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The data-aware method of distributions (DAMD) is a low-dimensional data assimilation 
procedure to forecast the behavior of dynamical systems described by differential equa-
tions. The core of DAMD is the minimization of a distance between an observation and 
a prediction in distributional terms, with prior and posterior distributions constrained 
to a statistical manifold defined by the method of distributions (MD). We leverage the 
information-geometric properties of the statistical manifold to reduce predictive uncer-
tainty via data assimilation. Specifically, we exploit the information-geometric structures 
induced by two discrepancy metrics, the Kullback-Leibler divergence and the Wasserstein 
distance, which explicitly yield natural gradient descent. The use of a deep neural net-
work as a surrogate model for MD enables automatic differentiation, further accelerating 
optimization. The manifold’s geometry is quantified without sampling, yielding an accurate 
approximation of the gradient descent direction. Our numerical experiments demonstrate 
that accounting for the manifold’s geometry significantly reduces the computational cost of 
data assimilation by both facilitating the calculation of gradients and reducing the number 
of required iterations.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

Mathematical models used to represent “reality” are invariably faulty due to a number of mutually reinforcing reasons 
such as lack of detailed knowledge of the relevant laws of nature, scarcity (in quality and/or quantity) of observations, 
and inherent spatiotemporal variability of the coefficients used in their parameterizations. Consequently, model predictions 
must be accompanied by a quantifiable measure of predictive uncertainty (e.g., error bars or confidence intervals); when 
available, observations should be used to reduce this uncertainty. The probabilistic framework provides a natural means to 
achieve both goals. For example, a random forcing in Langevin (stochastic ordinary-differential) equations [1] or fluctuating 
Navier-Stokes (stochastic partial-differential) equations [2] implicitly account for sub-scale variability and processes that are 
otherwise absent in the underlying model.

Solutions of such stochastic models, and of models with random coefficients, are given in terms of the (joint) probability 
density function (PDF) or cumulative distribution function (CDF) of the system state(s). They can be computed, with var-
ious degrees of accuracy and ranges of applicability, by employing, e.g., Monte Carlo simulations (MCS), polynomial chaos 
expansions (PCE) and the method of distributions (MD) [3]. MCS are robust, straightforward and trivially parallelizable; 
yet, they carry (often prohibitively) high computational cost. PCE rely on a finite-dimensional expansion of the solution of 
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a stochastic model; their accuracy and computational efficiency decrease as the correlation length of the random inputs 
decreases (the so-called curse of dimensionality), making them ill-suited to problems with white noise [4]. MD yields a 
(generally approximate) partial differential equation (PDE) for the PDF or CDF of a system state (henceforth referred to as 
a PDF/CDF equation). MD can handle inputs with both long and short correlations, although the correlation length might 
affect the robustness of the underlying closure approximations when the latter are needed. For Langevin systems driven 
by white noise, MD yields a Fokker-Planck equation [1] for a system state’s PDF. For colored (correlated) noise, PDF/CDF 
equations become approximate [5], although their computational footprint typically does not change. If a Langevin system 
is characterized by Nst system states, then PDF/CDF equations are defined in an augmented Nst-dimensional space. Their 
MD-based derivation requires a closure approximation [3, and references therein] such as the semi-local closure [6–8] used 
in our analysis because of its accuracy and manageable computational cost.

The temporal evolution of the PDF of a system state predicted with, e.g., MD provides a measure of the model’s predictive 
uncertainty in the absence of observations of the system state. In Bayesian statistics, this PDF serves as a prior that can be 
improved (converted into the posterior PDF) via Bayesian update as data become available. When used in combination with 
ensemble methods like MCS, standard strategies for Bayesian data assimilation, e.g., Markov chain Monte Carlo (MCMC) and 
its variants, are often prohibitively expensive [9]. The computational expedience is the primary reason for the widespread 
use of various flavors of Kalman filter; they perform well when the system state’s PDF is Gaussian and models are linear, 
but require adjustments and uncontrollable approximations otherwise [9,10]. Data-aware MD (DAMD) [11] alleviates this 
computational bottleneck, rendering Bayesian update feasible even on a laptop. DAMD employs MD to propagate the system 
state PDF (forecast step) and sequential Bayesian update at measurement locations to assimilate data (analysis step). It offers 
two major benefits. First, MD replaces repeated model runs, characteristic of both MCMC and ensemble and particle filters, 
with the solution of a single deterministic equation for the evolving PDF. Second, it dramatically reduces the dimensionality 
of the PDFs involved in the Bayesian update at each assimilation step because it relies on a single-point PDF rather than a 
multi-point PDF whose dimensionality is determined by the discretized state being updated. DAMD takes advantage of MD’s 
ability to handle nonlinear models and non-Gaussian distributions [12,13].

DAMD recasts data assimilation as a minimization problem, whose loss function represents the discrepancy between 
observed and predicted posterior distributions. The observed posterior PDF is obtained by direct application of Bayes’ rule 
at the measurement point, combining the data model and a prior PDF computed via MD. The predicted PDF is assumed 
to obey the PDF equation, which acts as a PDE constraint for the loss function. The parameters appearing in MD are the 
target of minimization and introduce a suitable parameterization for the space of probabilities (a statistical manifold) with 
quantifiable geometric properties. The computational effort of DAMD is thus determined by the efficiency in the solution 
of a minimization problem on a manifold. This aspect of DAMD is the central focus of our analysis, in which we exploit 
information-geometric theory to reformulate the optimization problem by relying on the geometric properties of the MD-
defined manifold.

We utilize results from the optimal transport theory and machine learning. Specifically, we employ both the Kullback-
Leibler (KL) divergence and the 2-Wasserstein distance to measure the discrepancy between predicted and observed poste-
rior distributions at each assimilation point. The former underpins much of information theory [14] and variational inference 
[15],1 while the latter has its origins in optimal transport and is now increasingly popular in the wider machine learning 
community [16]. We employ gradient descent (GD) and natural gradient descent (NGD) for optimization [17], with pre-
conditioning matrices expressing the geometry induced on the statistical manifold by the choice of the discrepancy. These 
formulations are explicit for univariate distributions; thus, they ideally suit our data assimilation procedure.

Finally, we construct a surrogate of the PDF/CDF equation to accelerate sequential minimization of loss functions, taking 
advantage of the relatively small dimensionality of the statistical manifold. We identify a special architecture of a deep 
neural network (DNN) that enables the calculation of the terms involved in NGD for both discrepancy choices; its connection 
with the physical model, enabled by MD, classifies it as a physics-informed neural network (PINN) surrogate. The use of 
DNNs obviates the need to resort to sampling when assessing the manifold’s geometry, a strategy that had a debatable 
success [18].

The paper is organized as follows. In section 2, we briefly overview the tools and concepts from information geometry 
and optimal transport that are directly relevant to the subsequent analysis. In section 3, we summarize the DAMD approach 
(with details in Appendix A) and illustrate how the information-geometric tools and MD can be naturally combined to 
reduce predictive uncertainty. Section 4 contains results of our numerical experiments conducted on a Langevin equation 
with either white or colored noise. Main conclusions drawn from this study are summarized in section 5.

2. Preliminaries

Let pP(Rd) denote the probability space of PDFs f on Rd with finite pth moments, where p ≥ 1. Our key objective is 
to minimize loss functions involving PDFs f from pP(Rd). In this section, we summarize definitions, tools and theoretical 
results that will be subsequently used in concert with DAMD.

1 Unlike traditional variational inference, our approach utilizes univariate (single-point) distributions that are characterized by a specific, physics-driven 
parameterization enabled by MD.
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Measures of discrepancy Alongside classic measures of discrepancy between generic integrable functions f1(X), f2(X) :Rd →
R+ such as the L1 and L2 norms,

d1( f1, f2) :=
∫
Rd

| f1(X) − f2(X)|dX (1a)

and

d2( f1, f2) :=
⎛
⎜⎝∫
Rd

| f1(X) − f2(X)|2dX

⎞
⎟⎠

1/2

, (1b)

we utilize measures of discrepancy that are tailored to the underlying geometry of the probabilistic space pP(Rd). The KL 
divergence,

dKL( f1, f2) :=
∫
Rd

f1(X) ln
f1(X)

f2(X)
dX, (2)

expresses the discrepancy between the PDFs f1 and f2 in terms of relative entropy. Used to quantify how well f1 :Rd →R+
approximates f2 :Rd →R+ , the KL divergence is not a distance since dKL( f1, f2) �= dKL( f2, f1).

Another discrepancy measure is the p-Wasserstein distance,

W p( f1, f2) :=
⎛
⎜⎝ inf

γ ∈�( f1, f2)

∫
Rd×Rd

‖X − Y‖pγ (dX,dY)

⎞
⎟⎠

1/p

, p ≥ 1, (3)

where � is the set of joint probability measures γ on Rd × Rd whose marginals are probability measures corresponding 
to f1 and f2. Originating in the field of optimal transport, (3) quantifies the optimal (infimum) cost of shifting the mass 
distribution of f1 to f2. Such minimum exists and is unique under regularity conditions for the PDFs for p > 1, i.e., f must 
be absolutely continuous with respect to the Lebesgue measure [19]. For d = 1, (3) reduces to

W p( f1, f2) = ‖F −1
1 (Y ) − F −1

2 (Y )‖p =
⎛
⎝ 1∫

0

|F −1
1 (Y ) − F −1

2 (Y )|pdY

⎞
⎠

1/p

, p ≥ 1, (4)

where Fi(X) = ∫ X
−∞ f i(X)dX with i = 1, 2 is the CDF corresponding to the PDF f i(X); and F −1

i (Y ) is the inverse of Fi

defined as F −1
i (Y ) = inf{X : Fi(X) ≥ Y }, with Y ∈ (0,1).

Since DAMD deals with univariate distributions, we are concerned with d = 1.

Approximation of distributions Various fields of science and engineering—e.g., machine learning [20,21], estimation the-
ory [22], and optimal transport and control theory [19,23,24]—deal with a problem of approximating an (empirical) target 
PDF f̂ (X) with a PDF f (X; ϕ) :R →R+ defined on the parameterized probability space Pϕ . The latter consists of PDFs that 
are uniquely characterized by a set of Npar parameters ϕ ∈ � ⊂RNpar with Npar ≥ 1. This functional approximation is recast 
as a problem of finding a parameter set that minimizes a function C(ϕ) depending on a selected measure of discrepancy 
D(ϕ) between the target PDF f̂ (X) and its approximation f (X; ϕ),

argmin
ϕ∈�

C(D(ϕ)), with D(ϕ) = D( f (X;ϕ), f̂ (X)), (5)

with f (X; ϕ) belonging to Pϕ .
We assume Pϕ to be a subset of 2P(R). The use of the KL and W2 metrics in place of D in (5) introduces known 

geometries to the statistical manifold of parameterized PDFs, facilitating the deployment of efficient optimization algorithms 
that exploit this geometric structure. Specifically, one of the geometric properties of the KL divergence is its parameterization 
invariance, i.e., the equivalency between computation of the discrepancy C(ϕ) ≡ D(ϕ) ≡ dKL( f (X; ϕ), f̂ (X)) in the PDF 
space Pϕ and in the parameter space �; this property facilitates minimization of the loss function via natural gradient 
descent [25, Sec. 2.1.3]. Moreover, a solution of the minimization problem (5) with C(ϕ) ≡ dKL( f (X; ϕ), f̂ (X)) corresponds 
to the maximum likelihood estimate of the parameters ϕ [26]. This analogy elucidates the connection between Bayesian 
inference and information geometry. When f̂ is obtained empirically (e.g., from sampling or repeated experiments), the use 
of the Wasserstein distance, C(ϕ) ≡ D2(ϕ)/2 ≡ W 2

2 ( f (X; ϕ), f̂ (X))/2, is more computationally expedient [19–21,23], while 
possessing geometric properties almost as rigorous as KL [17].
3
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Statistical manifolds Let the PDF f (X; ϕ) be smooth and have a support � := {X ∈R| f (X) > 0}. We assume this support to 
be compact, � = [Xmin, Xmax] ⊂ R, and the dimensionality of the parameter space � ⊂ RNpar to be finite, Npar < +∞. An 
Npar-dimensional manifold is an Npar-dimensional topological space that behaves locally like the Euclidean space RNpar . 
A smooth manifold is equipped with a metric tensor G(ϕ)—which facilitates the calculation of distances on the local 
approximation of the manifold, i.e., the tangent plane—and an affine connection ∇ϕ—which enables differentiation. The 
second-order tensor G is positive definite and varies smoothly with ϕ . It defines a Riemannian metric on the manifold, and 
the latter is said to be Riemannian. A statistical manifold M is a manifold with coordinates ϕ = (ϕ1, . . . , ϕNpar ) ∈ RNpar

where each point represents a PDF with assigned support and defined features. A divergence on the statistical manifold M
is a non-negative function D( f (X; ϕ), f (X; ϕ′)) : M × M → R+ , which is equal to zero if and only if f (X; ϕ) ≡ f (X; ϕ′)
and which can be approximated locally (i.e., when ϕ and ϕ′ are close) via the components Gij of the second-order tensor 
G as D( f (ϕ), f (ϕ′)) = Gij(ϕ)�ϕ i�ϕ j/2 +O(|�ϕ|3), where �ϕ = ϕ − ϕ′ and the Einstein summation is implied over the 
repeated indices i, j = 1, . . . , Npar.

Information geometry of statistical manifolds If the KL divergence is used to quantify the discrepancy between two PDFs on 
the manifold M, then the tensor metric G(ϕ) (a geometric structure) of the space Pϕ of parameterized PDFs f (X; ϕ) is 
called Fisher information matrix,

GF (ϕ) =
∫
�

1

f (X;ϕ)

(∇ϕ f (X;ϕ)
) ∇ϕ f (X;ϕ)dX, (6)

which is emphasized by the subscript F. The resulting statistical manifold M is invariant in the sense that, for ϕ i ∈ �

and f i ≡ f (ϕ i) with i = 1, 2, the divergence dKL( f1, f2) = dKL( f1(X; ϕ1), f2(X; ϕ2)) and the metric GF describe the same 
geometry when the random coordinate X is remapped without losing information [27, Ch. 3.1]. This property underpins 
the Riemannian natural gradient descent (NGD) method (a.k.a. Fisher-Rao gradient descent) for parameter identification [28, 
and references therein]. The method uses the metric tensor GF as a pre-conditioner for gradient descent algorithms to solve 
(5) with C ≡ D ≡ dKL,

ϕk+1 = ϕk − ηG−1
F (ϕk)∇ϕdKL( f (X;ϕ), f̂ )|ϕk

, (7)

where η is the descent step and G−1
F is the inverse of GF . The technique presents strong theoretical analogies with classic 

filtering techniques (namely Kalman filter and extended Kalman filter) [29,30]. In the absence of an analytical expression 
for GF , the matrix can be approximated empirically, although with debatable accuracy [18].

Geometric structure, including the metric tensor GW (ϕ), of the finite-dimensional Wasserstein manifolds—hence, the 
subscript W— of Gaussian PDFs was studied in [31,32]. These results were subsequently generalized to construct GW (ϕ)

for the manifolds M of generic discrete [28] and continuous [17] distributions. Specifically, when d = 1, the Wasserstein 
manifold’s metric tensor GW has an explicit form,

GW (ϕ) =
∫

1

f (X;ϕ)

(∇ϕ F (X;ϕ)
) ∇ϕ F (X;ϕ)dX . (8)

Under some mild regularity assumptions, the finite-dimensional Wasserstein manifold M in the parameter space � is 
Riemannian [17]. It introduces an NGD in the space �,

ϕk+1 = ϕk − ηG−1
W (ϕk)∇ϕC(ϕ)|ϕk

, with C ≡ 1

2
D2 and D ≡ W2. (9)

Remark 2.1. Regardless of whether one chooses the KL divergence or the W2 distance, NGD orients the optimization prob-
lem (9) according to the topology of the statistical manifold M as expressed by its metric tensor Gi (i = F or W ), thus 
accelerating the solution. The computational cost of both (7) and (9) depends on the overall number of iterations and on the 
calculation of Gi (storage cost O(N2

par) per iteration) and its inverse G−1
i (inversion cost O(N3

par) per iteration) [25]. Thus, 
the overall cost of optimization is a trade-off between the number of iterations, arguably reduced on information-geometric 
grounds, and the cost of inverting the metric tensor Gi .

Remark 2.2. The finite-dimensional L2-Wasserstein manifold M is not exactly geodesic (unless PDFs are Gaussian), and as 
such the geodesic distance on the manifold is not identical to W2 [17]. As demonstrated by [17, Th. 1 and Prop. 6], the 
natural gradient trajectory approximates the geodesic distance up to second order information.

Remark 2.3. A unifying framework connecting the KL and W2 metrics for manifolds of discrete distributions is proposed in 
[33, and references therein].

Remark 2.4. NGD provides an efficient alternative to stochastic gradient descent methods whenever the dimensionality of 
the parameter space is sufficiently small, thus permitting the calculation of the preconditioning matrices G(ϕ) [34].
4
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3. DAMD with PINN surrogates

Consider a state variable x(t) :R+ →R, whose dynamics is governed by a stochastic/random ordinary differential equa-
tion (SDE)

dx(t)

dt
= s(x(t); w(t), θ), t > 0; (10a)

subject to a (possibly uncertain, i.e., random) initial condition

x(t = 0) = x0, x0 ∈R. (10b)

The system is driven by the stationary (statistically homogeneous) random process w(t) characterized by a single-point PDF 
f w(W ; t) and a two-point auto-correlation function ρw (|t1 − t2|); these functions involve meta-parameters ϕw such as the 
mean, variance, and correlation length of w(t). The deterministic function s(x; ·), parameterized by a set of Nθ (possibly 
uncertain, i.e., random) coefficients θ ∈ RNθ , is such that a solution to (10) is smooth almost surely in the probability 
space of both w(t) and, possibly, θ and x0. If θ and x0 are random, then they are characterized by PDFs fθ (�) and f0(X), 
with meta-parameters ϕθ and ϕ0, respectively. In all, the statistics of x(t) depends on the set of Npar meta-parameters 
ϕ = (ϕw , ϕθ , ϕ0) ∈ � ⊂RNpar that define statistical properties of the uncertain physical parameters and inputs.

In addition to being described by the model (10), the system state x(t) is sampled at Nmeas times t1, . . . , tNmeas . For ease 
of notation, noisy observations x̂ = {x̂1, . . . , ̂xNmeas} are chronologically ordered although this is not required by DAMD [11]. 
These measurements satisfy the data model

x̂m = x(tm) + εm, m = 1, . . . , Nmeas. (11)

The mutually uncorrelated Gaussian measurement errors εm have zero mean and variance σ 2
ε .

Data assimilation (DA) improves model predictions by augmenting them with observations. Some DA methods yield the 
“best” (i.e., unbiased) prediction and quantify its predictive uncertainty in terms of, respectively, ensemble mean, 〈x(t)〉, and 
standard deviation, σx(t), of the state variable x(t). These statistics provide but limited information about x(t), unless it is 
Gaussian or a known map thereof. Bayesian update and particle filters are examples of DA strategies that overcome this 
limitation by seeking a solution of (10) in terms of the PDF f (X; t) of x(t)—or the corresponding CDF F (X; t) = P [x(t) ≤
X]—updated with the data x̂ in (11). Computing such distributions with ensemble methods requires a large number of 
repeated solves of (10), which can be prohibitively expensive when each forward solve carries significant cost.

Data assimilation via DAMD [11] removes the need for linearity and Gaussianity approximations, which underpin Kalman 
filtering, while significantly accelerating the computation. Like many DA strategies, DAMD comprises forecast and analysis. 
The first of these steps relies on the model (10) and predicts the system state at time t in terms of f (X; t) or F (X; t). Rather 
than using, e.g., Monte Carlo simulations, MD [3] implements this step by deriving a deterministic equation for f (X; t) or 
F (X; t). Thus, the single-point CDF F (X; t) of the state variable x(t) in (10) satisfies (sometime approximately) a parabolic 
PDE (Appendix A)2

∂ F

∂t
+ U(X, t;ϕ)

∂ F

∂ X
= ∂

∂ X

(
D(X, t;ϕ)

∂ F

∂ X

)
, t > 0, X ∈ � = [Xmin, Xmax], (12a)

subject to initial and boundary conditions

F (X;0) = F0(X), F (Xmin, t) = 0, F (Xmax, t) = 1. (12b)

The drift velocity, U(X, t; ϕ) : � ×R+ →R, and the diffusion coefficient, D(X; t, ϕ) : � ×R+ →R+ , are smooth functions 
of their arguments, which involve a set of the meta-parameters ϕ . The functional forms U and D depend on that of s(x; ·), 
on the statistical characterization of the random parameters epitomized by the statistical parameters ϕ of their distributions, 
and on the degree of approximation introduced by the closure strategy. If the initial state of the system, x0, is known with 
certainty, then its CDF F0(X) is the Heaviside step function, F0(X) = H(X − x0). For Itō SDEs with an additive white 
Gaussian forcing (a.k.a. standard Langevin equation), (12) is derived exactly; it corresponds to the integral of the Fokker-
Planck equation [37, Ch. 4]. This setting is explored in A.1. Solving (12) is usually cheaper than obtaining, with comparable 
accuracy, an empirical CDF from Monte Carlo realizations of (10) [38].

Remark 3.1. The CDF equation (12) maps the meta-parameters ϕ onto F (X; t, ϕ), the CDF of the system state x(t). In other 
words, a point ϕ ∈ � ⊂RNpar can be thought of as a coordinate on the statistical manifold M of the CDF F (X; t, ϕ) at time 
t . At any time t′ , a solution to (12) provides an estimate of the CDF F (X; t′, ϕ) dependent on the current characterization 
of the random inputs expressed by ϕ . Equivalently, points ϕ̃ = {t, ϕ} define a dynamic statistical manifold Mt of the CDF 
F (X; ̃ϕ).

2 For spatially-dependent physical models, space would appear as a coordinate in a CDF or PDF equation [11]. For systems, MD would yield a PDF 
equation for the joint PDF of the interacting system states [35,36].
5



F. Boso and D.M. Tartakovsky Journal of Computational Physics 467 (2022) 111438
The second step of DAMD, analysis via Bayesian update, is performed sequentially for each of the Nmeas measurements 
x̂m in (11). At mth assimilation step, the inference problem is formulated as the minimization (5) of the discrepancy D
between the CDF F (X; tm, ϕ) predicted by the model (12) and the observational CDF obtained with Bayes’ rule,

F̂ (X; tm) =
X∫

Xmin

f̂ (X; tm)dX (13a)

with

f̂ (X; tm) = f L(x̂m|x(tm) = X) f (X; tm,ϕ(m−1))∫
�

f L(x̂m|x(tm) = X) f (X; tm,ϕ(m−1))dX
. (13b)

Here the likelihood function f L(x̂m|x(tm) = X) specifies the choice of a data model; and the PDF f (X; tm, ϕ(m−1)), computed 
by solving the CDF equation (12) with the parameter set ϕ(m−1) from the previous assimilation step, serves as a prior. Min-
imization of (5) yields the updated meta-parameters ϕ(m) , which are subsequently used in the forecast step in combination 
with the CDF equation. The calculation of the prior at the first assimilation step (m = 1) relies on the initialization of the 
meta-parameters ϕ(0); the subsequent updates rely on the assumption that observation errors are mutually uncorrelated,

f̂ (X; tm) ∝
m−1∏
i=1

f L(x̂i |x(ti) = X) f L(xm|x(tm) = X) f (X;ϕ(m−1); tm)

∝ f L(x̂m|X) f̂ (X; tm,ϕ(m−1)).

The formulation of data assimilation in the form of the optimization problem (5) underpins Variational Inference (VI) and 
provides access to the theoretical results summarized in section 2. While generally faster than MCMC—their performance 
depends on the properties of the parameterized distributions—and compatible with off-the-self optimization algorithms, 
e.g., [15], the VI methods do not enjoy asymptotic guarantees of convergence available for MCMC [39].

The use of the L2 norm in formulation of the discrepancy D incurs significant computational cost of solving the mini-
mization problem (5) [11]. A key innovation of this study is to exploit the geometric structure of the statistical manifolds 
in the parameter space � by using either the KL divergence (2) or the Wasserstein distance (4). Operationally, this means 
employing either (2) or (4), rather than D in (5), at every assimilation step. This enables us to solve (5) via NGD, which we 
henceforth refer to as NGD-KL and NGD-W2 depending on which metric is used. The update of the meta-parameters ϕ is 
done using NGD-KL (7) or NGD-W2 (9), taking advantage of the explicit formulations for the manifold’s metric tensors GF

in (6) and GW in (8), as detailed in section 2.

Remark 3.2. The analysis step of DAMD is performed on univariate (one-point) distributions (d = 1) regardless of the size 
of the physical parameter and meta-parameter sets, Nθ and Npar. That drastically reduces (to one) the dimensionality of 
the update effort in classical Bayesian DA. Estimation of the state distributions at different locations is made possible by 
the physics-based nature of the parameterization: forecast distributions F (X; t, ϕ) obey PDEs that depend on the meta-
parameters ϕ . Updated meta-parameters are used in the CDF equation to forecast at different locations. Availability of 
a CDF/PDF equation removes the need for Gaussianity and linearity assumptions on the physical model and its random 
parameters. The CDF/PDF equation is assumed to be valid throughout the assimilation process.

Remark 3.3. Parameter update via discrepancy minimization places DAMD in the company of many machine-learning and 
optimal-transport techniques (see the references above). Unlike these methods, DAMD uses CDF or PDF equations and their 
parameters to define the parameter space for a statistical manifold ϕ , such that the discrepancy minimization is constrained 
by these PDEs. Learning occurs on the statistical manifold defined by ϕ and proceeds by sequential updates of these meta-
parameters.

Remark 3.4. If observational or simulated data abound, a similar approach can be used to discover the coefficients of the 
CDF equation and/or its differential form. This research direction is explored in [13,40].

Loss function minimization The PDE-constrained minimization problem (5) can be solved with different techniques [41]. We 
use a surrogate model to accelerate the calculation of the discrepancies dKL( f (X; ϕ), f̂ ) or W2( f (X; ϕ), f̂ ), their respective 
gradients ∇ϕdKL or ∇ϕ W2, and the preconditioning tensor metrics GF or GW . The workflow of DAMD with a surrogate is 
detailed in Algorithm 1. We employ a fully-connected deep neural network (DNN) to approximate the solution of the CDF 
equation given the set of inputs X = {X, t, ϕ}. The number of outputs in this DNN equals the number of inputs, Y = {Y j :
j = 1, . . . , Npar + 2} = {Y = F (X; t, ϕ), t, ϕ}, such that dim(X) = dim(Y) = Npar + 2. Furthermore, we require the resulting 
vector function Y = F(X) to be continuously differentiable and invertible, i.e., require the determinant of its Jacobian to 
6
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be non-zero [42].3 The chosen vector function satisfies these requirements by the very nature of distributions, which are 
assumed here to have a compact support, hence it fulfills the hypotheses of the Inverse Function theorem [46] for vector 
functions.

Algorithm 1 DAMD with PINN surrogate workflow.
1: Identify (or develop) CDF equation (12) and meta-parameters ϕ
2: Train PINN (14) to obtain surrogate model for F (X; t, ϕ)

3: Select discrepancy metric in (5), e.g., as a function of (1), (2), (4)
4: if C = dKL (5) then
5: Select NGD (7) optimization strategy to minimize (5)
6: else if C = 1/2W 2

2 (5) then
7: Select NGD (9) optimization strategy to minimize (5)
8: else
9: Select off-the-shelf optimization strategy to minimize (5)

10: end if
11: Initialize ϕ to ϕ(0)

12: for Every observation m do
13: Calculate observational PDF f̂ (X; tm) (13)
14: Minimize (5) with the selected optimization strategy
15: Update ϕ to ϕ(m)

16: end for

Under these conditions, the inverse of the vector function Y = F(X) is differentiable, and the derivative of the inverse 
is equal to the inverse of the derivative [46]. Automatic differentiation is employed both to verify the inversion theorem 
hypotheses and to calculate the terms appearing in the minimization algorithms. This is especially useful, since NGD-KL 
utilizes the derivatives of the forward pass, whereas NGD-W2 requires the derivatives of the inverse function. A differentiable 
DNN allows accurate calculation of the metric tensors for both geometries, eliminating potential problems related to their 
empirical approximation.

The DNN training is accomplished by solving an optimization problem [47],

argmin
w,b

(MSEts + MSER + MSEaux + SC), (14a)

with respect to the weights and biases of the DNN, w and b, respectively. Here,

MSEts =
n+2∑
j=1

λ j
1

Nts

Nts∑
i=1

|Y j(Xi
ts) − Y i

j,ts|2, λ j = (
max Y j,ts

)−1 (14b)

MSER = 1

NR

NR∑
i=1

|R(Xi
R)|2 (14c)

MSEaux = 1

Naux

Naux∑
i=1

|Y (Xi
aux) − Y i

aux|2 (14d)

SC =
(

max

∣∣∣∣ ∂Y

∂ X
(XSC)

∣∣∣∣
)−1 NSC∑

i=1

max

(
0,− ∂Y

∂ X
(Xi

SC)

)
, (14e)

and Y(Xi) represents the Npar + 2 outputs of the DNN with inputs Xi . The DNN is trained on a data set consisting of Nts

pairs (Xi
ts, Yi

ts), for i = 1, . . . , Nts in terms of Mean Square Error, MSEts. The training set is generated by solving the CDF 
equation (12) for Nts combinations of meta-parameters ϕ , i.e., at points ϕ i ∈ � with i = 1, . . . , Nts.4 Moreover, the mean 
square errors MSER and MSEaux enforce the fulfillment of the CDF equation and its initial/boundary conditions at collocation 
points {Xi

R}NR
i=1 and {Xi

aux}Naux
i=1 , respectively.5 Our DNN is physics-informed, as the CDF equation is rigorously derived from the 

physical model, albeit with closure approximations. Consequently, we hereafter refer to it as PINN. The residual is defined 
as

3 The choice of a DNN to approximate the input-output relation Y = F(X) is done solely for the sake of concreteness. One can replace it with another 
approximation technique, such as polynomial representation and symbolic regression [43–45].

4 For each i, the data pairs (Xi
ts, Yi

ts) are extracted from these solutions at regularly-spaced time intervals and at spatial locations (in the X direction) 
refined with a cosine mapping around a solution of (10) with mean parameters.

5 We select a regularly spaced set of points for the enforcement of (14c) in all but the X direction, wherein points are refined around the solution of 
(10) with mean parameters; Naux points are regularly spaced in all directions.
7
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R(Xi
R) = ∂Y (Xi

R)

∂t
+

(
U(Xi

R) − ∂D
∂ X

(Xi
R)

)
∂Y

∂ X
(Xi

R) −D(Xi
R)

∂2Y

∂ X2
(Xi

R), (15)

and Y i
aux represent the auxiliary conditions for the CDF equation at points Xi

aux, which represents initial or boundary con-
ditions (12b). The term SC is a Soft Constraint [48] that regularizes the DNN by enforcing monotonicity of the output 
Y = F (X; t, ϕ) along the X direction at points {Xi

SC}NSC
i=1 = {{Xi

ts}NR
i=1, {Xi

R}NR
i=1, {Xi

aux}Naux
i=1 }. The physics-aware component of 

(14), MSER + MSEaux, makes training less data-intensive and increases confidence in the PINN predictions outside the train-
ing range (but within the residual points range).

4. Numerical experiments

In this section, we apply the information-theoretic DA strategy introduced above to two problems described by (10). 
Section 4.1 (Example 1) deals with a Langevin equation with white noise w(t), a problem for which the CDF equation (12)
is exact. In other words, the forecast component of DAMD is exact, whereas the analysis step introduces an approximation. 
This setting allows us to ascertain the impact of the PINN surrogate of the CDF solution on the accuracy of DAMD. In 
section 4.2 (Example 2), we consider a Langevin equation with colored noise w(t) that is modeled as an Ornstein-Uhlenbeck 
process [1, Ch. 3.2]; the derivation of the CDF equation (12) requires a closure approximation. In this case, the performance 
of DAMD depends also on the accuracy and robustness of the CDF equation as forecasting tool.

In both cases, one realization θ � of the relevant unknown parameters θ represents ground truth. Statistical models for 
these parameters are chosen such that the state variable x(t) has a compact support � ⊂ R+ , or can be approximated as 
such with probability guarantees. This ensures that the information geometry induced by the W2 divergence is rigorously 
defined. The Nmeas observations x̂ are taken at regular time intervals, with the time step �t = tNmeas/(Nmeas + 1). They are 
generated by adding zero-mean Gaussian noise with standard deviation σε to the solution of (10) with θ� (i.e., the synthetic 
truth). This procedure results in the Gaussian likelihood function f L , although other choices are possible.6

We use the JITCSDE Python module [49] to solve the stochastic differential equation (10) with θ = θ� . The module im-
plements the adaptive integration method [50] for both Itō (considered here) and Stratonovich SDEs. The CDF equations (12)
are solved with finite volumes (FV) scheme, implemented using the Fipy library [51], to provide a training set for the sur-
rogate model. PINN is trained by employing Tensorflow; optimization in (14) is performed using L-BFGS-B method [52], 
with a random initialization of w and b. Automatic differentiation is used to compute both the derivatives in the residual R
in (15) and the PDF from CDF. The CDF equation for the problem in section 4.1 has an analytical solution (A.1), which is used 
to evaluate the impact of the PINN approximation on the assimilation procedure. Minimization of the KL and W2 discrep-
ancies is performed via both standard GD and NGD. In the case of NGD, convergence is accelerated by the use of the pre-
conditioners GF and GW in (7) and (9). For each direction established by the gradient of the loss function (adjusted by the 
pre-conditioners when NGD is used) we employ the Scipy library’s implementation of step calculation [53, Sec. 5.2]. A con-
vergence criterion for NGD in (7) and (9) is defined by |∇ϕ D| ≤ ε . Because of the different order of magnitude of the KL and 
W2 discrepancies D , the convergence threshold ε is discrepancy-specific; we select a KL-based minimization threshold, εKL, 
and assign the threshold for W2, εW2 , such that εW2/C( W2( f (X; t1, ϕ(0)); f̂ (X; t1))) = εKL/C(dKL( f (X; t1, ϕ(0)); f̂ (X; t1))).

4.1. Example 1: Langevin equation with white noise

The dynamics of state variable x(t) is described by a Langevin equation,

dx

dt
= −a(t)x(t), x(0) = x�

0, (16)

where the statistically homogeneous (stationary) random process a(t) = μa + σa w(t) has mean μa∈R+ and standard de-
viation σa∈R+ , and w(t) is standard Gaussian white noise. The initial state x�

0 ∈ R+ is deterministic; to be specific, we 
set x�

0 = 1. We impose 2σa < μa , such that P [a(t) > 0] > 0.97 at each time step, and the support of x(t) is approximately 
compact, � = [

0, x�
0

] ⊂R+ .
The single-point CDF F (X; t) of x(t) in (16) satisfies exactly a CDF equation (Appendix A)

∂ F

∂t
− μa X

∂ F

∂ X
= 1

2

∂

∂ X

(
σ 2

a X2 ∂ F

∂ X

)
, (17a)

subject to initial and boundary conditions

F (x;0) = H(X − x�
0), F (Xmin; t) = 0, F (Xmax; t) = 1. (17b)

6 While not investigated here, data models constructed from repeated observations of the same phenomenon may be more suitable for processes that 
are inherently random, like those described by Langevin equations. Crucially, DAMD can seamlessly incorporate nonlinear one-to-one observation maps, 
emerging when x(t) cannot be observed directly.
8
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In this example, CDF F is parameterized by ϕ = {μa, σa}, which we make explicit by writing F (X; t, ϕ). The values of ϕ are 
refined by assimilating observations x̂.

A PINN serves as a surrogate model that approximates the solution of the CDF equation (17). The training set consists 
of the finite-volumes solutions [51] of (17) at selected points (X, t), computed for a number of different combinations of 
meta-parameters ϕ . The details of this and other computations are provided in the opening of section 4. In this experiment, 
PINN function approximation is considered satisfactory upon reaching a value of the loss function of 4 · 10−4. This high 
accuracy enables the deployment of the PINN surrogate for both the analysis and forecast steps, further accelerating the 
information-geometric optimization of (5) with the Scipy conjugate gradient routine. We derive an analytical solution for 
(17) in Appendix B, and then use it to quantify the impact of the PINN approximation on DAMD.

Remark 4.1. A surrogate model is introduced to accelerate loss function minimization in cases where an analytical solution 
is not available. For complex problems, it might be advantageous to use the surrogate model only for the approximation 
of the gradients, while retaining the finite-volume solution of the CDF equation for prediction. Alternatively, it might be 
necessary to construct a surrogate model for the local CDF at each assimilation time tm , hence reducing the dimensionality 
of the surrogate model.

For this problem, the parameters ϕ = {μa, σa} can be estimated via the linear Kalman filter (LKF) [54] (Appendix B). 
LKF forecast is performed analytically, whereas LKF analysis relies on the (approximate) linearization of the observation 
map [10]. We use LKF to evaluate the accuracy of DAMD in the identification of the meta-parameters ϕ via GD in (5) with 
C ≡ dKL or W 2

2/2, NGD-KL (7), and NGD-W2 (9), performed using either the analytical CDF F or its DNN approximation. 
Unlike LKF, DAMD requires neither a linearizing approximation nor the Gaussianity assumption. The availability of analytical 
formulations for F (X; t) and f (X; t) (either the exact solution or its DNN approximation) facilitates the calculation of the 
forecast PDFs at each measurement time (13), as well as the (semi-)analytical computation of both the metric tensors GF
in (6) and GW in (8), and the gradient of the discrepancy, ∇ϕD, for the KL and W2 measures.7 The integrals in the metric 
tensors, the discrepancy gradient, and the normalization constant in (13), are computed via numerical quadrature from the 
Fortran library QUADPACK.

Fig. 1 shows the updated ϕ(m) as function of the assimilation step m for both the KL and W2 metrics of discrepancy, 
either taking (NGD) or not taking (GD) advantage of the information-geometric structure of the statistical manifold of F . 
Also shown in this figure are estimates of the meta-parameters ϕ(m) obtained with both LKF and GD for the L2 norm 
of discrepancy, D(ϕ) = d2( f (X; t, ϕ), f̂ (X; t)) in (1). To facilitate comparison between the various discrepancy metrics, we 
assign the minimization convergence threshold for d2, εd2 , such that

εd2

C{d2( f (X; t1,ϕ(0)), f̂ (X; t1))}
= εKL

C(dKL( f (X; t1,ϕ(0)); f̂ (X; t1)))
.

All assimilation algorithms improve estimates of both the exact mean μa and standard deviation σa , but DAMD with the 
surrogate yields a more erratic estimate of σa . After Nmeas are assimilated, LKF’s estimates of μa and σa have errors equal 
to 32% and 64% of their respective initial errors. The DAMD errors (averaged over the alternative optimization strategies) 
for μa and σa are respectively 11% and 26% of their initial values when the analytical CDF solution is used; and 22% and 
44% when the DNN surrogate is deployed. Thus, DAMD yields appreciably more accurate results than LKF does, regardless 
of whether the exact CDF solution or its DNN approximation is used. As expected, the reliance on the DNN surrogate of the 
CDF solution affects the DAMD accuracy; however, its performance is advantageous when only an approximate CDF equation 
is available, the setting explored in the next section.

Remark 4.2. The performance of LKF depends on the initialization of the covariance matrix. The results reported above are 
for LKF, whose augmented state’s covariance is initialized as

diag[0, (|μ(0)
a /σ

(0)
a − μ�

a/σ
�
a |/2)2, (| logσ

(0)
a − logσ �

a |/2)2].
Remark 4.3. Given the small dimensionality of the augmented state (one state variable and two parameters), each LKF 
assimilation step is computationally inexpensive. Each DAMD iterative step involves the calculation of one-dimensional 
numerical integrals to evaluate the loss function and compute the G components; once the DNN surrogate is trained, there 
is no significant difference in the computational effort required using the analytical F or its DNN surrogate.

The number of iterations over the assimilation time window is smaller for NGD than for GD for both choices of the 
loss function (Fig. 2). The difference is apparent when the CDF solution is analytical, and less pronounced when its DNN 
approximation is used. In the absence of error in the approximation of the distributions, the updated estimate of the meta-
parameters obtained with D = d2 is as good as those for D = dKL and D = W2 (Fig. 1), although with a higher number of 
iterations per assimilation step (Fig. 2).

7 The code is available at https://github .com /DDMS -ERE -Stanford /DAMD -NGD.
9
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Fig. 1. Example 1: Estimation of the meta-parameters ϕ = {μa, σa} for the Langevin equation with white noise via DAMD using either the analytical CDF 
solution (left column) or its DNN surrogate (right column). The parameters ϕ(m) are plotted as function of the assimilation step m for the four information-
geometric optimization strategies: GD and NGD, for the KL and W2 discrepancies. Also shown are the corresponding estimates obtained with LKF and GD 
for the L2 measure of discrepancy. The starred values correspond to the statistical parameters used to generate the observations. The simulation parameter 
values are set to x�

0 = 1, ϕ� = {0.44, 0.088}, ϕ(0) = {1.25, 0.2}, θ(0)
1 = μ

(0)
a /σ

(0)
a , θ(0)

2 = logσ
(0)
a , σε = 0.1, Nmeas = 10, tNmeas = 2, εKL = 10−2, NT = 18850, 

NB = 5632, NI = 1280, and NR = 47872.

Fig. 2. Example 1: Number of iterations per assimilation step m for the four information-geometric optimization strategies: GD and NGD, for the KL and 
W2 discrepancies. DAMD employs either the analytical CDF solution (left) or its DNN surrogate (right). The GD with D = d2 for the analytical distributions 
is also included. The simulation parameter values are the same as in Fig. 1.

The physics-driven parameterization of the statistical manifold yields an isotropic geometry of the loss function in the 
search area, which reduces the benefits of preconditioning. This is shown in Fig. 3, where the KL and W2 loss functions are 
plotted, at the first and last assimilation steps, as function of the meta-parameters ϕ , also highlighting the true solution 
10
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Fig. 3. Example 1: The KL (left column) and W2 (right column) loss functions at the first (m = 1, top row) and last (m = Nmeas, bottom row) steps of DAMD. 
All calculations are performed using the analytical CDF solution. The star indicates the true values of the meta-parameters (used to generate the synthetic 
reality). The points P1 and P2 indicate the priors ϕ(0) = (ϕ

(0)
1 , ϕ(0)

2 ) for which the optimization of the KL loss function converges and fails to converge, 
respectively. The larger (empty) circles indicate the posterior parameters at the mth assimilation step, ϕ(m+1) , and the smaller (full) circles in the bottom 
row indicate ϕ(Nmeas−1) . The blank region reflects the assumption 2σa < μa . The simulation parameter values are the same as in Fig. 1.

and the prior location.8 The loss functions depicted in Fig. 3 are obtained for the exact CDF solution; a similar behavior 
is exhibited by the corresponding functions computed using the DNN surrogate (not shown here). Although superficially 
similar throughout the assimilation process, the minor differences in the topology of the KL and W2 loss functions are 
enough to prevent convergence for the KL loss function for a slightly worst choice of the prior (P2 in the Figure), which 
results in diverging iterates of the DAMD procedure for both GD and NGD. This is because the KL divergence is more 
sensitive to numerical errors in the calculation of the integrals, especially for sharp or non-overlapping distributions, which 
mislead the direction of the search.

The computational cost of the different optimization strategies within the DAMD framework depends on the number 
of iterations (Fig. 2); on the computational cost per iteration; and, in case of information-geometric optimization, on the 
cost of computing the tensor metrics. Since the function- and gradient-evaluations for this example are not expensive, the 
computational gain of having a smaller number of evaluations is not significant, and it is compensated by the additional 
cost of the calculation of the preconditioning matrices.

The posterior NGD parameters ϕ(Nmeas) are used to compute the posterior CDF and PDF of x(t) in Fig. 4. NGD yields 
accurate posteriors, with the W2 optimization (9) performing better than the KL optimization (7) when the approximate 
CDF solution is used. In order to highlight the accuracy of the DNN surrogate model, we show the finite-volume solution 
of the CDF equation (17) with ϕ = ϕ(Nmeas) and its corresponding PDF computed via numerical differentiation, and their 
DNN-based counterparts. We conclude that the W2 optimization is more robust to inaccuracies of the CDF solution, thus 

8 The loss functions at assimilation step m = 1 are obtained using the initial ϕ(0) for the calculation of the observational PDF/CDF, whereas the loss 
functions at assimilation step Nmeas = 10 are computed using ϕ(Nmeas−1) for the prior obtained using either NGD-KL or NKD-W2. The initial guess of the 
prior ϕ(0) is the same for both KL and W2 metrics (P1 in the Figure), and yields similar outcomes in terms of identification of the meta-parameters, as 
illustrated above.
11
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Fig. 4. Example 1: Prior and posterior PDFs (top row) and corresponding CDFs (bottom row) at time tNmeas obtained via NGD minimization for the KL and 
W2 loss functions, with either the analytical solution of the CDF equation (17) (left column) or its NN surrogate (right column). The FV CDF solution used 
to train the DNN is also shown in the right column. Black stars and circles mark the exact value x(tNmeas ) and its noisy observation xNmeas , respectively. The 
black solid line represents the analytical CDF solution at tNmeas with ϕ = {μ�

a, σ �
a }, describing the synthetic truth. The simulation parameter values are the 

same as in Fig. 1.

yielding better overall predictions. Moreover, in agreement within [17], we found the W2 minimization to be more robust 
to the choice of the prior.

Remark 4.4. An additional advantage of the W2 loss function stems from its reliance on a CDF rather than a PDF that enters 
the KL loss function. CDFs are smoother and easier to compute as a solution of the CDF equation than PDFs, which are 
obtained by solving the PDF equation. This facilitates the generation of a training set and the training of a surrogate model. 
On the other hand, approximation of the solution to a CDF equation with a DNN surrogate possesses a potential challenge 
for the W2 optimization, since (5) calls for invertible surrogate models. We overcome this difficulty by selecting a special 
structure for the DNN that guarantees automatic inversion, as detailed in section 3.

4.2. Example 2: Langevin equation with colored noise

The dynamics of state variable x(t) is described by (10) with s ≡ −a(t)x(t). Here, a(t) = μa + w(t) with μa ∈ R+ , 
and w(t) is the derivative of an Ornstein–Uhlenbeck process characterized by the exponential auto-covariance function 
C w(t, τ ) = σ 2

a /(2θa)[exp(−θa|t − τ |) + exp(−θa(t + τ ))] with parameters σa and θa ∈R+ . By construction, the latter is also 
the auto-covariance function of a(t), C w (t, τ ) = Ca(t, τ ). Taking the initial state x0 to be deterministic, the stochastic solution 
of this problem depends on three meta-parameters ϕ = {μa, σa, θa}. We impose μa − 2

√
σ 2

a /θa > 0, such that the support 
of x(t) is approximately compact, � ⊂ R+ . One realization of this solution, drawn from the distribution with the “true” 
meta-parameters ϕ� , serves as ground truth for which observations x̂ are constructed in accordance with (11).

We show in A.2 that the CDF F (X; t) of x(t) satisfies the CDF equation (12) with

U(X, t;ϕ) = −μa X + X

t∫
0

C w(t, τ )dτ and D(X, t;ϕ) = X2

t∫
0

C w(t, τ )dτ . (18)
12
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Fig. 5. Example 2: Estimation of meta-parameters ϕ = {μa, σa, ̃σ =
√

σ 2
a /(2θa)}, as function of the assimilation step m, with GD and NGD for the W2 loss 

functions. The bottom right panel shows the number of iterations per assimilation step for GD and NGD. The simulation parameter values are set to x�
0 = 1, 

ϕ∗ = {0.5, 0.1, 0.05}, ϕ(0) = {1.5, 0.4, 0.14}, σε = 0.05, Nmeas = 41, tNmeas = 2.2, εKL = 10−2, NT = 13550, NB = 29282, NI = 6655, NR = 248897.

In the absence of an analytical solution of the CDF equation in this case, we rely on a surrogate model to acceler-
ate optimization. The FV solution of (12) with (18) and its DNN surrogate is used to assimilate observations x̂ via our 
information-geometric DAMD framework. Similar to the case of white noise (section 4.1), we found the KL-based imple-
mentation of DAMD to be less robust to the choice of the prior. Hence, only the W2-based results are displayed below.

Fig. 5 exhibits the identification of the meta-parameters ϕ as function of the data assimilation step m. Since the W2

loss function is relatively insensitive to the third meta-parameter θa , we present the convergence results for σ̃ = √
σ 2/(2θa)

instead.9 Both GD-W2 and NGD-W2 converge after assimilation of about 20 observations, which are generated every �t =
0.055. NGD converges, for the given combination of observations and the prior, in fewer iterations over the assimilation 
window than GD (Fig. 5d).

In Fig. 6, we present the posterior PDF and CDF of the state x(t) at the final assimilation time tNmeas . The CDF is computed 
as a FV solution of the CDF equation with meta-parameters ϕ(Nmeas) , and the PDF as its derivative. Observations x̂ are 
assimilated, alternatively, via the GD-W2 and NGD-W2 optimization strategies. Both approaches yield posterior distributions 
that are close to the true state, with negligible differences between NGD-W2 and GD-W2. The use of the FV solution of the 
CDF equation leads to a slightly wider posterior than the reliance on its DNN surrogate does, possibly because of numerical 
diffusion.

Although not shown here, we found the KL- and W2-based loss functions at the first and later assimilation steps to 
be smooth and not significantly different from each other. Yet, similar to the example in section 4.1, the differences are 
sufficient to prevent convergence in the KL case for poor choices of the prior.

5. Discussion and conclusion

We presented an information-geometric implementation of DAMD, which yields computationally efficient data assimila-
tion and parameter estimation for nonlinear problems with non-Gaussian system states. The forecast step is performed by 

9 This lack of sensitivity reflects the challenge of inferring the correlation length, 1/θa , from observations over a time window spanning only two true 
correlation lengths, 1/θ�

a .
13
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Fig. 6. Example 2: Prior and posterior distributions at time tNmeas (both PDFs, on the left, and CDFs, on the right) obtained via GD-W2 and NGD-W2

minimization for the Langevin equation with colored noise. For each distribution, both the FV solution and NN approximation are shown. Black stars and 
circles mark the exact value x(tNmeas ) and its noisy observation xNmeas , respectively. The simulation parameter values are the same as in Fig. 5.

employing MD, an uncertainty propagation technique that yields a deterministic evolution equation for the CDF (or, equiva-
lently, the PDF) of the state. This equation maps a set of meta-parameters (statistical properties of the random inputs) onto 
the system-state’s distribution, and defines a parameter space for a dynamic manifold of distributions. Such probabilistic 
forecasts are physics-based but generally not exact, as they often require closure approximations; their accuracy can and 
should be ascertained a priori or drawn from the MD literature [3,12,13,55,56].

The analysis step is performed on this statistical manifold; it is formulated as sequential minimization of the discrepancy 
between an observational distribution and a predictive posterior distribution obeying the CDF equation with unknown 
(posterior) parameters. The observational PDF is the Bayesian posterior obtained as the product of the data model (i.e., the 
likelihood function), and the prior PDF obeys the CDF equation with the parameters from the previous assimilation step. 
DAMD can be classified as a Variational Inference method. Unlike classical VI methods, DAMD minimizes the discrepancy 
between univariate distributions, as observations are collected locally and the CDF equation acts as a physics-informed 
generative model that allows one to compute univariate distributions of the state at an observation location. Like many VI 
methods, DAMD is typically faster than MCMC but does not enjoy asymptotic guarantees of convergence available for the 
latter.

Reliance on statistical discrepancy measures—the Kullback-Leibler divergence and the L2 Wasserstein distance—confers 
exploitable geometric properties to the manifold of distributions. Specifically, it enables the use of NGD, an efficient opti-
mization technique. Our numerical experiments revealed the W2-based DAMD to be more robust to the choice of a prior 
than its KL-based counterpart.

For one-dimensional (univariate) distributions, W2 is defined in terms of system-state CDFs, and KL in terms of cor-
responding PDFs. This argues in favor of the W2-based DAMD, since CDFs are smoother and numerical solution of CDF 
equations is easier. This facilitates the use of invertible DNNs as a surrogate model in the probabilistic space to facilitate 
and accelerate optimization and calculation of the geometric metric tensors. In our numerical experiments, the W2 opti-
mization with the DNN surrogate yields more accurate results than the KL optimization.

Future work will focus on the identification of ambiguity sets and their dynamics on statistical manifolds [24], their 
evolution and their update with observations. We also plan to explore the use of different data models, the impact of 
alternative parameterizations of a statistical manifold on DAMD performance, and the latter’s implications for sensitivity 
analysis.
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Appendix A. CDF equation for the stochastic ODE

We summarize MD for the two test problems from section 4. The original derivations can be found in [37] and [7], re-
spectively. The first result is exact, whereas the second is approximate and has been verified against Monte Carlo simulations 
in [6,7].

A.1. MD for the Langevin equation with white noise

Consider a Langevin equation, (10) with s(x; w) ≡ sd(x, t) + sw(x, t)w(t) where w(t) is a white standard Gaussian process 
(with zero mean and unit variance). The deterministic functions sd and sw are such that s(x; w) is integrable with respect 
to t in the mean square sense [37, Sec. 4.1]. The derivation of a PDF equation for x(t) is relatively straightforward, and leads 
to the Fokker-Planck equation (a.k.a. Kolmogorov’s forward equation) [37, Sec. 4.9]

∂ f

∂t
+ ∂ sd(X, t) f

∂ X
= 1

2

∂2s2
w(X, t) f

∂ X2
, (A.1)

It is formally valid if f (X; t) is well-behaved at infinity, and is subject to initial and boundary conditions condition f (X; 0) =
f0(x) and f (±∞; t) = 0. An equivalent CDF version of the Fokker-Planck equation (A.1) can be obtained via integration of 
(A.1) over X ∈ �

∂ F

∂t
+ sd(X, t)

∂ F

∂ X
= 1

2

∂

∂ X

(
s2

w(X, t)
F

∂ X

)
, (A.2)

subject to F (x; 0) = F0(X), F (Xmin, t) = 0, and F (Xmax, t) = 1.
In (16), s(x; w) = −a(t)x(t) where the random process a(t) has the constant mean μa and standard deviation σa . This 

translates into sd(x, t) = −μax and sw = −σax, so that the coefficients U and D in (12) become U = −μa X and D =
(σ 2

a /2)X2, with ϕ = {μa, σa}.

A.2. MD for the Langevin equation with colored noise

Consider (10) with s(x; w) ≡ −a(t)x(t), where a(t) = μa + w(t) and w(t) is a correlated stationary Gaussian process 
(colored noise) [37, sec. 4.8]. MD for stochastic/random (Langevin) ODEs with temporally correlated forcings requires closure 
approximations. These include the semi-local approximation [6,7], which compares favorably with Monte Carlo simulations 
and a local closure approximation in terms of both accuracy and computational efficiency. For the sake of completeness, we 
summarize the derivation of the PDF equation and its semi-local closure approximation for the specific form of the Langevin 
equation described above. We start by deriving an equation for the raw PDF π(X, t) = δ(X − x(t)), whose ensemble mean 
is the PDF, f (X; t) = 〈π〉. Multiplying our ODE by −∂π/∂ X and using the properties of the Dirac delta function δ(·), we 
obtain

∂π

∂t
+ a(t)

∂π

∂ X
= 0. s(X, t) = 〈s(X, t)〉 + s′(X, t; w); 〈s〉 = −μa X, s′ = −w(t)X (A.3)

We use the Reynolds decomposition A = 〈A〉 +A′ to represent relevant random processes A as the sums of their ensemble 
means 〈A〉 and zero-mean fluctuations, A′ . Since π = f +π ′ , taking the ensemble mean of this equation yields an unclosed 
equation for the PDF f (X; t),

∂ f

∂t
+ μa

∂ f

∂ X
+ ∂〈w ′(t)π ′(X, t)〉

∂ X
= 0, subject to f (X;0) = f0. (A.4)

A closure approximation is needed to render the cross-correlation term 〈w ′(t)π ′(X, t)〉 computable. Subtracting (A.4)
from (A.3), we obtain an equation for random fluctuations π ′(X, t),

∂π ′

∂t
+ μa

∂π ′

∂ X
= ∂(〈s′(X, t)π ′(X, t)〉 − s′π)

∂ X
, subject to π ′(X, t = 0) = 0. (A.5)

The deterministic Green’s function for (A.5), G(X, t; �, τ ), is a solution of

∂G

∂τ
+ μa

∂G

∂�
= −δ(X − �)δ(t − τ ) (A.6)

with homogeneous initial (at τ = t) and boundary conditions at infinity. Its analytical solution, obtained, e.g., via the method 
of characteristics, is G(X, t; �, τ ) =H(t − τ )δ(X − � exp(−μa(t − τ ))). Hence, the path-wise solution of (A.5) is

π ′(X, t) =
t∫ ∞∫

G(X, t;�,τ)
∂

∂�

[〈w ′(�,τ )π ′(�,τ )〉 − w ′(�,τ )π(�,τ )
]

dτd�. (A.7)
0 −∞
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A closure approximation for 〈w ′(t)π ′(X, t)〉 is constructed by multiplying (A.7) with w ′(t), taking the ensemble mean, and 
neglecting the third-order correlation term,

〈w ′(X, t)π ′(X, t)〉 = −
t∫

0

∞∫
−∞

G(X, t;�,τ)
∂

∂�
(C w(X, t;�,τ) f (�,τ )) d�dτ , (A.8)

where C w(X, t; �, τ ) = 〈w ′(X, t)w ′(�, τ )〉 is the auto-covariance of the random noise w(t). Substituting this expression 
into (A.4) yields a nonlocal (integro-differential) PDF equation. Accounting for the analytical expression for G , (A.8) is ap-
proximated semi-locally as

〈w ′(X, t)π ′(X, t)〉 = −X f (X, t)

t∫
0

C w(t, τ )dτ − X2 ∂ f (X, t)

∂ X

t∫
0

C w(t, τ )dτ . (A.9)

This yields the closed CDF equation (12) with (18). If w(t) were white noise, i.e., if C w(t, τ ) = δ(t − τ ), then the resulting 
PDF equation would reduce to the Fokker-Planck equation.

Appendix B. Linear Kalman filter for Langevin equation with white noise

The nonlinear assimilation problem for the scenario explored in section 44.1 with x0 = 1 is transformed into a linear 
problem with nonlinear observational map by introducing the parameters θ1 = μa/σa and θ2 = lnσa and the transformed 
variable ξ(t) = −e−θ2 ln x(t) obeying

dξ

dt
= −θ1 + w(t), subject to ξ(t = 0) = ξ0 = 0. (B.1)

The remapping of the physical parameters yields a linear parameter estimation problem, and enforces the positivity of 
σa . Observations of x(t) are mapped onto ξ(t) via a nonlinear observation map x̂m = h(ξ(tm)) + εm = exp(− eθ2ξ(tm)) + εm , 
which replaces (11). An exact equation for the PDF fξ (�; t) of ξ(t) is obtained following the steps outlined in Appendix A(a):

∂ fξ
∂t

+ ∂θ1 fξ
∂�

= 1

2

∂2 fξ
∂�2

, subject to fξ (�; t = 0) = δ(� − ξ0). (B.2)

The analytical solution of (B.2) is easily obtained, and mapped onto the PDF of x(t), f (X; t, μa, σa). This is exploited in 4.1.
Linear Kalman filter (LKF) [54] is applied to the transformed linear problem. Our focus is on forecast and analysis of the 

augmented state ξ A = [ξ, θ1, θ2] obeying

dξ A

dt
= Aξ A, with A =

(
010
000

)
. (B.3)

LKF relies on the Gaussianity of the involved distributions, such that it is sufficient to propagate (forecast) and update 
(analysis) only the mean 〈ξ A〉 and covariance PA = 〈(ξ A − 〈ξ A〉) (

ξ A − 〈ξ A〉)〉 of the distribution describing the augmented 
state. Propagation of 〈ξ A〉 and PA on the time interval [tm−1, tm] between the previous and the current assimilation times, 
tm−1 and tm , respectively, is given by

d〈ξ A〉
dt

= A 〈ξ A〉, subject to 〈ξ A(tm−1)〉 = 〈ξ A〉m−1|m−1,

dPA

dt
= APA + PA + Q, subject to PA(tm−1) = PA,m−1|m−1. (B.4)

Here, the initial conditions are the mean and the covariance of the previous assimilation step, respectively, and Q =
diag [1,0,0] is the covariance of the model error. The mean and covariance at m = 1 are initialized as 〈ξ A〉0|0 = [ξ0, θ

(0)
1 , θ(0)

2 ]
and PA,0|0 = diag[0, (σ (0)

θ1
)2, (σ (0)

θ2
)2], respectively. A solution of (B.4) at t = tm (analytical in this case) yields 〈ξ A(tm)〉 =

〈ξ A〉m|m−1 and PA(tm) = PA,m|m−1, i.e., the forecast mean and covariance conditional on the observations up to tm−1. The 
mean and covariance are then updated at the assimilation time tm according to

〈ξ A〉m|m = 〈ξ A〉m|m−1 + K
(
x̂m − h(〈ξ A〉m|m−1)

)
, PA,m|m = (I − KH)PA,m|m−1, (B.5)

where the Kalman gain matrix is defined as K = PA,m|m−1H(HPA,m|m−1H + R)−1, I is the identity matrix, H = dh
dξ A

(ξ A =
〈ξ A〉m|m−1) is the linearized observation map, and R = [σ 2

ε ] is the variance of the observations. Kalman filtering for this 
problem introduces a linearization approximation due to the nonlinearity of the observation map.
16



F. Boso and D.M. Tartakovsky Journal of Computational Physics 467 (2022) 111438
References

[1] H. Risken, The Fokker-Planck Equation, Springer, 1996.
[2] L.D. Landau, E.M. Lifshitz, Statistical Physics, Part 1, Elsevier, Amsterdam, 1980.
[3] D.M. Tartakovsky, P.A. Gremaud, Method of distributions for uncertainty quantification, in: R. Ghanem, D. Higdon, H. Owhadi (Eds.), Handbook of 

Uncertainty Quantification, Springer, 2015, pp. 763–783, https://doi .org /10 .1007 /978 -3 -319 -12385 -1 -27.
[4] M. Branicki, A.J. Majda, Fundamental limitations of polynomial chaos for uncertainty quantification in systems with intermittent instabilities, Commun. 

Math. Sci. 11 (1) (2013) 55–103.
[5] P. Wang, A.M. Tartakovsky, D.M. Tartakovsky, Probability density function method for Langevin equations with colored noise, Phys. Rev. Lett. 110 (14) 

(2013) 140602, https://doi .org /10 .1103 /PhysRevLett .110 .140602.
[6] D.A. Barajas-Solano, A.M. Tartakovsky, Probabilistic density function method for nonlinear dynamical systems driven by colored noise, Phys. Rev. E 

93 (5) (2016) 052121.
[7] T. Maltba, P.A. Gremaud, D.M. Tartakovsky, Nonlocal PDF methods for Langevin equations with colored noise, J. Comput. Phys. 367 (2018) 87–101, 

https://doi .org /10 .1016 /j .jcp .2018 .04 .023.
[8] T.E. Maltba, H. Zhao, D.M. Tartakovsky, Autonomous learning of nonlocal stochastic neuron dynamics, J. Cogn. Neurodyn. 16 (2022) 683–705, https://

doi .org /10 .1007 /s11571 -021 -09731 -9.
[9] C.K. Wikle, L.M. Berliner, A Bayesian tutorial for data assimilation, Physica D 230 (1–2) (2007) 1–16.

[10] G. Evensen, Data Assimilation: the Ensemble Kalman Filter, Springer, 2009.
[11] F. Boso, D.M. Tartakovsky, Learning on dynamic statistical manifolds, Proc. R. Soc. A 476 (2239) (2020) 20200213, https://doi .org /10 .1098 /rspa .2020 .

0213.
[12] F. Boso, S.V. Broyda, D.M. Tartakovsky, Cumulative distribution function solutions of advection-reaction equations with uncertain parameters, Proc. R. 

Soc. A 470 (2166) (2014) 20140189, https://doi .org /10 .1098 /rspa .2014 .0189.
[13] F. Boso, D.M. Tartakovsky, Data-informed method of distributions for hyperbolic conservation laws, SIAM J. Sci. Comput. 42 (1) (2020) A559–A583, 

https://doi .org /10 .1137 /19M1260773.
[14] S. Kullback, Information Theory and Statistics, Courier Corporation, 1997.
[15] D.M. Blei, A. Kucukelbir, J.D. McAuliffe, Variational inference: a review for statisticians, J. Am. Stat. Assoc. 112 (518) (2017) 859–877.
[16] G. Peyré, M. Cuturi, Computational optimal transport: with applications to data science, Found. Trends Mach. Learn. 11 (5–6) (2019) 355–607.
[17] Y. Chen, W. Li, Wasserstein natural gradient in statistical manifolds with continuous sample space, arXiv:1805 .08380, 2018.
[18] F. Kunstner, P. Hennig, L. Balles, Limitations of the empirical Fisher approximation for natural gradient descent, in: Adv. Neural Inf. Process. Sys., 2019, 

pp. 4156–4167.
[19] C. Villani, Topics in Optimal Transportation, vol. 58, American Mathematical Society, 2003.
[20] C. Frogner, C. Zhang, H. Mobahi, M. Araya, T.A. Poggio, Learning with a Wasserstein loss, in: Adv. Neural Inf. Process. Sys., 2015, pp. 2053–2061.
[21] M. Arjovsky, S. Chintala, L. Bottou, G.A.N. Wasserstein, arXiv:1701.07875, 2017.
[22] J. Neyman, E.L. Scott, Consistent estimates based on partially consistent observations, Econometrica (1948) 1–32.
[23] P.M. Esfahani, D. Kuhn, Data-driven distributionally robust optimization using the Wasserstein metric: performance guarantees and tractable reformu-

lations, Math. Program. 171 (1–2) (2018) 115–166.
[24] F. Boso, D. Boskos, J. Cortés, S. Martínez, D.M. Tartakovsky, Dynamics of data-driven ambiguity sets for hyperbolic conservation laws with uncertain 

inputs, SIAM J. Sci. Comput. 43 (2021) A2102–A2129.
[25] Y. Ollivier, L. Arnold, A. Auger, N. Hansen, Information-geometric optimization algorithms: a unifying picture via invariance principles, J. Mach. Learn. 

Res. 18 (1) (2017) 564–628.
[26] Y. Li, Y. Cheng, X. Li, H. Wang, X. Hua, Y. Qin, Bayesian nonlinear filtering via information geometric optimization, Entropy 19 (12) (2017) 655.
[27] S.-I. Amari, Information Geometry and Its Applications, vol. 194, Springer, 2016.
[28] W. Li, G. Montúfar, Natural gradient via optimal transport, Inf. Geom. 1 (2) (2018) 181–214.
[29] Y. Ollivier, Online natural gradient as a Kalman filter, Electron. J. Stat. 12 (2) (2018) 2930–2961.
[30] Y. Ollivier, The extended Kalman filter is a natural gradient descent in trajectory space, arXiv:1901.00696, 2019.
[31] A. Takatsu, Wasserstein geometry of Gaussian measures, Osaka J. Math. 48 (4) (2011) 1005–1026.
[32] L. Malagò, L. Montrucchio, G. Pistone, Wasserstein Riemannian geometry of positive definite matrices, arXiv:1801.09269, 2018.
[33] S.-I. Amari, R. Karakida, M. Oizumi, Information geometry connecting Wasserstein distance and Kullback–Leibler divergence via the entropy-relaxed 

transportation problem, Inf. Geom. 1 (1) (2018) 13–37.
[34] J. Martens, New insights and perspectives on the natural gradient method, J. Mach. Learn. Res. 21 (2020) 1–76.
[35] F. Boso, A. Marzadri, D.M. Tartakovsky, Probabilistic forecasting of nitrogen dynamics in hyporheic zone, Water Resour. Res. 54 (7) (2018) 4417–4431, 

https://doi .org /10 .1029 /2018WR022525.
[36] A.A. Alawadhi, F. Boso, D.M. Tartakovsky, Method of distributions for water-hammer equations with uncertain parameters, Water Resour. Res. 54 (11) 

(2018) 9398–9411.
[37] A.H. Jazwinski, Stochastic Processes and Filtering, Dover Publications, 1970.
[38] H.J. Yang, F. Boso, H.A. Tchelepi, D.M. Tartakovsky, Probabilistic forecast of flow in porous media with uncertain properties, Water Resour. Res. (2019).
[39] C.P. Robert, G. Casella, G. Casella, Monte Carlo Statistical Methods, vol. 2, Springer, 2004.
[40] J. Bakarji, D.M. Tartakovsky, Data-driven discovery of coarse-grained equations, J. Comput. Phys. 434 (2021) 110219.
[41] R. Herzog, K. Kunisch, Algorithms for PDE-constrained optimization, GAMM-Mitt. 33 (2) (2010) 163–176.
[42] A. Guzman, Derivatives and Integrals of Multivariable Functions, Springer, 2012.
[43] H. Voss, M.J. Bünner, M. Abel, Identification of continuous, spatiotemporal systems, Phys. Rev. E 57 (1998) 2820–2823.
[44] M.D. Schmidt, H. Lipson, Co-evolving fitness predictors for accelerating and reducing evaluations, in: R.L. Riolo, T. Soule, B. Worzel (Eds.), Genetic 

Programming Theory and Practice IV, in: Genetic and Evolutionary Computation, vol. 5, Springer, Ann Arbor, 2006, Ch. 17.
[45] C.M. Bishop, Pattern Recognition and Machine Learning, Springer-Verlag, New York, 2006.
[46] M. Spivak, Calculus on Manifolds: A Modern Approach to Classical Theorems of Advanced Calculus, Harper Collins, 1965.
[47] M. Raissi, P. Perdikaris, G.E. Karniadakis, Physics-informed neural networks: a deep learning framework for solving forward and inverse problems 

involving nonlinear partial differential equations, J. Comput. Phys. 378 (2019) 686–707.
[48] A. Gupta, N. Shukla, L. Marla, A. Kolbeinsson, K. Yellepeddi, How to incorporate monotonicity in deep networks while preserving flexibility?, arXiv:

1909 .10662, 2019.
[49] G. Ansmann, Efficiently and easily integrating differential equations with JiTCODE, JiTCDDE, and JiTCSDE, Chaos 28 (4) (2018) 043116, https://doi .org /

10 .1063 /1.5019320.
[50] C. Rackauckas, Q. Nie, Adaptive methods for stochastic differential equations via natural embeddings and rejection sampling with memory, Discrete 

Contin. Dyn. Syst., Ser. B 22 (7) (2017) 2731.
[51] J.E. Guyer, D. Wheeler, J.A. Warren, FiPy: partial differential equations with python, Comput. Sci. Eng. 11 (3) (2009) 6–15.
17

http://refhub.elsevier.com/S0021-9991(22)00500-9/bibF3D1F0C4B2DC37FE51D124D2F0E0F23Bs1
http://refhub.elsevier.com/S0021-9991(22)00500-9/bib0B3B418A9BFF6B66B0AC0A8E01C1C966s1
https://doi.org/10.1007/978-3-319-12385-1-27
http://refhub.elsevier.com/S0021-9991(22)00500-9/bib0FD0FFC3138773BE994BA81407C38B79s1
http://refhub.elsevier.com/S0021-9991(22)00500-9/bib0FD0FFC3138773BE994BA81407C38B79s1
https://doi.org/10.1103/PhysRevLett.110.140602
http://refhub.elsevier.com/S0021-9991(22)00500-9/bibC2740F92A8900EDC8E553AE8AA49436Bs1
http://refhub.elsevier.com/S0021-9991(22)00500-9/bibC2740F92A8900EDC8E553AE8AA49436Bs1
https://doi.org/10.1016/j.jcp.2018.04.023
https://doi.org/10.1007/s11571-021-09731-9
https://doi.org/10.1007/s11571-021-09731-9
http://refhub.elsevier.com/S0021-9991(22)00500-9/bib46336CDCF01CE0CE60BC58AE49D36674s1
http://refhub.elsevier.com/S0021-9991(22)00500-9/bib0830A2F48F8AF9E22CF34855ED366F7As1
https://doi.org/10.1098/rspa.2020.0213
https://doi.org/10.1098/rspa.2020.0213
https://doi.org/10.1098/rspa.2014.0189
https://doi.org/10.1137/19M1260773
http://refhub.elsevier.com/S0021-9991(22)00500-9/bibBB7F0AA782C56BA0D59E786134546076s1
http://refhub.elsevier.com/S0021-9991(22)00500-9/bib54F52761D82B989060735D917ECDCB06s1
http://refhub.elsevier.com/S0021-9991(22)00500-9/bibE23E3F40CF9F3B6DC3649C4F842669CFs1
http://refhub.elsevier.com/S0021-9991(22)00500-9/bib25C8B4209396B6F21B595C2C9FE3A971s1
http://refhub.elsevier.com/S0021-9991(22)00500-9/bib63687F2DF35D2B553F435A332D9F5AE1s1
http://refhub.elsevier.com/S0021-9991(22)00500-9/bib63687F2DF35D2B553F435A332D9F5AE1s1
http://refhub.elsevier.com/S0021-9991(22)00500-9/bib614CB7DAF09DFCAE035EC0A3DF7C9996s1
http://refhub.elsevier.com/S0021-9991(22)00500-9/bib927A3DE57AEBFFCE65FBD6B887F91001s1
http://refhub.elsevier.com/S0021-9991(22)00500-9/bib246E392887F3B8AB9996AE669DB27C6As1
http://refhub.elsevier.com/S0021-9991(22)00500-9/bibC0BC8A617D4AB150983352DCACA71A47s1
http://refhub.elsevier.com/S0021-9991(22)00500-9/bib929F3B858F7D4456B38D010845B349C3s1
http://refhub.elsevier.com/S0021-9991(22)00500-9/bib929F3B858F7D4456B38D010845B349C3s1
http://refhub.elsevier.com/S0021-9991(22)00500-9/bib4A0F465FBDB0544474B5FE42234B73D4s1
http://refhub.elsevier.com/S0021-9991(22)00500-9/bib4A0F465FBDB0544474B5FE42234B73D4s1
http://refhub.elsevier.com/S0021-9991(22)00500-9/bibBB858FD3BCDCC60F8D2F55A0C24D4057s1
http://refhub.elsevier.com/S0021-9991(22)00500-9/bibBB858FD3BCDCC60F8D2F55A0C24D4057s1
http://refhub.elsevier.com/S0021-9991(22)00500-9/bibD7B36DF57947591F96B116EB573F5819s1
http://refhub.elsevier.com/S0021-9991(22)00500-9/bibB8D1CD917D227E072AD33B1AC42E35AEs1
http://refhub.elsevier.com/S0021-9991(22)00500-9/bib1C29F80703FE0DA359DD815F29A29801s1
http://refhub.elsevier.com/S0021-9991(22)00500-9/bibE0F9A1AB4B958A878E64753DA35B0A85s1
http://refhub.elsevier.com/S0021-9991(22)00500-9/bib4991553B35E7E24532F3D7DF98E6D267s1
http://refhub.elsevier.com/S0021-9991(22)00500-9/bib588A76DBFD101B756BBE83022F57A1FBs1
http://refhub.elsevier.com/S0021-9991(22)00500-9/bib944102B7955990B265AC18AADB4FDEFDs1
http://refhub.elsevier.com/S0021-9991(22)00500-9/bibB565C4F4AA6652DF1BEA51F3B2690996s1
http://refhub.elsevier.com/S0021-9991(22)00500-9/bibB565C4F4AA6652DF1BEA51F3B2690996s1
http://refhub.elsevier.com/S0021-9991(22)00500-9/bib7FBD709AF4966457CC84387342FBAB54s1
https://doi.org/10.1029/2018WR022525
http://refhub.elsevier.com/S0021-9991(22)00500-9/bib908123E27A71404BBE244FD7DE8C36BFs1
http://refhub.elsevier.com/S0021-9991(22)00500-9/bib908123E27A71404BBE244FD7DE8C36BFs1
http://refhub.elsevier.com/S0021-9991(22)00500-9/bib4AF13AFA2ACA7560C43FCC2E5D57918Bs1
http://refhub.elsevier.com/S0021-9991(22)00500-9/bib11057F6EDF57C7C0142B0BC93529CCE8s1
http://refhub.elsevier.com/S0021-9991(22)00500-9/bib8428F2295618269486A8DEE25FC0822Bs1
http://refhub.elsevier.com/S0021-9991(22)00500-9/bib324AFF35516D55F5BA49ED8F5DABCAD0s1
http://refhub.elsevier.com/S0021-9991(22)00500-9/bib961A5ECE3F8538C5251EE87E59F3F040s1
http://refhub.elsevier.com/S0021-9991(22)00500-9/bibAD39D2B9D286C68C7430047ACD80ED14s1
http://refhub.elsevier.com/S0021-9991(22)00500-9/bib513AF0480BAAB842931A456814B1F4DCs1
http://refhub.elsevier.com/S0021-9991(22)00500-9/bib1608BBB346CF15D6FAF2271CFD231247s1
http://refhub.elsevier.com/S0021-9991(22)00500-9/bib1608BBB346CF15D6FAF2271CFD231247s1
http://refhub.elsevier.com/S0021-9991(22)00500-9/bib2C8D7A27F6E8D9DE03725C28520121A3s1
http://refhub.elsevier.com/S0021-9991(22)00500-9/bibBF6A0EBDD638E1F2DE07D8B073CF6FB9s1
http://refhub.elsevier.com/S0021-9991(22)00500-9/bib53EF7BEEFFBCC434AC4215FA1276D943s1
http://refhub.elsevier.com/S0021-9991(22)00500-9/bib53EF7BEEFFBCC434AC4215FA1276D943s1
http://refhub.elsevier.com/S0021-9991(22)00500-9/bib6B3A903DB32FEBE1AA5A00D83999B24Es1
http://refhub.elsevier.com/S0021-9991(22)00500-9/bib6B3A903DB32FEBE1AA5A00D83999B24Es1
https://doi.org/10.1063/1.5019320
https://doi.org/10.1063/1.5019320
http://refhub.elsevier.com/S0021-9991(22)00500-9/bib0987D7CAC8E02892C636BA2DD9073FA0s1
http://refhub.elsevier.com/S0021-9991(22)00500-9/bib0987D7CAC8E02892C636BA2DD9073FA0s1
http://refhub.elsevier.com/S0021-9991(22)00500-9/bibFF2823AF7D5CFEAA3047B44472C86BC9s1


F. Boso and D.M. Tartakovsky Journal of Computational Physics 467 (2022) 111438
[52] D.C. Liu, J. Nocedal, On the limited memory BFGS method for large scale optimization, Math. Program. 45 (1–3) (1989) 503–528.
[53] J. Nocedal, S. Wright, Numerical Optimization, 2nd edition, Springer, 2006.
[54] R.E. Kalman, A New Approach to Linear Filtering and Prediction Problems, 1960.
[55] M. Dentz, D.M. Tartakovsky, Probability density functions for passive scalars dispersed in random velocity fields, Geophys. Res. Lett. 37 (2010) L24406, 

https://doi .org /10 .1029 /2010GL045748.
[56] F. Boso, D.M. Tartakovsky, The method of distributions for dispersive transport in porous media with uncertain hydraulic properties, Water Resour. Res. 

52 (6) (2016) 4700–4712.
18

http://refhub.elsevier.com/S0021-9991(22)00500-9/bibBE46664F4FEC6566671BB6DA2BB88278s1
http://refhub.elsevier.com/S0021-9991(22)00500-9/bibBBB588B5F68816C3A4C6D1AFC431CDDBs1
http://refhub.elsevier.com/S0021-9991(22)00500-9/bibBF9447C0E4C3642C41BE4D1AEEE5DF7Es1
https://doi.org/10.1029/2010GL045748
http://refhub.elsevier.com/S0021-9991(22)00500-9/bib8A0643CCE937A32BF2A33F9BC6F70439s1
http://refhub.elsevier.com/S0021-9991(22)00500-9/bib8A0643CCE937A32BF2A33F9BC6F70439s1

	Information geometry of physics-informed statistical manifolds and its use in data assimilation
	1 Introduction
	2 Preliminaries
	3 DAMD with PINN surrogates
	4 Numerical experiments
	4.1 Example 1: Langevin equation with white noise
	4.2 Example 2: Langevin equation with colored noise

	5 Discussion and conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Appendix A CDF equation for the stochastic ODE
	A.1 MD for the Langevin equation with white noise
	A.2 MD for the Langevin equation with colored noise

	Appendix B Linear Kalman filter for Langevin equation with white noise
	References


