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Deterministic models of biochemical processes at the subcellular level might become inadequate
when a cascade of chemical reactions is induced by a few molecules. Inherent randomness of such
phenomena calls for the use of stochastic simulations. However, being computationally intensive,
such simulations become infeasible for large and complex reaction networks. To improve their
computational efficiency in handling these networks, we present a hybrid approach, in which slow
reactions and fluxes are handled through exact stochastic simulation and their fast counterparts are
treated partially deterministically through chemical Langevin equation. The classification of
reactions as fast or slow is accompanied by the assumption that in the time-scale of fast reactions,
slow reactions do not occur and hence do not affect the probability of the state. Our new approach
also handles reactions with complex rate expressions such as Michaelis–Menten kinetics. Fluxes
which cannot be modeled explicitly through reactions, such as flux of Ca2+ from endoplasmic
reticulum to the cytosol through inositol 1,4,5-trisphosphate receptor channels, are handled
deterministically. The proposed hybrid algorithm is used to model the regulation of the dynamics of
cytosolic calcium ions in mouse macrophage RAW 264.7 cells. At relatively large number of
molecules, the response characteristics obtained with the stochastic and deterministic simulations
coincide, which validates our approach in the limit of large numbers. At low doses, the response
characteristics of some key chemical species, such as levels of cytosolic calcium, predicted with
stochastic simulations, differ quantitatively from their deterministic counterparts. These
observations are ubiquitous throughout dose response, sensitivity, and gene-knockdown response
analyses. While the relative differences between the peak-heights of the cytosolic #Ca2+$
time-courses obtained from stochastic !mean of 16 realizations" and deterministic simulations are
merely 1%–4% for most perturbations, it is specially sensitive to levels of G!" !relative difference
as large as 90% at very low G!"". © 2010 American Institute of Physics. #doi:10.1063/1.3496996$

I. INTRODUCTION

Intracellular signaling is an important event in cellular
life that mediates most of its functions, such as adaptation in
response to environmental changes and regular functions in-
cluding metabolism, cellular growth, and proliferation.
Mathematical modeling has helped to explain and illustrate
many of these complex phenomena, including the bistability
and graded versus switchlike response in intracellular
signaling,1 autocatalysis as a mechanism of positive feed-
back in the cell cycle,2 and subpopulation variability.3 Much
of this modeling is done in a deterministic setting and in-
volves systems of coupled ordinary differential equations
!ODEs" describing the rate of change of components !reac-
tants and products" of the biochemical reactions and other
processes involved in the pathway.

ODE-based formulations provide accurate predictions of
the dynamics of biochemical pathways with large numbers of
molecules of all reacting species, but might fail when the
concentrations of reactants and/or products become exceed-
ingly small so that only a few molecules !less than ten in
some cases" are involved.4 Indeed, for small volumes and
small concentrations that often characterize subcellular pro-
cesses, the very concept of concentration breaks down. When
this occurs, randomness associated with the dynamics of in-
dividual molecules becomes pronounced, necessitating the
use of probabilistic !stochastic" models. A chemical master
equation !CME" yields an exact probabilistic description of
multispecies reactions, but its high dimensionality renders it
computationally prohibitive.

Gillespie’s stochastic simulation algorithm5 !SSA" pro-
vides an exact sampling of the solution of the CME, thus
providing highly accurate results with sufficient sampling.
The computational efficiency of the SSA can be increased by
adopting, for example, a tau-leap algorithm6 or its
continuous-limit approximation in the form of a chemical
Langevin equation !CLE".7 Implicit in these and other ap-
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proximations of the SSA is a trade-off between computa-
tional speed-up and accuracy, which undermines their use in
complex multiscale biochemical phenomena involving fast
and slow reactions. A quasi-steady-state approximation,8

which neglects the fast reactions by assuming that a subset of
chemical species is at steady state at the timescale of interest,
is efficient but clearly inexact.

Some of the more recent contributions in this area in-
clude !1" speed-up of computation through a binomial tau-
leaping approach9 and k-skip method,10 !2" time-scale/
reaction partitioning based on the propensity values,11 a
hybrid approach,12 and quasi-steady-state approximation,13

!3" partial-propensity-based approach,14 and !4" alternative
formulations of CLE.15 Besides, Cai16 has developed an ap-
proach to perform stochastic simulation of reaction systems
with time-delays. Frazier et al.17 have developed a software
called BIOMOLECULAR NETWORK SIMULATOR to study various
aspects of stochastic simulation of complex biomolecular re-
action networks. Gillespie et al.18 have presented a detailed
analysis of issues in simplification of Michaelis–Menten for-
mulation into a single-step reaction in stochastic simulation.
Rathinam et al.19 have developed a methodology for para-
metric sensitivity analysis in stochastic simulation of reac-
tion networks. By no means this is an exhaustive list.

Hybrid methods, e.g., by Salis and Kaznessis,12 which
we pursue here, address the multiscale nature of reactive
systems by identifying fast and slow reactions and simulat-
ing the former with a CLE and the latter with Gillespie’s
SSA. This approach significantly reduces simulation time
without compromising the accuracy of the outputs. We
present a hybrid algorithm in which slow and fast reactions
are identified a priori, they can be reclassified during simu-
lation in response to changes in concentrations, and we can
deal with complex fluxes that cannot be modeled explicitly
through reactions. An example of such a flux, in the model of
cytosolic calcium dynamics, is the flux of #Ca2+$ from the
endoplasmic reticulum to the cytosol through inositol 1,4,5-
trisphosphate receptor channels !please see the expression
for Jch in Sec. III C 2".

We have used the dynamics of cytosolic calcium as a
case study to test our approach. The cytosolic calcium dy-
namics and its mathematical descriptions are briefly dis-
cussed in Sec. II to motivate the development of a multiscale
stochastic hybrid algorithm !SHA" in Sec. III, which consists
of the following steps. Section III A contains a formulation
of the calcium dynamics model used in our analysis. In Sec.
III B, we compare the performance of the existing stochastic
approaches, i.e., the Gillespie’s SSA, a tau-leap algorithm,
and a chemical Langevin equation. In Sec. III C, we present
the SHA, which consists of deterministic and stochastic com-
ponents, explicitly accounts for the presence of slow and fast
reactions, and incorporates complex fluxes that cannot be
modeled through reactions explicitly. An approach to handle
reactions with complex rate expressions is also presented in
this section explaining why the existing approaches to deal
with complex rates laws such as Michaelis–Menten
mechanism8,13,18 may not be directly applicable. The practi-
cal implementation of the SHA to the cytosolic calcium dy-
namics model3 is presented in Sec. III D. Section IV contains

the results of stochastic simulations of cytosolic calcium dy-
namics, whose biological implications are further discussed
in Sec. V.

II. DYNAMICS OF CYTOSOLIC CALCIUM

Cytosolic calcium is a second messenger that plays an
important role in intracellular signaling. Dynamic changes in
intracellular calcium serve both as an important indicator of
cellular events and as a quantitative measure of cellular re-
sponse to stimuli. In addition to affecting gene regulation,
calcium regulates the activity of many proteins such as
calmodulin,20 calreticulin,21–23 and calcineurin.24 Through
such regulation, cytosolic calcium affects many functions in-
cluding muscle contraction, fertilization, learning and
memory, among many others.

A. Biological mechanisms and pathways

Following Maurya and Subramaniam,3 we consider a
signaling network for calcium dynamics !Fig. 1", which rep-
resents the ligand-induced release of calcium from the endo-
plasmic reticulum !ER" into cytosol, binding of calcium
!Cai" to proteins !Pr" in the cytosol !shown" and in the ER
!not shown" and other calcium exchange fluxes to/from the
ER, the extracellular space and mitochondria. In the basal
state, the channel flux from the ER is very small and, along
with the leakage flux from the ER, is balanced by the Ca2+

uptake back into the ER by the sarco!endo"plasmic reticulum
calcium ATPase !SERCA" pump; the net flux across the mi-
tochondria and the PM is zero; and the Ca2+ outflux from the

FIG. 1. A simplified model for calcium signaling including calcium influx,
ER, and mitochondrial exchange and storage #diagram in panel B taken
from Maurya and Subramaniam !Ref. 3" with permission from Biophysical
Journal$. !a" Ligand Complement 5a !C5a" binds to its receptor on plasma
membrane !PM" and activates G protein Gi. The free G!" binds to PLC!
and increases its activity which accelerates the phosphorylation of PIP2 into
IP3 and DAG. IP3 binds to its receptor IP3R on the ER membrane. Thus,
calcium from the ER is released into the cytosol. Other fluxes between
cytosol and mitochondria or ECM are also shown. !b" Receptor module !box
1", GTPase cycle module !box 2", IP3 generation module !box 3", and feed-
back module !box 4"; ECM, extracellular matrix; PIP2, phosphatidylinositol
4,5-bisphosphate; IP3, inositol 1,4,5-trisphosphate; IP3,p, a lumped product
of IP3 phosphorylation; Cai, cytosolic Ca2+; Pr, proteins; ER, endoplasmic
reticulum; ATP, adenosine triphosphate; ADP, adenosine diphosphate;
SERCA, sarco!endo" plasmic reticulum calcium ATPase; PMCA, plasma
membrane calcium ATPase; NCX, Na+ /Ca2+ exchanger; L, ligand C5a; R,
receptor C5aR; GRK, G-protein-coupled receptor kinase; CaM, calmodulin;
PLC!, phospholipase C-!; GAP, GTPase activating protein; RGS, regulator
of G-protein signaling; DAG, diacylglycerol; PKC, protein kinase C; Pi,
phosphate.
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cytosol to the extracellular matrix !ECM" is mediated by the
plasma membrane calcium ATPase !PMCA" pump and the
Na+ /Ca2+ exchanger !NCX". The influx across the plasma
membrane consists of a nonspecific leakage flux and an
#IP3$-dependent specific flux, which combines many fluxes
including the entry through store-operated channels in re-
sponse to the ER depletion and other effects.25 Ca2+ binds to
buffer proteins in all three compartments, the cytosol, the
ER, and the mitochondria, for which rapid buffering kinetics
suggested earlier26,27 is used. For a more detailed analysis of
the perturbation of the calcium network, we refer the reader
to Maurya and Subramaniam.28

Maurya and Subramaniam3 developed a kinetic model
for calcium signaling in mouse macrophagelike RAW 264.7
cell and simulated the calcium dynamics for the ligand
Complement 5a !C5a". In nonexcitable cells, such as mac-
rophages, ligand-induced release of calcium from the ER is
the main initiator of calcium dynamics. Upon stimulation
with C5a, the C5a receptor !C5aR" becomes activated lead-
ing to activation of G-protein, G#,i followed by activation of
phospholipase C !PLC" ! !PLC!". The net result is in-
creased hydrolysis of phosphatidylinositol 4,5-bisphosphate
!PIP2" into inositol 1,4,5-trisphosphate !IP3", and increase in
the levels of cytosolic calcium !#Ca2+$i" due to the opening
of IP3 receptor !IP3R" channels on the endoplasmic !or sar-
coplasmic" reticulum !ER/SR" membrane.29 The concentra-
tion of calcium in the cytosol is in submicromolar range,
whereas it can be 10–100 s micromolar !$M" in the ER.29

Hence, upon opening of the IP3R channels, the large gradient
of calcium between the ER and the cytosol results in a burst
!large peak" of #Ca2+$i response.29 Through a positive feed-
back mechanism, also known as calcium-induced calcium
release !CICR",30,31 more Ca2+ is released from the ER into
the cytosol. Most of the calcium released binds to various
proteins, such as calmodulin !CaM". Calcium is also pumped
back to the ER by the SERCA pump. Some calcium is also
expelled to the extracelluar space through the Na2+ /Ca2+ ex-
changer !NCX" and the PMCA pump. The resulting calcium
current facilitates the cross-talk between calcium dynamics
and action potential in cardiac pacemaker cells.32 Calcium
exchange between cytosol and mitochondria also has been
observed at elevated level of #Ca2+$i.

B. Mathematical representations of calcium dynamics

Mathematical models of cytosolic calcium dynamics
were developed for both excitable33–37 cells and
nonexcitable27,33,38 cells. Many of these models deal with
spatial distribution of calcium by employing two- or three-
dimensional partial-differential equations.39 Most of such
models rely on nonspecific !independent of cell-type" param-
eter values and provide qualitative !rather than quantitative"
predictions of the behavior of various cell types. Moreover,
they fail to capture the calcium dynamics in RAW 264.7 cells
without parameter-tuning.3

The Maurya and Subramaniam3 model overcomes these
limitations by using experimental measurements in RAW
cells to constrain parameter values. The model neglects mo-
lecular diffusion, the presence of IP3R clusters, and local-

concentration effects in the mechanism for calcium release
from the ER,40 all of which are accounted for in the work by
Greenstein et al.,35 Jafri et al.,41 and Puceat and Jaconi.42 On
the other hand, it includes detailed mechanisms of G-protein
coupled receptor and G-protein activation and inactivation,
which are absent in the works of Hofer et al.,25 Lemon
et al.,27 Wiesner et al.,38 and Fink et al.39 The model enables
the analysis of the effects of single and multiple knockdowns
of proteins and subpopulational variability, i.e., to account
for the fact that different cell-populations, when triggered by
the same strength of a stimulus, result in quantitatively and
qualitatively different responses !different peak-heights, rise-
times, etc.".43 Hence, we adopt the signaling network identi-
fied by Maurya and Subramaniam3 as the basis for the
present analysis. The focus of the modeling studies is on the
sensitivity analysis of the peak-height of cytosolic Ca2+ to
stochastic versus deterministic simulation.

III. MATERIALS AND METHODS

A mathematical representation of the signaling network
identified by Maurya and Subramaniam3 is presented in Sec.
III A. The performance of standard stochastic simulation al-
gorithms is compared in Sec. III B. A new hybrid algorithm
that significantly improves the computational efficiency of
the standard stochastic algorithms is presented in Sec. III C.
The application of the hybrid algorithm to the cytosolic cal-
cium dynamics model3 is presented in Sec. III D.

A. The mathematical model of cytosolic calcium
dynamics

A system of ODEs that describe the cytosolic calcium
dynamics3 accounts for the chemical reactions grouped into
the four modules in Fig. 1!b". The receptor module !box 1"
consists of the reactions 1–11 responsible for receptor acti-
vation, desensitization of the ligand-bound active receptor
due to its phosphorylation, internalization of the ligand-
bound phosphorylated receptor, and receptor recycling. The
GTPase cycle module !box 2" consists of reactions 12–16
corresponding to activation and deactivation of G-protein
!G-protein is active when G!" and G#,iT are separated". The
IP3 module !box 3" includes activation of PLC! upon bind-
ing of G!" and cytosolic Ca2+ and subsequently catalyzed
hydrolysis of PIP2 into IP3 and DAG. Reactions 19 and 20
capture IP3 metabolism, i.e., its degradation/conversion to/
from other inositol-phosphates and back to PIP2, with only
one intermediate pseudospecies, namely, IP3,p or IP3 product
#Fig. 1!a"$.27 Positive feedback effects from calmodulin con-
stitute the fourth module !box 4".

The cytosol and other compartments are assumed to be
well-mixed. The state variables are described by a set of
ODEs !Ref. 44" involving the Ca2+ fluxes between different
cellular compartments and other fluxes due to reactions. The
15 state variables !concentrations" used to model the details
of ligand-induced generation of IP3 are #L$, #R$, #LR$, #G!"$,
#GRK$, #LRp$, #Rp$, #LRi$, #Rp,i$, #Rpool$, #G#,iT$, #G#,iD$,
#PIP2$, #IP3$, and #CaM$. #X$ represents concentration of
species X. These differential equations involve fluxes only
related to reactions modeled explicitly. Calcium dynamics
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introduces four additional state variables: #Ca2+$i, #Ca2+$ER, h
and #Ca2+$mit, where #Ca2+$ER and #Ca2+$mit denote the con-
centrations of free Ca2+ in the ER and mitochondria, respec-
tively; and h is the fraction of IP3R to which calcium is not
bound at the inhibitory site !IP3 and calcium may or may not
be bound at the other two sites, respectively".45 These differ-
ential equations deal with flux expressions due to complex
lumped mechanisms which cannot be modeled through reac-
tions explicitly. Thus, the model by Maurya and
Subramaniam3 has 19 state variables. The quantities of all
chemical species are in terms of their concentrations, nor-
malized with respect to a unit volume of the cytosol. The
model involves 65 reaction-rate parameters, including both
simple and complex reaction fluxes and other flux exchanges
between different compartments.

In this analysis, we focus on the calcium dynamics in the
regimes with exceedingly small concentrations of relevant
chemical compounds. To give an example, for dose response,
corresponding to the lowest dose of the ligand C5a, the num-
ber of the molecules is 180 !0.1% of 30 nM concentration".
In another case, in sensitivity analysis of G!", the number of
molecules of G!" !total pool" considered is 2500 at 5% level
of nominal value. Corresponding to this, the number of mol-
ecules of free G!" is 10. In such regimes, the fidelity of
continuum !ODE-based" descriptions might be compro-
mised, and stochastic effects become important.

B. Comparison of computational efficiency of
stochastic simulation algorithms

For the sake of completeness, in Appendix, we present a
brief overview of the existing stochastic algorithms, namely,

Gillespie algorithm, tau-leap method, and chemical Langevin
equation. To compare their performance, we have applied
these three algorithms to an enzymatic reaction satisfying the
Michaelis–Menten rate law !example taken from Ref. 46",

S + E→
c1

C, C→
c2

S + E, C→
c3

P + E , !1"

where S, E, C, and P denote the substrate, enzyme, enzyme-
substrate complex, and product, respectively, or the number
of their molecules. Figure 2 shows the temporal evolution of
S!t" and P!t" from their initial levels S!0"=312, E!0"=125,
and P!0"=0, computed with the three approaches for sto-
chastic simulation described above. The three algorithms
yield similar predictions, with the tau-leap and CLE algo-
rithms giving nearly indistinguishable solutions.

Figure 2!a" shows time-course of one realization from
each method. Although the single time-courses show good
agreement, time-course of mean and standard deviation of
1024 realizations are computed as well in order to ensure
that they have similar statistical characteristics. Figures 2!b"
and 2!c" show excellent agreement among three algorithms
in terms of mean and standard deviation. Next three histo-
grams show probability distribution of the number of mol-
ecules of S sampled at t=10 s #Figs. 2!d"–2!f"$. The three
histograms have almost same values of the mean
!#Gillespie,Tau-leap,CLE$= #140.40,139.25,139.89$" and
the standard deviation !#Gillespie,Tau-leap,CLE$
= #5.84,6.09,6.06$".

Table I demonstrates the scalability of the three stochas-
tic algorithms with the number of molecules involved in the
simulation of Eq. !1". As the initial number of molecules,
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FIG. 2. Temporal evolution of the concentrations of substrate S!t" and product P!t" computed using the Gillespie, tau-leap, and CLE approaches. !a" shows
time-course of one realization from each method. !b" and !c" show the time-course of mean and standard deviation from 1024 realizations, which show
excellent agreement among the three different methods. !d"–!f" show histograms and probability distribution of the number of molecules of S sampled at t
=10 s. The shapes of the three histograms are very similar.
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S!0" and P!0", increases 100-fold, the computation time of
the Gillespie algorithm increases almost 100-fold, while the
run times of the tau-leap and CLE algorithms remain practi-
cally unchanged. The run times reported represent MATLAB

simulations carried out on a Windows based PC with 2.1
GHz Intel dual core processor and 2 GB RAM.

C. A multiscale hybrid approach

While the use of the CLE is appealing due to its compu-
tational efficiency, its accuracy suffers as the number of mol-
ecules involved in the chemical reactions becomes small.
Likewise, the Gillespie algorithm is attractive due to its ac-
curacy but it becomes inefficient when the number of chemi-
cal reactions and/or molecules becomes large. This di-
chotomy calls for the use of a hybrid approach !described in
Sec. III C 1 below" in which fast reactions are tackled with
the CLE, and the Gillespie algorithm is employed to simulate
slow reactions.

An additional complication in modeling the cytosolic
calcium dynamics arises from the presence of fluxes in
which reactions are either absent or modeled implicitly and,
hence, are not readily amenable to the stochastic formula-
tions described above. These fluxes are modeled determinis-
tically via ODEs as described in Sec. III C 2, giving rise to a
stochastic-deterministic hybrid approach. Besides, the rate
expressions for some reactions are complex. These rate ex-
pressions are a combination !function" of one or more law of
mass action kinetics, Michaelis–Menten kinetics or Hill-
dynamics-based terms. A stochastic treatment of such reac-
tions in terms of propensity functions is described in Sec.
III C 3. Our new multiscale hybrid approach accounts for all
these three scenarios.

1. Multiscale approach

In many complex biochemical systems, including the cy-
tosolic calcium dynamics, some reactions occur very fre-
quently over short time-intervals, while others seldom occur.
In deterministic ODE-based models, the Jacobian matrix,
which is a function of both the reaction rate constants and the
species concentrations, can be used to classify species as fast
or slow. In particle-based stochastic simulations, the system
proceeds through firing of reactions and hence the speed of
both the reactions and species is important. To call a reaction
“slow” or “fast,” the knowledge of reaction rate constants
alone is not sufficient. Indeed, a reaction with a large reac-
tion rate constant cannot be classified as fast if they involve

small numbers of reactant species. The approach presented
below is, essentially, based on the work of Salis and
Kaznessis12 and Haseltine and Rawlings47 !see also the con-
tribution of Haseltine and Rawlings48".

Following Salis and Kaznessis,12 we classify a jth reac-
tion as fast if the following two constraints on the propensity
function #Eq. !A2"$ and the number of molecules of each
species involved in the reaction are simultaneously satisfied,

aj#X!t"$dt % #, 1 & j & M , !2a"

and

Xi!t" ' !%( ji
%, 1 & i & N , !2b"

where ( ji
are the components of the vector ! j #Eq. !A3"$. The

coefficients #'1 and ! serve to specify how many reactions
occur and how many molecules exist within dt, respectively.
Both # and ! can vary with a system’s size. For the simula-
tions reported in Sec. IV, the values of # and ! are based on
trial and error. We tried the following combinations:
!# ,!" = &!3000,16 000" , !3000,15 000" , !2000,16 000" ,
!4000,16 000"'. Values of ! less than 16 000 result in nega-
tive number of molecules of at least one component. Thus,
values of ! have a significant effect on classification of re-
actions as slow or fast. However, values of # have weaker
effect as revealed by little change in computation time. This
is because the range of # is wide so that these values are not
critical in deciding fast or slow reactions. As a result, we
found that #=3000 and !=16 000 provide good computa-
tional efficiency and maintain the positivity of the number of
molecules.

Suppose that at a time t the system state is denoted as
X!t", and the system consists of Ms slow and Mf fast reac-
tions !Ms+Mf =M": M=Ms"M f, Ms

! =Ms, and M f
! =Mf.

Let the probability of the system state be denoted by P#X ; t$.
Then, P#X ; t$ can be rewritten as the joint probability
Ps,f#X ; t$, which is in turn expressed in terms of the condi-
tional probability as Ps,f#X ; t$= Ps%f#X ; t$Pf#X ; t$. This allows
one to approximate the rate of change of P#X ; t$,47

dP#X;t$
dt

=
dPs%f#X,t$

dt
Pf#X;t$ +

dPf#X;t$
dt

Ps%f#X;t$ , !3"

with

dP#X;t$
dt

(
dPf#X;t$

dt
Ps%f#X;t$ . !4"

This approximation is justified by the fact that, at the time-
scale of interest, slow reactions do not occur, and hence,
Ps%f#X , t$ does not change with time. So, its derivative is
approximately zero.

The approximation in Eq. !4" provides a theoretical
foundation47 for the following hybrid strategy.

TABLE I. The run-time scalability of the Gillespie, tau-leap, and chemical
Langevin equation algorithms as a function of the number of molecules.

Initial number of molecules

S: 312, E: 125 S: 31 200, E: 12 500

Method
Computation time

!second"
Computation time

!second"

Gillespie algorithm 0.892 100.3
Tau-leap algorithm 0.235 0.354
CLE 0.003 0.003
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• Use the CLE to model fast reactions for which aj)
!j"M f" are large and the number of molecules of all
the reactants is large to warrant the continuum approxi-
mation !see Appendix, Sec. 3".

• Employ the Gillespie algorithm to describe the remain-
ing slow reactions. For the slow reactions, instead of
Gillespie algorithm one can use the Gibson and Bruck’s
next reaction method49 as the latter is about five times
faster for the same level of accuracy.

These criteria for classifying reactions as slow or fast,
and the corresponding numerical methods to be used to
model each reaction, are summarized in Table II.

2. Deterministic modeling of nonreaction fluxes

Previously, Vasudeva and Bhalla50 have used an adaptive
approach to select between deterministic and stochastic ap-
proaches depending on the number of molecules involved.51

However, in the present work, the need to use deterministic
equations arises when one or more of the fluxes involved in
the corresponding ODEs cannot be modeled as reactions.
This does not depend on the number of molecules. Examples
of such fluxes include complex interorganelle transport of
molecules such as, in our model, movement of Ca2+ from
endoplasmic reticulum to the cytosol through IP3R channels
#Jch in Eq. !5"$. One can argue that this particular flux could
be modeled using the 12 reversible reactions proposed by
DeYoung and Keizer52 and later simplified by Li and
Rinzel.45 However, in some cases the detailed mechanisms
are not known and flux approximation is the only option.

The calcium dynamics model3 includes four coupled
ODEs for the state variables #Ca2+$ER, #Ca2+$i, h, and
#Ca2+$mit, which contain fluxes whose underlying mecha-
nisms involve many reactions that are not modeled explicitly.
These processes are treated deterministically in our algo-
rithms. Consider, for example, the rate of change of #Ca2+$ER
!the other three ODEs can be found here3 and are provided in
the supporting material53",

d#Ca2+$ER

dt
=

!ER

*ER
!JSERCA − Jch − JER,leak" . !5"

In Eq. !5", the rapid binding of calcium to buffer proteins is
modeled implicitly through !ER, the ratio of free calcium to
total !free and bound" calcium in the ER; and the use of *ER,
the volumetric ratio of the ER and the cytosol, obviates the
need to specify the ER volume explicitly. The calcium fluxes
through the SERCA pump back to the ER, JSERCA, through
the IP3R channel from the ER to the cytosol, Jch, and due to

the calcium leakage from the ER, JER,leak, are prescribed as
nonlinear functions of the state variables #Ca2+$ER, #Ca2+$i, h,
and #Ca2+$mit.

The complexity of the fluxes of the state variables
#Ca2+$ER, #Ca2+$i, h, and #Ca2+$mit complicates their model-
ing with the stochastic simulation algorithms described
above. For example, the expression for Jch is given by

Jch = vmax,ch + )* #IP3$
#IP3$ + KIP3

+ + * #Ca2+$i

#Ca2+$i + Kact
+ + h,3

+!#Ca2+$ER − #Ca2+$i" . !6"

So, in our hybrid approach, the corresponding four ODEs are
integrated via a first-order Euler scheme after all other quan-
tities are updated using the multiscale stochastic method de-
scribed in Sec. III C 1. The coupling of continuum !ODE-
based" and stochastic !particle-based" descriptions requires
relating the concentrations to numbers of molecules. For the
cytosolic calcium dynamics in RAW 264.7 cells considered
in this study, we use a cytosolic volume V=10 pL or a cell
diameter of 27 $m. Then the concentrations, e.g., the con-
centration of ligand, #L$=30 nM, can be related to the num-
bers of molecules, as follows:

30 nM = 30 + 10−9 +
6.022 + 1023

L

+10−11 L = 180 660 molecules. !7"

3. Reactions with complex rate expressions

Some explicitly modeled reactions have complex rate
laws which are actually functions of Michaelis–Menten
!MM" or Hill dynamics-based complex rate expressions.

We studied four methods for stochastic simulation pre-
sented in the literature to perform coarse-graining and han-
dling complex rate laws for a single reaction and coupled
reactions with Michaelis–Menten kinetics. The first such
contribution is the quasi-steady-state approximation !QSSA"
approach of Rao and Arkin.8 Mastny et al.54 have carried out
in-depth analysis of using QSSA under different conditions
through the use of singular perturbation analysis. More re-
cently, Barik et al.13 have extended the QSSA by analyzing
the conditions under which the standard QSSA might fail.
They have utilized the total QSSA !TQSSA" and have shown
that under certain conditions the method of Rao and Arkin8

fails. They have applied the TQSSA approach to a single
Michaelis–Menten mechanism, the Goldbeter–Koshland
!GK" ultrasensitive switch system involving two coupled
Michaelis–Menten mechanisms, and a bistable system com-
posed of two GK switches. The approach requires solving
quadratic equations to solve for the propensity of slow reac-
tions for use with the standard Gillespie algorithm. For these
cases, the results are outstanding in that the mean temporal
responses obtained from the TQSSA and the standard
Gillespie algorithm are indistinguishable. The work of
Gillespie et al.18 deals with a detailed analysis of the issues
in simplification of Michaelis–Menten formulation into a
single-step reaction in stochastic simulation.

TABLE II. Criteria used to identify slow and fast reactions and correspond-
ing numerical method. Columns 2 and 3 list the scale and simulation method
in the scale !method" format.

# of molecules of species involved

Reaction propensity

High Low

Large Fast !CLE" Slow !Gillespie"
Small Slow !Gillespie" Slow !Gillespie"
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All these are successful approaches in handling systems
with one or a few reactions. However, these approaches have
not been applied to more complex systems involving many
reactions !say, about 20 or more" with both simple and com-
plex rate laws. In our case, some of the rate laws are signifi-
cantly more complex than the examples presented in these
contributions. Also, in our case, the corresponding mecha-
nisms are highly lumped representations of the underlying
detailed mechanisms. If one were to consider the detailed
mechanisms, the parameters would be unknown, making the
simulations infeasible.

To handle such rate laws, here we provide an example of
the calculation of the propensity functions #Eq. !A2"$ for
such reactions; other reactions are treated similarly in the
supporting material !Table S2".53

We consider the forward component of the lumped-
enzymatic reaction 3 in box 1 of Fig. 1!b" !reaction 5 in
Table S1 of supporting material",53

#GRK;Cai$LR→
kf ,3

LRp, !8"

which is facilitated by the presence of enzymes GRK and
Cai. The corresponding flux can be written as3 !see also
Tables S1 and S2 in supporting material"53

v5 = kf ,3#LR$#GRK$MMf!Km,Cai,3
,#Ca2+$i" , !9"

where kf ,3 is second-order rate constant, Km,Cai,3
is the

Michaelis parameter, and MMf!Km ,x"=x / !Km+x" is the MM
rate expression. Recognizing that LR acts as a reactant and
recalling Eq. !A2", we compute the propensity function a5
for reaction of Eq. !8" by first determining the number
of possible combinations of reactant molecules in the reac-
tion of Eq. !8" as h5= #LR$NAV and the correspond-
ing specific probability rate constant as c5
=kf ,3#GRK$MMf!Km,Cai,3

, #Ca2+$i". Hence, the propensity
function a5=c5h5 is given by

a5 = v5NAV . !10"

Another example is given in Sec. 1.3 of supporting material.
Analysis similar to that leading to Eq. !10" and Eq. !S12" of
supporting material suggests the following relationship be-
tween the propensity function and the macroscopic flux of a
jth reaction with a complex rate expression:

aj = v jNAV . !11"

The stepwise procedure for numerical implementation of the
entire multiscale hybrid stochastic simulation is presented in
the supporting material.53

D. Application to cytosolic calcium dynamics in RAW
cells

This multiscale hybrid approach was applied to the cy-
tosolic calcium dynamics with parameter values and initial
conditions taken from Maurya and Subramaniam.3 The sys-
tem consists of 28 irreversible reactions and 26 species
#Table S1 and Eq. !1" in Supporting Material53$, which are
represented by the state vector,

X = #L,R,LR,G!",GRK,GRK . G!",Cai
2+,LRp,Rp,LRi,ARR,

Rp,i,Rpool,GiD,T,G#,iT,G#,iD,A,PIP2,IP3,PLC!,IP3,p

XPIP2,gen,CaM,Ca2.CaM,Ca2.CaM . GRK$T. !12"

The multiscale hybrid algorithm is needed because the num-
bers of molecules of some of these species are close to 0
while others have above 106 molecules !Table S3 in support-
ing material53" and because the propensity functions
aj!X" !j=1, . . . ,28" vary from 0 to over 104.

Before the ligand is added, the system is simulated for
1000 s so that the system reaches a steady state. At time t
=1000 s, ligand C5a is applied to cells and binds to its re-
ceptor !C5aR", which leads to the increase in IP3 levels. The
simulation consists of two phases: before adding ligand and
after adding ligand. At t=0, the species R, G!", GRK, Cai

2+,
Rpool, T, G#,iD, A, PIP2, PLC!, XPIP2,gen, and CaM are
present !Table S3 in supporting material53". Other species
have zero molecules.

At the first time step, )=8.0361+10−7 s. Reactions 14,
17, 18, and 21 in Fig. 1!b" are considered to be fast, while
the remaining reactions are taken to be slow !see approxima-
tion 2b". The second time step is calculated based on the
reaction rates, number of molecules obtained from first time
step, etc.

All simulations reported in Sec. IV were carried out on
the linux-based Triton Cluster at San Diego Supercomputer
Center !SDSC", with parallelization accomplished by using
Microsoft’s STAR-P program. The number of processors used
varied between 8 and 256 depending on the number of real-
izations generated. On an average, the simulation time for
each realization was 15 h. The total single-processor equiva-
lent of simulation time for all the results is about 50 000 h.

IV. RESULTS

Comparison of response of #Ca2+$i from stochastic and
deterministic simulation is presented in Sec. II A and Fig. S1
of Supporting material. Comparison of results from stochas-
tic simulation and single-cell calcium measurements by the
Alliance for Cellular Signaling are presented in Sec. II B and
Fig. S2 of Supporting material. As evident from Fig. S1F, in
the limit of large number of molecules of reacting species,
stochastic and deterministic simulations yield nearly identi-
cal results. Below, we compare other features of the response
as predicted by stochastic versus deterministic simulation.

A. Dose response

Dose response, which is a measure of efficacy of a
ligand,3 is presented in Fig. 3. Rather than relying on com-
monly used saturating dose levels to generate dose-response
curves, we choose only sub-basal !very low" doses. This en-
ables us to identify differences between the dose responses
of #Ca2+$i predicted by deterministic and stochastic simula-
tions, respectively. Figure 3!a" demonstrates the temporal
evolution of the dose responses of #Ca2+$i to the basal dose
of #C5a$=30 nM and its 0.1%, 1%, 10%, and 50% fractions.
The peak-height of cytosolic Ca2+ increases with the dose of
ligand, a finding that is made explicit in Fig. 3!c".
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The stochasticity effects and differences in #Ca2+$i re-
sponses obtained from the deterministic and stochastic simu-
lations are explored in Figs. 3!b" and 3!c". Note that in Fig.
3!a" the dose responses computed with the two approaches
are nearly identical, with the deterministic predictions shifted
to the right by 100 s to improve visibility. Figure 3!b" dem-
onstrates the importance of stochasticity !randomness" for
small numbers of ligand molecules !e.g., 0.1% C5a", when
the peak-height varies substantially between realizations. Al-
though the ensemble mean of the peak-height of #Ca2+$i re-
sponse from these realizations visually overlaps with that
from deterministic prediction, quantitatively, they are differ-
ent as expressed through “normalized response difference
!NRD"” in Fig. 3!c".

As the number of molecules becomes very small, the
concept of “concentration” loses its rigor and deterministic
simulations can be expected to introduce modeling errors.
This effect is elucidated in Fig. 3!d", where the relative error
or !NRD" !E" between the deterministic and stochastic solu-
tions of #Ca2+$i response is shown. E is computed as

E -
%deterministic − ensemble avg%

max!deterministic,ensemble avg"
+ 100%. !13"

Figure 3!d" shows that E decreases as the dose of C5a in-
creases, indicating the diminishing effects of randomness
!stochasticity". The NRD varies from E=7% at the 0.1%
dose to almost zero at the full dose of 30 nM. These results
demonstrate that at lower doses, stochastic simulations are
needed and that the ensemble average of multiple realiza-

tions provides a more accurate prediction of the system be-
havior then does the deterministic output. Further analysis of
this phenomenon is presented below.

B. Convergence of stochastic simulations at low
doses

Figures 4!a"–4!d" show the histograms of the peak-value
of calcium response, #Ca2+$i, due to the 0.1% dose of C5a.
The histograms in Figs. 4!a"–4!d" represent, respectively, 16,
64, 256, and 512 realizations of the stochastic hybrid algo-
rithm, using 20 bins in each case. The vertical dotted line in
each panel corresponds to the mean computed from the cor-
responding number of realizations, and the solid curves are
the Gaussian distributions whose mean and variance are
computed from the same realizations. Although the central
limit theorem applies to the distribution of the mean of a
random variable instead of the distribution of the random
variable itself, it is interesting to note that the shape of the
computed distributions approaches the Gaussian distribution
as the number of realizations increases from 16 in Figs. 4!a"
to 512 in Figs. 4!d".

To find out if the central limit theorem is applicable to
the peak-value of #Ca2+$i response, the mean of 4, 8, 16, or
32 realizations was computed. This was repeated in each
case to generate 1024 such mean values. The histogram of
the mean values is shown in Figs. 4!e"–4!h". All the four
histograms are similar to a Gaussian distribution and the
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standard deviation from these distributions indeed decreased
proportional to 1 /.Nr, Nr being the number of realizations
used to compute the mean.

C. Random variability of the †Ca2+‡i response at low
doses

The number of molecules of C5a at 0.1% dose is about
180. The number of molecules of cytosolic Ca2+ is of the
order of 300 000. The number of molecules of free G!" is
about 10 000 and that of the phosphorylated receptor still
bound to the ligand !LRp" is about 60. Figure 4!i" shows how
standard deviation !," of the #Ca2+$i response varies across
16 realizations. Figure 4!j" shows the variation of the nor-
malized standard deviation ,̃, defined as: ,̃=, /H, where
H=h−b is the difference between the basal level of calcium
response b and the peak level h. It is clear from Fig. 4!j" that
the normalized standard deviation ,̃ increases as the C5a
dose decreases, indicating the increasing importance of ran-
domness !stochasticity". This is because as the C5a dose !the
number of C5a molecules" decreases, fewer C5a molecules
participate in chemical collisions and hence the enhanced
relative importance of stochasticity. One implication of this
is that more stochastic realizations are needed to accurately
estimate the mean response or the variability in response.

From an experimental view point, a larger population of cells
is needed to get a stable readout for mean calcium response.

D. Sensitivity analysis

In this study we have focused on the perturbations in the
initial pool of certain species. Quantification of parametric
uncertainty in the reaction rate constants used in the
Gillespie and other algorithms described above can be car-
ried out following the procedure described by Srinivasan et
al.55 A similar analysis could be performed with respect to
perturbations in the rate parameters while keeping the C5a
dose and the initial pool of all species at their nominal levels.
Since the number of molecules is sufficiently large under
these conditions, the results of sensitivity analysis using sto-
chastic simulation are similar to those obtained using deter-
ministic simulation. As an example, results of sensitivity
analysis of #Ca2+$i response for changes in k1 are shown in
Fig. S3 in the supporting material.53

The sensitivity of #Ca2+$i response to variations in
IC: #G!"$ is shown in Fig. 5 and for IC:#R$ and IC: #G#,iD$ is
shown in Fig. S4 !supporting material". In this discussion, IC
refers to initial condition, which is generally also the total
pool of protein/species being considered. These concentra-
tions were changed, one at a time, by factors of 10−3, 10−2,
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0.05, 0.1, 0,2, 0.5, and 0.75 of their respective base values.
For each concentration change, a new basal level !steady
state" was computed by allowing the system to evolve for
1000 s before ligand addition, at which time 30 nM of C5a
ligand was applied. Note that 10% of a base value means a
90% knockdown of the species/gene in question. Shift of
basal level before ligand addition and the peak-height from
basal level are the main focus of this sensitivity analysis.

Figures 5!a"–5!c" provide an analysis of the #Ca2+$i re-
sponse to changing doses of IC: #G!"$, which varies from its
base value to the 1/20, 1/5, 1/2, and 3/4 fractions thereof.
The number of molecules involved at 1/20 level of IC: #G!"$
is: G#,iD: 46 000, G#,iT: 5100, free G!": 16, GRK.G!": 10,
LRp, 1400, Rp, 15, IP3: 260 000, and free cytosolic Ca2+:
290 000. Figures 5!b" and 5!c" reveal that the #Ca2+$i re-
sponse is very sensitive to the changes in IC: #G!"$. Its peak-
height decreases by 90% as IC: #G!"$ is reduced by 50% and
becomes negligible when #G!"$ drops below 20% of its base
value #Fig. 5!b"$. The relative error between the #Ca2+$i re-
sponses predicted by deterministic and stochastic simula-
tions, E #Fig. 5!c"$, becomes very large when the concentra-
tion #G!"$ drops below 20% of its base value, indicating the
importance of randomness, which is caused by small num-
bers of molecules of G!".

We have also studied how the mean peak-height and
NRD change when different numbers of realizations are
used. Figure 5!b" shows the mean peak-height obtained from
8, 16, 32 realizations and deterministic simulation. The
curves are almost indistinguishable. Difference for #5%,
20%, 50%, 75%, 100%$ of IC: #G!"$ is #1.18 0.16 0.16 0.10
0.10$%; the largest difference being less than 1.2%. Essen-
tially, 16 realizations are sufficient to compute the mean with
good accuracy. So, 16 realizations are used in other simula-
tions as well.

E. Calcium response to protein knockdown

Since the stochastic hybrid algorithm enables us to pre-
dict cytosolic calcium dynamics when only a few molecules
of reacting species are present, we are in a position to ex-
plore the effects of proteins’ knockdown on calcium re-
sponse. Figures 6 and 7 show the #Ca2+$i response to knock-
down of proteins PLC! and GRK, respectively. Figure 8
shows the #Ca2+$i response to knockdown of protein GRK
and perturbation of !knockdown of the protein related to"

Vmax,PM,IP3dep. To model a protein’s knockdown, we first re-
duced its basal level, and then computed a new basal level
!steady state" by evolving the system for 1000 s, at which
time 30 nM of C5a ligand was applied.

Figures 6!a" and 6!b" show the #Ca2+$i response to the
50%, 80%, 90%, and 99% knockdown of PLC! for 0.1%
and 10% doses of IC:#R$, respectively. The number of mol-
ecules involved at 0.1% dose of IC:#R$ and 90% knockdown
of PLC! is total PLC!: 3400, G#,iD: 17 000, G#,iT: 350,
free G!": 14 000, GRK.G!": 3700, LRp, 225, Rp, 2, IP3:
270 000, and free cytosolic Ca2+: 297 000. Figure 6!c" shows
the variation of the #Ca2+$i peak-heights corresponding to
different combinations of the PLC! and IC:#R$ levels. Both
the peak-height and basal levels of #Ca2+$i decrease as the
knockdown level of PLC! increases. The deterministic and
stochastic simulations yield similar results with NRD less
than 4% #Fig. 6!d"$. This clearly suggests that it may not be
necessary to carry out stochastic simulation to model knock-
down of PLC!. For experiments, the implication is that a
relatively smaller population of cells may be sufficient to get
a stable readout if other experimental factors can be
controlled.

Figures 7!a" and 7!b" present the #Ca2+$i response to the
50%, 80%, 90%, and 99% knockdown of GRK for 0.1% and
10% doses of IC:#R$, respectively. The number of molecules
involved at 0.1% dose of IC:#R$ and 90% knockdown of
GRK is free GRK: 1500, G#,iD: 9200, G#,iT: 400, free G!":
10 000, GRK.G!": 400, LRp, 44, Rp, 1, IP3: 400 000, and
free cytosolic Ca2+: 301 000. The largest peak-height occurs
at lowest #GRK$ and highest #R$ #Fig. 7!c"$, which is quali-
tatively opposite to the response due to the PLC!. Figure
7!d" demonstrates that either deterministic or stochastic
simulations can be used to investigate this behavior, with the
maximum NRD E of about 1.5%, which occurs at low #R$
and is practically independent of the level of GRK.

Figure 8 demonstrates the #Ca2+$i response to various
degrees of simultaneous knockdown of protein GRK and the
protein related to Vmax,PM,IP3dep. Knockdown of GRK has a
more pronounced effect on #Ca2+$i response than does
Vmax,PM,IP3dep. The relative importance of the two knock-
downs does not change at different levels of KD. This sug-
gests the robustness of the system response over a large
range of perturbations.
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V. SUMMARY AND DISCUSSION

In summary, we have integrated the existing techniques
for multiscale stochastic simulation with deterministic simu-
lation to deal with complex reaction systems and have ap-
plied it to studying calcium dynamics in macrophage cells.
When the concentration of reactants is sufficiently large, the
stochastic method yields time-course profiles identical to
those obtained from a deterministic model !ensemble aver-

age of 16 or more realizations". However, at lower number of
molecules of one or more species, measurable relative differ-
ence in #Ca2+$i responses predicted by the two approaches is
obtained, especially for the case of G!", thus suggesting the
necessity of using stochastic simulation as opposed to deter-
ministic simulation for studying system dynamics at subcel-
lular levels. Dose response analysis revealed that while the
NRD between #Ca2+$i responses predicted by deterministic
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and stochastic simulations is negligible at the full dose of 30
nM !shown" or higher doses including saturating doses !not
shown", it increases with decreasing doses. At 0.1% dose, it
is as high as 7%. These results are emphasized again in the
sensitivity analysis of the parameters used in the simulation
and in the knockdown analysis of reacting protein compo-
nents.

A. Methodological components

We have developed a hybrid approach to stochastic
simulation, in which slow reactions and fluxes are handled
through exact stochastic simulation and their fast counter-
parts are treated partially deterministically through the
chemical Langevin equation. The classification of reactions
as fast or slow is accompanied by the assumption that in the
time-scale of fast reactions, slow reactions do not occur and
hence do not affect the probability of the state. Our new
approach also handles reactions with complex rate expres-
sions such as functions of Michaelis–Menten kinetics and
power-law kinetics by developing mathematical expressions
for their propensity functions and microscopic fluxes. Fluxes
which cannot be modeled explicitly through reactions are
handled deterministically.

B. Sensitivity analysis

The peak-height of the #Ca2+$i response decreases with
decreasing value of IC: #G!"$, and no baseline shift is ob-
served #Fig. 5!a"$. In the absence of perturbation, at early
times, the concentrations #G!"$=8.28e−3 $M and #G#,iD$
=8.12e−3 $M are almost equal. However, if IC: #G!"$ is de-
creased, there is little free G!" left. Since this directly affects
the rate of PIP2 hydrolysis, no IP3 can be generated. Due to
this effect, with decreasing IC: #G!"$, the peak-height of
#Ca2+$i decreases much more sharply. Although not shown in
Figs. 5!a" and 5!b", if IC: #G!"$ increases beyond 100% of
base case, then the excess G!" is present in the free form,
hence both the basal level and peak-height increase until
saturation. This is similar to the decrease in IC: #G#,iD$
shown in Figs. S4 D-F !supporting material" and briefly dis-
cussed below.

With decreasing IC:#R$, lesser #G!"$ is available28 !Figs.
S4 A-C, supporting material", which results in reduced acti-
vation of PLC! and as a consequence reduced hydrolysis of
PIP2 into IP3. Hence, the increase in cytosolic #Ca2+$ is
smaller. The sensitivity curve for IC:#R$ in Fig. S4 B is non-
linear. This is because the ligand and the receptor bind in 1:1
stoichiometry and the nominal value of IC:#R$ !/40 nM"
are larger than the nominal !100%" level of C5a !30 nM".
Thus, for a small decrease !say, 10%" in IC:#R$, about 36 nM
#R$ is present. Since 36 nM is still larger than 30 nM, the
dynamics of #LR$ remains almost the same and so does the
peak-height of the temporal response of #Ca2+$i. Basal level
does not change in our model since the receptor comes into
play only after adding the ligand. In reality, there is a little
decrease of #Ca2+$ in cytosol due to the little basal activity,
but it is compensated by the basal hydrolysis rate of PIP2 and
hence is unobservable.

Sensitivity analysis of IC: #G#,iD$ shows biphasic re-
sponse of #Ca2+$i: large baseline shift and low peak-height at
substantially low IC: #G#,iD$ !supporting material, Fig. S4 D,
upper panel" and a small baseline shift !increase" and the
corresponding nominal increase of peak-height at relatively
smaller perturbations !#90% 85% 80%$ of IC: #G#,iD$, Fig.
S4 D, lower panel". At substantially low #G#,iD$, large
amount of free #G!"$ results in a large basal level shift, and
with the basal level at this plateau, little additional increase
in #Ca2+$i is observed, i.e., this results in a low peak-height
of #Ca2+$i upon ligand addition.

The NRD increases with decreasing IC:#R$. The behav-
ior of NRD for decrease in IC: #G!"$ is similar to that for
decrease in IC:#R$ except that it is drastically larger at very
low values !more than 80% NRD at 5% IC: #G!"$". While
the NRD in the sensitivity analysis of IC:#R$ is under 2% for
all changes, it is up to 90% in the perturbation of IC: #G!"$.
There are three reasons for this drastic difference: !1" sto-
chastic effects are prominent at low concentrations, !2" the
system is very sensitive to large decreases in #G!"$ as com-
pared to in #R$ or #G#,iD$, and !3" the NRD is normalized by
the peak-height #Eq. !13"$. Since peak-height is very low at
low #G!"$, the NRD gets amplified.

C. Knockdown „KD… analysis

Our results show reduced G-protein activity and #Ca2+$i
response upon KD of the receptor. KD of G!" results in a
sharp decrease in calcium levels and KD of G#,iD results in
considerably large increases in basal level of #Ca2+$i !in-
ferred from sensitivity analysis". KD of GRK results in in-
creased and prolonged mobilization of calcium since the re-
ceptor remains active for a longer time. Thus, GRK regulates
G-protein activity strongly. Similar to G!", knockdown of
PLC! shows a sharp decrease in #Ca2+$i. This is because IP3
generation is catalyzed by the active complex of Ca2+,
PLC!, and G!". As the knockdown level of PLC! increases,
both the peak-height and basal levels of #Ca2+$i decrease
since less IP3 is generated #reaction 18 in Fig. 1!b"$. Quali-
tatively, the knockdown response of PLC! is similar to that
of the knockdown response of G!" since both play a similar
role in IP3 generation #modules 2 and 3 in Fig. 1!b"$.
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FIG. 8. The #Ca2+$i response to the simultaneous knockdown of GRK and
gene/protein related to Vmax,IP3dep. Knockdown of GRK and reduction of
Vmax,PM,IP3dep have opposite effects on the #Ca2+$i response. The response is
much more sensitive to knockdown of GRK than to decrease in
Vmax,PM,IP3dep.
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In contrast to the KD response of PLC!, as KD level of
GRK increases, peak-height of #Ca2+$i increases strongly
#Figs. 7!a" and 7!b"$. This is because the phosphorylation
induced through reactions 3 and 4 decreases as KD level of
GRK increases #Fig. 1!b"$. Moreover, the time to return to
steady state also increases considerably since the receptor
remains active for a longer time and relatively more G!" is
present in the free active state. The basal level increases
slightly relative to peak-height only at low IC:#R$ #0.1%,
Fig. 7!a"$. At moderate IC:#R$ #10%, Fig. 7!b"$, the increase
in basal level is negligible as compared to the peak-height.

Vmax,PM,IP3dep affects JPM,IP3dep !IP3-dependent in-flux to
cytosol across the plasma membrane" in a proportional man-
ner. Double perturbation of GRK and Vmax,PM,IP3dep has re-
vealed that for increase in their KD levels, GRK and
Vmax,PM,IP3dep have opposite effects on #Ca2+$i. Reduction of
Vmax,PM,IP3dep results in decrease of #Ca2+$i because JPM,IP3dep

is reduced !the lower three time-courses shown with light
colored lines in Fig. 8". On the contrary, KD of GRK in-
creases #Ca2+$i response because phosphorylation of the ac-
tive receptor is reduced #Fig. 8, time-course shown with light
continuous line !100% Vmax,PM,IP3dep and 100% GRK" and
time-course shown with dark continuous line !100%
Vmax,PM,IP3dep and 50% GRK"$. The qualitative nature of the
response does not change at different KD levels of the pro-
tein GRK and the protein related to Vmax,PM,IP3dep suggesting
that the system is robust to such perturbations.

The main features of the KD response are summarized in
Table III.

D. Stochastic effects at low molecular numbers

In the base case !30 nM C5a", there is good agreement
between #Ca2+$i responses predicted by deterministic and
stochastic simulation. However, at low doses of the ligand or
proteins such as the receptor and GRK, stochastic effects
become prominent resulting in up to 2%–4% NRD for low
concentrations of the receptor, GRK and G#,iD, up to 7%
NRD for dose response and up to 90% NRD for low concen-
tration of G!". Although the absolute value of fluctuations is
larger in the case of higher doses resulting in a higher peak
#Ca2+$i value, the normalized standard deviation of the re-
sponse increases with decreasing dose.

E. Deriving statistics from stochastic simulation

We also found that with more realizations, the computed
distribution of the ensemble mean of the peak-height ap-
proaches a normal distribution when the number of realiza-
tions used to compute the mean increases, as would be man-
dated by the central limit theorem. The standard error of
mean decreases proportional to inverse of the square root of
the number of realizations used to compute the mean. Statis-
tics related to low order moments of the distribution, such as
mean and standard deviation, could be computed accurately
with relatively small number of realizations !about 16 real-
izations to compute the mean and about 128 realizations for
the standard deviation" at least for the cytosolic calcium re-
sponse. For other systems some trial may be involved. These
results can be potentially used for deciding the number of
realizations needed to compute meaningful statistics in sto-
chastic simulations, at least for similar systems with a similar
number of components.

VI. SUPPLEMENTARY MATERIAL

The supporting document “supplementary.pdf” contains
additional text, Tables S1–3 and Fig. S1–4.53
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NOMENCLATURE

CLE - chemical Langevin equation
CME - chemical master equation

IC - initial condition
KD - knockdown

ODE - ordinary differential equation
SHA - stochastic hybrid algorithm
SSA - stochastic simulation algorithm

H - the difference between the basal level of cal-
cium response b and the peak level h

Kj!) %X , t" - the number of times j-th reaction !1& j
&M" takes place during the time interval
#t , t+)"

M - number of reactions
N - number of species

NA - Avogadro’s constant

TABLE III. Summary of results of KD response. The change in the features
of calcium response listed is for increase in KD-level !decrease in IC:#.$ of
the protein". Qualitative nature of the features is mostly independent of the
level of #R$.

Protein/variable name Basal level Peak-height

PLC! Decreases Decreases, convex
GRK Very small increase Increases, linear
Vmax,PM,IP3dep No change Small decrease
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Mf - number of fast reactions
Ms - number of slow reactions
Nr - number of realizations of simulations

P&aj!X" ,)' - Poisson random variable whose mean and
variance are aj)

P#X ; t$ - the probability of the system being in the
state X at time t

P0#) %X , t$ - the conditional probability that no reactions
occur during the time interval #t , t+)"

V - fixed cellular volume
X!t" - state vector representing number of mol-

ecules of each species
Y!t" - continuous counterpart of X!t"

Zj - independent random variables on !0,1"
aj!X" - the propensity function of the jth reaction

channel
cj - the specific probability rate constant of the

jth reaction
hj!X" - the number of possible combinations of re-

actants in the jth reaction
nc - control parameter defining critical reactions

p!) , j %X , t" - the probability that the next reaction will be
the jth reaction and will occur during #t
+) , t+)+d)"

Greek letters
# - control parameter deciding fast and slow re-

actions
! - control parameter deciding fast and slow re-

actions
E - normalized response difference
( j - vector whose entries are the numbers of

molecules of each species added to or re-
moved from the volume V due to the jth
reaction

, - standard deviation

,̃ - normalized standard deviation
) - time-interval

APPENDIX: EXISTING ALGORITHMS FOR
STOCHASTIC SIMULATION

Three algorithms, namely, Gillespie algorithm, tau-leap
method, and chemical Langevin equation, are reviewed.
These algorithms are applied to a well-stirred biochemical
system !molecules of each species are spread uniformly
throughout a fixed control volume" at thermal equilibrium
comprising M different chemical reactions and N different
types of chemical species.

At any time t, the population of molecules within a fixed
cellular volume V is uniquely described by a state vector
X!t",

X!t" = &X1!t",X2!t", . . . ,XN!t"'T, !A1"

where Xi!t" is the number of molecules of the ith species
!i=1, . . . ,N". By definition, Xi are non-negative integers. The
state vector X!t" changes whenever one of the M types of
reactions occur.

Let P#X ; t$ denote the probability of the system being in
the state represented in Eq. !A1" at time t. Furthermore, let
aj!X" denote the propensity function of the jth reaction chan-
nel, which is defined through aj!X"dt, the probability that the
jth reaction will occur during a !sufficiently small" time in-
terval #t , t+dt$ given the system state X!t" at time t. The
propensity function aj!X" can be expressed as46

aj!X" = cjhj!X", j " M, M = &1,2, . . . ,M' , !A2a"

where cj '0 is the specific probability rate constant of the jth
reaction and hj!X" is the number of possible combinations of
reactants in the jth reaction. The former is given by

cj =0
kj for monomolecular reactions

2kj

NAV
for bimolecular reactions with identical reactants

kj

NAV
for bimolecular reactions with different reactants,1 !A2b"

where NA=6.022+1023 mol−1 is Avogadro’s constant and kj is the macroscopic reaction rate constant.56 The latter has the
form

hj!X" = 01 for reactions of type: . → product!s" #no reactants$
Xi for monomolecular reactions #A → B$
Xi!Xi − 1"/2 for reactions with identical reactants #A + A → C$
XiXk for reactions with different reactants #A + B → C$

1 !A2c"
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for some 1& j&M, and 1& i ,k&N with i#k.
Let the time-interval dt in the definition of aj!X"

#Eq. !A2"$ be small enough that at most one reaction occurs
during #t , t+dt", then P#X ; t$ satisfies an ODE that is com-
monly called a chemical master equation !CME",46

dP#X;t$
dt

= 2
j=1

M

&aj!X − ! j"P#X − ! j;t$ − aj!X"P#X;t$' ,

!A3"

where ! j = !( j1
, . . . ,( jN

"T is a vector whose entries are the
numbers of molecules of each species added to or removed
from the volume V due to the jth reaction. For complex
cellular processes, such as calcium dynamics in the signaling
network described in Sec. III A, high-dimensionality of the
CME #Eq. !A3"$ renders its solutions computationally pro-
hibitive. The standard simulation algorithms described below
serve to overcome the computational burden associated with
solving Eq. !A3".

1. Gillespie algorithm

Let P0#) %X , t$ denote the conditional probability that no
reactions occur during the time interval #t , t+)" provided that
the system is at state X at time t. Furthermore, let us assume
that the reacting system is Markovian, i.e., the probability
that no reactions occur during #t , t+)+d)" equals the product
of probability that no reactions occur during #t , t+)" and
probability that no reactions occur during #t+) , t+)+d)".
Then the definition of the propensity function implies that46

P0#) + d)%X,t$ = P0#)%X,t$#1 − asum!X"d)$ ,
!A4"

asum!X" - 2
j=1

M

aj!X" .

Taking the limit as d)→0 and solving the resulting ODE, we
obtain

P0!)%X,t" = e−asum!X"). !A5"

Using the definition of P0 and aj, it can be shown46 that the
joint probability density function p!) , j %x , t", which describes
the probability that the next reaction will be the jth reaction
and will occur during #t+) , t+)+d)" given the present state
of the system X!t", is given by p!) , j %X , t"= P0#) %X , t$aj!X".
Accounting for Eq. !A5", we obtain

p!), j%X,t" =
aj!X"

asum!X"
asum!X"e−asum!X"). !A6"

The ratio aj!X" /asum!X" represents the density of a discrete
random variable and serves to determine the next reaction.
The remainder of the right-hand side of Eq. !A6",
asum!X"exp#−asum!X")$ is the exponential density function of
a continuous random variable, which corresponds to the time
at which the next reaction will occur.

To advance the system from state X!t", the Gillespie
algorithm generates two random variables r1 and r2 distrib-

uted uniformly on the unit interval #0,1$. According to Eq.
!A6", a discrete random value j and continuous random value
) are selected as

) =
1

asum
ln) 1

r1
,, 2

j!=1

j−1

aj! & r2asum & 2
j!=1

j

aj!. !A7"

The system is then updated according to X!t+)"=X!t"+! j.
A faster algorithm for exact stochastic simulation has

been presented by Gibson and Bruck,49 called “next reaction
method,” which can be used anywhere the Gillespie algo-
rithm. This approach is about an order of magnitude faster
than the Gillespie algorithm discussed above. However, this
approach does not scale as well as the tau-leap algorithm
discussed below as the number of molecules increases.

2. Tau-leap algorithm

The tau-leap algorithm6 can be used to increase the com-
putational efficiency of the Gillespie algorithm when it is
used to simulate large reactive systems consisting of many
reactions and molecules. This algorithm allows many reac-
tions to take place simultaneously during a time interval
#t , t+)". Let Kj!) %X , t" denote the number of times jth reac-
tion !1& j&M" takes place during the time interval #t , t+)",
given the system state X!t" at time t. The value of ) is se-
lected to satisfy the so-called “leap condition,” which re-
quires that none of the propensity functions aj !1& j&M"
suffers a noticeable change in its value. Then Kj!) %X , t" can
be approximated with a Poisson random variable P&aj!X" ,)'
whose mean and variance are aj). The system state is now
updated according to

X!t + )" = X!t" + 2
j=1

M

! jP&aj!X",)' . !A8"

As the time interval ) becomes smaller, it allows for few
reactions to take place simultaneously, eventually reaching
the limit of one reaction per ). In this limit, P&aj!x" ,)'→1
and we get the Gillespie algorithm.

Algorithmic consistency requires that, in addition to sat-
isfying the leap condition, ) be selected in a way that pre-
vents number of any species from becoming negative. The
binomial tau-leap algorithm9,57 imposes this constraint by in-
troducing a new control parameter nc !typically a small posi-
tive integer", which defines “critical reactions” as those hav-
ing at least one species with the number of molecules less
than nc. If there are one or more critical reactions then ) is
chosen so that no critical reaction fires more than once. The
binomial tau-leap algorithm9,57 also expresses the leap con-
dition in terms of a bound on the change rate of aj#X!t"$ as
%/aj!X!t""%&0aj!X!t"", where 01021.

3. Chemical Langevin equation

To increase the computational efficiency further, the leap
time ) can be increased so that aj!X") becomes large enough
to ensure that it contains a large number of reactions for each
reaction channel. Now the Poisson random variable
P&aj!X" ,)' can be approximated with a normal random
variable46 with the same mean and variance: aj#X!t"$)
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+.aj#X!t"$)Zj, where Zj are independent normal random
variables on the interval !0,1". This approximation replaces
Eq. !A8" with a CLE,

Y!t + )" = Y!t" + )2
j=1

M

! jaj#Y!t"$ + .)2
j=1

M

.! jaj#Y!t"$Zj ,

!A9"

where Y!t" is a continuous counterpart of the discrete ran-
dom variable X!t", replacing the number of molecules of the
jth species, Xj, with the respective concentrations Y j
!j=1, . . . ,N".
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