur during [t+ τ, t+ τ + dτ), one obtains [3, 4]

P0[τ + dτ |X, t] = P0[τ |X, t] [1− asum(X)dτ ] , asum(X) ≡
N�

j=1

aj(X) (S1)

where N is the number of chemical reactions. Taking the limit as dτ → 0 and solving the resulting
ODE leads to

P0(τ |X, t) = e−asum(X)τ . (S2)

It follows from the definitions of P0 and aj [3, 4] that the joint probability density function
P (τ, j|X, t), which describes the probability that the next reaction will be the j-th reaction and
will occur during [t + τ, t + τ + dτ) given the present state of the system X(t), is P (τ, j|X, t) =
P0[τ |X, t]aj(X). Accounting for Eq. S2 gives

P (τ, j|X, t) =
aj(X)

asum(X)
asum(X) e−asum(X)τ . (S3)

The ratio aj(X)/asum(X) represents the probability density function of a discrete random vari-
able, and serves to determine the next reaction. The remainder of the right-hand-side of Eq. S3,
asum(X) exp[−asum(X)τ ], is the exponential density function of a continuous random variable, which
corresponds to the time at which the next reaction will occur.
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To advance the system from state X(t), the Gillespie algorithm [3] generates two random vari-
ables r1 and r2 distributed uniformly on the unit interval [0, 1]. A discrete random value j and
continuous random value τ are selected probabilistically in accordance with Eq. S3 as

τ =
1

asum
ln

�
1

r1

�
,

j−1�

j�=1

aj� ≤ r2asum ≤
j�

j�=1

aj� (S4)

where asum is the sum of all propensity functions. The system state at t+τ is updated according to
X(t+ τ) = X(t) + νj where the entries of the vector νj are the change in the number of molecules
of various species due to the j-th reaction [3].

1.2 Diffusion process: Brownian dynamics

In cells, molecules such as proteins and metabolites, have a non-zero instantaneous speed at room
temperature or at the temperature of the human body. A typical protein molecule is immersed in
the aqueous medium of a living cell. It collides with other molecules in the solution, exhibiting a
random walk or Brownian motion.

Let X(t) ∈ R3 denote the position of a diffusing molecule at time t. Diffusive spreading of
molecules of the i-th species (i = 1, . . . ,M) is characterized by a molecular diffusion coefficient Di,
whose value depends on the molecule size, absolute temperature and the viscosity of a solution.
The molecule’s position at the end of the time interval �t is computed as follows [5].

1. Generate three normally distributed random numbers ξ1, ξ2, and ξ3 that serve as components
of the random displacement vector ξ = (ξ1, ξ2, ξ3)T .

2. Compute the molecule’s position at time t+�t as

X(t+�t) = X(t) +
�
2Di�t ξ. (S5)

3. Set t = t+�t and go to step 1.

1.3 Diffusion process: Cellular automata

In general, cellular automata depend on mesh size and diffusion constant. Simulation accuracy and
computational time vary according to neighborhood types [1]. For the two-dimensional example
in Figs. 1B-C (main manuscript), molecules can diffuse to four adjacent cells (voxel) or stay in
the original voxel in the von Neumann neighborhood, whereas in the Moore neighborhood they
can diffuse to eight adjacent cells or stay in the original voxel. If (0, 0) denotes the original voxel,
the von Neumann neighborhood is a set NN = {(−1, 0), (0,−1), (0, 0), (0, 1), (1, 0)}. The Moore
neighborhood is a set NM = NN ∪ {(−1,−1), (−1, 1), (1,−1), (1, 1)}.

The Gillespie multi-particle (GMP) algorithm [2] employs cellular automata to simulate diffu-
sion. A diffusion-time constant τDi , the time during which a molecule of the i-th species remains
in one cell of a mesh, is given by [6]

τDi =
1

2d

(∆x)2

Di
, (S6)

where Di is the diffusion coefficient for the i-th species. Moreover, a reaction-time constant τ̄R is
defined as the ensemble average of the equivalent time constants for all reactions related to diffusing
molecules.
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1.4 Gillespie multi-particle (GMP) method

We implemented the following GMP algorithm based on [6].

1. Set tS = ∆t = mini{τDi} for all diffusing species i.

2. Initialize t = 0 and ni = 1 for all diffusing species.

3. While t ≤ tfinal

• Reset tS = mini{τDi · ni} for all diffusing species.

• Reset told = t.

• For each cell, use the Gillespie algorithm to simulate reactions.

(a) While t ≤ tS
Calculate τR using Eq. S4.

– If t ≤ tS , find which reaction takes place within τR using Eq. S4. Update number
of species and time:

x ← x+ νj , t ← t+ τR (S7)

where νj is defined in Section 1.1.

– Else; do not update the state vector x since no reaction has occured.

end while

(b) Reset t = told for the next cell.

end for

• Use the cellular automata to diffuse the species.

• Reset ni ← ni + 1 for the diffused species.

• Set t = tS .

end while

1.5 Comparison of our method with GMP method

The GMP method [2] provides an alternative implementation of the operator-splitting approach
shown in Fig. 1A (main manuscript). While our approach relies on Brownian dynamics, the GMP
method models diffusion with cellular automata. This difference is significant and has far-reaching
implications. First, the time step in a cellular automaton is fixed and determined by Eq. S6 in terms
of the diffusion coefficient and cell size. This is because during one time step molecules in cellular
automata can move from a cell only to its immediate neighbors. By relying on Brownian dynamics,
our approach allows the time step to vary between the diffusion (τD) and reaction (T̄R or τ̄R) time
scales. This significantly speeds up the simulations, especially when the diffusion coefficient is large
and/or the cell size is small. Second, the GMP method uses the diffusion times for each species to
determine when their respective molecules move from one cell of the lattice to the adjacent cells.
In our algorithm, diffusing molecules of all species move during the same time step.

The following synthetic example demonstrates the salient features of both Brownian dynamics
and cellular automata. We place 18 molecules of a substance P in the bottom-left cell of a lattice
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and allow them to diffuse towards its center cell/element (Fig. S1A). Fig. S1 shows the average
number of molecules at the center cell as a function of time for several degrees of mesh refinement.
Mesh refinement (the increased number of cells in each direction) does not significantly affect the
accuracy of the simulation results (Fig. S1B-D) but increases the computational time (Table S1).
Figs. S1E and F reveal that the Brownian dynamics reproduces a solution of the corresponding
diffusion equation more accurately than the cellular automata does. This is because a particle in
Brownian dynamics can move any distance in any directions while the cellular automata limits its
displacement to 9 adjacent cells.

Finally, for a given degree of accuracy the Brownian dynamics simulations provide a significant
computational speed-up relative to their cellular automata counterparts (Table S1). This is because
the diffusion time τD in the cellular automata is fixed by the lattice size, whereas Brownian dynamics
allow for larger time steps ∆t. The run time of the Brownian dynamics simulations reported in
Table S1 correspond to the same time step ∆t = 10 s regardless of the lattice size, while τD in
the cellular automata simulations varied with the mesh size and diffusion coefficient in accordance
with Eq. S6. As a result, the cellular-automata simulation time increases significantly with the
number of cells in each direction (L).
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Cellular automata Brownian dynamics
D = 10−15 (m2/s) ∆t = τD (s) ∆t = 10 (s)

L τD = (∆x)2/(2Dd) Computational time (s)
5 6.67 2.98 6.72
10 1.667 13.39 6.73
20 0.417 55.09 6.68

Table S1: Comparison of computational time for cellular automata and Brownian dynamics. The
total of 2048 realizations are considered in order to emphasize the difference in computational time.
L is the number of cells along each axis, d is the spatial dimension, and τD is the diffusion time
constant. Brownian dynamics uses the same time step ∆t = 10 s for all cell sizes, whereas cellular
automata has different time steps depending on the cell size and the value of diffusion coefficient D.
The simulation time increases with L. Brownian dynamics is more efficient than cellular automata.
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Reaction Rate I.C. [nM]

DNA + RNAp
ka−→ C 3× 109 M−1s−1 1.67

C
kd−→ DNA +RNAp 21.5 s−1 30

C
kprod−−−→ P + DNA + RNAp 89.55 s−1 0

P
kdec−−→ φ 0.04 s−1 0

Table S2: Gene expression case study: DNA has 1 molecule and RNAp has 18 molecules. C is the
DNA·RNAp complex. System volume is 1×10−15 l and diffusion coefficient of RNAp is D = 10−12

m2/s (reaction-limited system) or D = 10−15 m2/s (diffusion-limited system). Abbreviation: I.C.:
initial condition.
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Number of realizations Mean value Standard deviation Noise level
Nr µ σ ν
4 1006.3 324.3 0.322
16 1015.8 149.6 0.147
64 1010.4 81.9 0.088
256 1004.4 41.2 0.041

256 (Gillespie) 1001.4 1.76 0.0018

Table S3: Gene expression case study. According to the central limit theorem, noise level or
standard deviation decreases as 1/

√
Nr. The mean values remain around 1000. The standard

deviation predicted with our algorithm is much higher than that computed with the Gillespie
algorithm, because our algorithm accounts for randomness due to both a small number of molecules
and spatial inhomogeneity.
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Species Initial # of molecules Diffusion constant
CheA∗ 1260 position fixed
CheAp 0 position fixed
CheY 8200 D = 10−11 m2/s
CheYp 0 D = 10−11 m2/s
CheZ 1600 D = 6× 10−12 m2/s

FliMi (i = 1, . . . , 4) 34 position fixed
FliMi·CheYp (i = 1, . . . , 4) 0 position fixed

Table S4: CheY diffusion case study: 13 species and 13 reactions in the E. coli system. Only CheY,
CheYp and CheZ molecules can diffuse; others are fixed within their original cells. Initial values
are expressed in terms of number of molecules, and i denotes the index of flagellar motors.
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Compartment Reaction Reaction constant

Receptor cluster
CheA∗ → CheAp kf = 3.4× 101 s−1

CheAp+CheY → CheA∗+CheYp kf = 108 M−1s−1

Cytoplasm
CheY � CheYp

kf = 5.0× 10−5 s−1

kb = 8.5× 10−2 s−1

CheZ+CheYp → CheZ+CheY kf = 1.6× 106 M−1s−1

FliMi, (i = 1, . . . , 4) FliMi+CheYp � FliMi·CheYp
kf = 5.0× 106 M−1s−1

kb = 2.0× 101 s−1

Table S5: CheY diffusion case study: kf and kb denote respectively forward and backward reaction
rate constants for the E. coli system. Unimolecular and bimolecular reaction rates have dimensions
[s−1] and [M−1s−1], respectively. i denotes the index of flagellar motors.
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Figure S1: Temporal evolution of the count of molecules at the center cell averaged over 512
realizations of cellular automata (CA) and Brownian dynamics (BD) for several degrees of mesh
refinement (L denotes the number of cells in each direction). D = 10−15 m2/s, Lx = Ly = 1
µm. (A) Initially, 18 P molecules are placed into the bottom-left cell. As time increases, they
diffuse and number of P ’s in the center cell is counted. (B)-(D) For various values of L, the cellular
automata simulation results have faster rising times than those of Brownian dynamics. (E)-(F)
The simulation results are independent of the cell size (L). The Brownian dynamics results are in
better agreement with the deterministic PDE solution than those of cellular automata.
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