
royalsocietypublishing.org/journal/rspa

Research
Cite this article: Boso F, Tartakovsky DM.
2020 Learning on dynamic statistical
manifolds. Proc. R. Soc. A 476: 20200213.
http://dx.doi.org/10.1098/rspa.2020.0213

Received: 26 March 2020
Accepted: 24 June 2020

Subject Areas:
mathematics

Keywords:
method of distributions, Bayesian inference,
parameter identification

Author for correspondence:
Daniel M. Tartakovsky
e-mail: tartakovsky@stanford.edu

Learning on dynamic statistical
manifolds
F. Boso and D. M. Tartakovsky

Department of Energy Resources Engineering, Stanford University,
Stanford, CA 94305, USA

FB, 0000-0002-9066-0736; DMT, 0000-0001-9019-8935

Hyperbolic balance laws with uncertain (random)
parameters and inputs are ubiquitous in science
and engineering. Quantification of uncertainty in
predictions derived from such laws, and reduction of
predictive uncertainty via data assimilation, remain
an open challenge. That is due to nonlinearity of
governing equations, whose solutions are highly non-
Gaussian and often discontinuous. To ameliorate these
issues in a computationally efficient way, we use
the method of distributions, which here takes the
form of a deterministic equation for spatio-temporal
evolution of the cumulative distribution function
(CDF) of the random system state, as a means
of forward uncertainty propagation. Uncertainty
reduction is achieved by recasting the standard
loss function, i.e. discrepancy between observations
and model predictions, in distributional terms. This
step exploits the equivalence between minimization
of the square error discrepancy and the Kullback–
Leibler divergence. The loss function is regularized by
adding a Lagrangian constraint enforcing fulfilment
of the CDF equation. Minimization is performed
sequentially, progressively updating the parameters
of the CDF equation as more measurements are
assimilated.

1. Introduction
Robust and efficient quantification of parametric uncerta-
inty in hyperbolic balance and conservations laws is
hampered by their nonlinearity and solution structure,
which typically possesses sharp gradients and often
exhibits shocks and/or discontinuities. Many uncertainty
quantification techniques (e.g. stochastic finite elements
and stochastic collocation), which can be orders of
magnitude faster than standard Monte Carlo simulations
(MCS) when applied to elliptic and parabolic equations,
often underperform on hyperbolic problems.
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The method of distributions (MD) [1] is an uncertainty quantification technique that is
tailor-made for hyperbolic problems with random coefficients and inputs. Its goal is to
derive a deterministic partial differential equation (PDE) for either the probability density
function (PDF) or the cumulative distribution function (CDF) of the model output. In the
presence of multiplicative noise introduced, e.g. by random parameter fields, MD requires a
closure approximation, which is derived either via perturbation expansions or by resorting to
phenomenology [2–4]. The method does not rely on a finite-term representation (e.g. via a
truncated Karhunen–Loève expansion) of random parameter fields and, hence, does not suffer
from the so-called curse of dimensionality [1,5]; its computational cost is independent of the
correlation length of an input parameter [6] and can be orders of magnitude lower than that
of MCS [2,4,7], and its accuracy increases as the correlation length decreases [1,8].

While MD enables one to quantify predictive uncertainty in hyperbolic models, assimilation
of observations into probabilistic model predictions, e.g. by means of Bayes’ rule, facilitates
reduction of this uncertainty. Within this framework, the model provides a link between observed
quantities and the estimates of the state, filtered through an observational map [9]. Direct
application of Bayes’ rule is often impractical because of the high dimensionality of a joint
PDF of system states, and because of complex relations between parameters and states, and
between states and observations [10, sec. 10.2]. For these reasons, a plethora of approximation
techniques have been proposed. Some of these, e.g. maximum-likelihood estimation (MLE) [11]
and maximum a posteriori estimation (MAP) [12], aim to identify the mode of a posterior
distribution, which can be inadequate if the latter is highly non-Gaussian (e.g. multimodal), as is
typical of nonlinear models. Ensemble Kalman filters (EnKF) [13] allow one to handle nonlinear
PDEs but assume that their solutions are Gaussian. Other methods, e.g. Markov chain Monte
Carlo [14] and particle filters [15], sample from the posterior directly and obviate the need for
the Gaussianity and linearity assumptions. Like direct Bayesian updating, the methods of this
class are computationally expensive because they rely on multiple forward solves of PDEs with
uncertain (random) coefficients and/or auxiliary functions. Our goal is to eliminate this step by
replacing it with MD.

Variational formulation recasts some of the methods described above (MLE, MAP, analysis
step in EnKF) as a minimization problem in which a cost (loss) function contains the average
distance between measurements and a model’s predictions; parameter estimation is then
accomplished by minimizing this loss function with respect to the model’s parameters (and
their statistical moments). This variational formulation belongs to a broader class of optimization
methods, sometimes termed variational inference (VI) [16], that approximate Bayesian posterior
densities by imposing closeness (in the Kullback–Leibler divergence sense) to the target density.
Key innovations of our method are to reformulate the loss function in distributional terms using
a different discrepancy metric and to confine both the prior and the posterior distributions to a
dynamic statistical manifold defined by a deterministic CDF equation. Minimization is done with
respect to variables used to parametrize the closure terms in the CDF equation; these variables
are, in turn, expressed in terms of the statistical properties of the uncertain parameters and/or
auxiliary functions of the original model.

Resulting PDE-constrained optimization problems can be solved with several techniques [17].
We employ a machine learning approach [18–20], which approximates a PDE’s solution with
a neural network whose coefficients are obtained by minimizing the resulting residual. This
component of our algorithm places it in the burgeoning field variously known as physics-
informed machine learning or data-aware modelling. Its goal is to overcome the scarcity
of experimental data inherent in many physical systems by fusing physical constraints and
observations. It is worthwhile emphasizing though that optimization techniques other than the
one mentioned above can be used in our Bayesian data assimilation algorithm.

In §2, we formulate a data assimilation problem for hyperbolic PDEs with uncertain
parameters and/or auxiliary functions, and introduce MD as a forecast step in Bayesian updating.
Section 3 contains a novel analysis step, in which MD is used as a constraint to reduce parametric
uncertainty; technical details are provided in appendix A. We refer to this combination of forecast
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and analysis as the data-aware method of distributions (DA-MD). In §4, we test our approach
on a linear inhomogeneous hyperbolic equation; this setting admits both exact and approximate
Bayesian updates of the random parameters (either spatially uniform or variable) and, hence,
enables us to verify the method’s accuracy. Finally, in §5, we summarize the main findings and
discuss future directions.

2. Forecast: method of distributions
While the data assimilation approach introduced here is applicable to other problems, we
formulate it in §2a for hyperbolic PDEs with uncertain (random) parameters and/or auxiliary
functions. This setting simplifies the derivation of a deterministic CDF equation used in §2b as
the forecast step in Bayesian data assimilation.

(a) Problem formulation
We consider a smooth state variable u(x, t) : Ω × R

+ → R, whose dynamics is governed by a
nonlinear hyperbolic PDE

∂u
∂t

+ ∇ · q(u; θq) = r(u; θ r), x ∈ Ω , t > 0. (2.1a)

This equation is subject to the initial condition

u(x, t = 0) = u0(x), x ∈ Ω , (2.1b)

and, if the d-dimensional domain Ω ⊂ R
d is bounded, to appropriate boundary conditions

along the domain boundary ∂Ω . The flux, q(u) : R → R
d, and the source term, r(u) : R → R, are

parametrized by θq and θ r, respectively. These real-valued parameters can either be constant or
vary in space (x) and time (t). The functions q(u) and r(u) are either linear or nonlinear, as long
as the solution of (2.1) does not develop shocks.1 For example, u(x, t) is the concentration of a
reactive solute advected by a flow velocity v(x), while undergoing chemical transformations; in
this setting, q(u) = v(x)u is the advective flux parametrized by v(x), and r(u) represents a chemical
reaction parametrized by a reaction rate constant k.

Incomplete or noisy measurements of the parameters θ = {θq, θ r} render them uncertain;
this uncertainty is quantified by treating θ as random fields and random variables.
Additionally, auxiliary functions, such as the initial state u0(x) and boundary functions, can be
uncertain/random. In the following, θ̃ denotes the complete set of random inputs, comprised of
both θ and auxiliary functions. This randomness renders u(x, t), a solution of (2.1), random as
well. Rather than computing low statistical moments of u(x, t) (e.g. its ensemble mean ū(x, t) and
standard deviation σu(x, t) that are commonly used to obtain an unbiased estimator of a system’s
dynamics and to quantify the corresponding predictive uncertainty, respectively), our goal is to
compute its one-point CDF Fu(U; x, t) ≡ P[u(x, t) ≤ U], where U ∈ ΩU ⊆ R. The value space for the
random variable u(x, t), ΩU = [Umin, Umax], identifies the support of the CDF Fu(U; ·). The latter
can be either infinite (ΩU = R, with Umin = −∞ and Umax = +∞) or finite (Umin, Umax ∈ R such
that Umin < Umax).

The model (2.1) is supplemented with Nmeas measurements of the state variable u(x, t) collected
at selected space–time points (x, t)m with m = 1, . . . , Nmeas. These data, d1:Nmeas = {d1, . . . , dNmeas},
are assumed to differ from the corresponding exact model predictions u[(x, t)m] by a random
measurement error εm,

dm = u[(x, t)m] + εm, m = 1, . . . , Nmeas. (2.2)

The measurement errors are assumed to have zero mean, E[εm] = 0, and to be mutually
uncorrelated, E[εmεn] = 0 for all m 
= n. A complete probabilistic description of the data is
encapsulated in the PDF fL(dm|u[(x, t)m] = U), which is also known as likelihood function. In the

1The presence of shocks and discontinuities complicates the derivation of CDF equations [4,21,22], obfuscating our focus on
data assimilation.
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absence of measurement errors, the observational PDF is given by the Dirac distribution δ(·), i.e.
fL(dm|u[(x, t)m] = U) = δ(U − dm).

(b) Cumulative distribution function equation
Direct numerical computation of the CDF Fu(U; x, t), e.g. via MCS of (2.1), is computationally
expensive. Instead, we use MD to derive a (d + 1)-dimensional linear PDE for Fu (see appendix A
for details),

∂Fu

∂t
+ Q(U; x, t) · ∇̃Fu = ∇̃ · [D(U; x, t)∇̃Fu

]
, (x, U) ∈ Ω̃ , t > 0. (2.3)

This deterministic PDE is defined in the augmented space Ω̃ = Ω ∪ ΩU.This equation is subject to
initial and boundary conditions that reflect uncertainty in the initial and boundary conditions for
the original problem (2.1). Additional boundary conditions are defined for ∂ΩU, Fu(Umin; ·) = 0
and Fu(Umax; ·) = 1; they stem from the definition of a CDF.

In general, derivation of (2.3) requires a closure approximation, such as the perturbation
expansion used in appendix A. Notable exceptions of practical significance include a scenario
of random inputs (initial and boundary conditions) but deterministic parameters θ ;2 in this
case, (2.3) is exact and its coefficients are given by (appendix A)

Q(U; x, t) = {q̇(U; θq), r(U; x, t)}, D(U; x, t) = 0, (2.4)

where q̇(U) = dq(U)/dU. When the model parameters θ are random, i.e. when the CDF
equation (2.3) is inexact, the coefficients Q and D depend on a set ϕ of statistical parameters that
characterize the randomness of θ . This set consists of the shape parameters of PDFs of θ̃ , i.e. their
means, variances and correlation lengths. Together with (x, t) and the statistical characteristics of
the random auxiliary functions, these parameters represent the coordinates ϕ̃ of a manifold of
distributions F (Fu), whose dynamics is governed by the CDF equation (2.3). Each point in this
finite-dimensional coordinate space ϕ̃ uniquely identifies a distribution [24].

The use of perturbative closures to derive a CDF equation raises several questions about
its accuracy and robustness, which have been the subject of previous investigations. First,
even though the coefficient of variation (CV) of the model parameters serves as a perturbation
parameter, the resulting CDF equations for many applications remain accurate for relatively
large values of CV [2,8,25]. Second, the coefficients of perturbation-based CDF equations, such
as Q and D in (2.3), depend only on the low-order statistical moments (such as ϕ) of the
model parameters, rather than their full PDFs. By using an advection–reaction equation as a
test case, we show in appendix A that the resulting CDF equation is distributionally robust,
giving consistent predictions of the system state’s CDF regardless of whether the model coefficient
(spatially varying reaction rate) has a Gaussian, lognormal, or uniform PDF. Third, the accuracy of
perturbation-based CDF equations depends on correlation lengths of the model parameters: these
equations are often exact for white noise (zero correlation) and become progressively less so as the
correlation lengths increase. If the correlation lengths are large, perturbation-based closures can
be replaced with truncated Karhunen–Loéve expansions of the random parameter fields, leading
to accurate/exact CDF equations [6].

In summary, we use the CDF equation (2.3) as an efficient forecasting tool, which propagates
parametric uncertainty in space and in time through a physical model. It represents a counterpart
of a set of ensemble members or particles in the context of EnKF or particle filter, respectively. Its
accuracy and computational efficiency vis-à-vis MCS have been throughly investigated [2,4,7].

3. Analysis: sequential Bayesian update on dynamic manifolds
We use MD as a constraint for the analysis step, during which observations of the system state
are used to refine the knowledge of the meta-parameters ϕ. Specifically, our novel analysis step

2When both the inputs and parameters are deterministic, the strategy of transforming a nonlinear d-dimensional hyperbolic
PDE into its linear (d + 1)-dimensional counterpart is referred to as kinetic formulation of a hyperbolic conservation law [23].
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involves minimization of the discrepancy between the ‘observational’ CDF F̂u(U; (x, t)m) in each
measurement location (m = 1, . . . , Nmeas) and the corresponding ‘estimate’ CDF Fu(U; ϕ; (x, t)m):

ϕ(m) = argmin
ϕ

‖F̂u(U; (x, t)m) − Fu(U; ϕ; (x, t)m)‖2 subject to Fu ∈F , (3.1)

where

‖F̂u(U; (x, t)m) − Fu(U; ϕ; (x, t)m)‖2 =
(∫

ΩU

(F̂u(U; (x, t)m) − Fu(U; ϕ; (x, t)m))2dU
)1/2

.

The analysis step, i.e. minimization of (3.1), is performed sequentially for each observation m,
so that all the distributions above are uni-variate. Formulation (3.1) is at the core of our data
assimilation strategy and requires a thorough explanation.

Remark 3.1. MD constraint: The estimate distribution Fu(U; ϕ; (x, t)m) is a solution of the CDF
equation (2.3) subject to appropriate initial/boundary conditions. This boundary value problem is
parametrized by the set of parameters ϕ, over which the discrepancy minimization is performed.
In other words, (3.1) identifies the parameters of the CDF equation that yield a CDF Fu in
the measurement location as close as possible to the observational CDF F̂u. This implies that
the minimization is performed on the manifold of distributions obeying the CDF equation.
This observation is further elaborated upon in §3b. Reliance on MD obviates the need for both
Gaussianity assumption for the system states and the linearity requirement for the physical
model, as long as it is possible to develop a reliable and accurate CDF equation.

Remark 3.2. Observational CDFs: We construct the observational CDF,

F̂u(U; (x, t)m) =
∫U

Umin

f̂u(U; (x, t)m) dU,

via Bayesian update of the corresponding PDF f̂u at each space–time measurement point m,

f̂u(U; (x, t)m|dm) ∝ fL(dm|u[(x, t)m] = U)fu(U; ϕ(m−1); (x, t)m). (3.2)

The prior PDF fu(U; ϕ(m−1); (x, t)m) is computed from a solution of the CDF equation (2.3) whose
parameters ϕ(m−1) are computed in the previous assimilation step. This procedure provides a local
update of the system state’s PDF in the sense that it yields no information on the surrounding
locations or on the future time evolution of the state.

Remark 3.3. Sequential update: The sequential update of the observational PDF f̂u allows us to
obtain final estimates for the MD parameters ϕ that are conditional on all assimilated observations
[26]. It is employed both to reduce the dimensionality of the CDFs/PDFs involved and to facilitate
real-time update of the estimates as new measurements become available [10, p. 101]. At each step,
or for each data point, m = 1, . . . , Nmeas, we follow the following procedure.

— For m = 1, the MD parameters ϕ(0) are initialized to define the prior and to compute (3.2).
The normalization constant that specifies f̂u is obtained by (numerical) integration, C1 =∫

fL(d1|U)fu(U; ϕ(0); (x, t)1) dU.
— For m > 1, each update (3.2) accounts for conditioning on all previous measurements up

to the current one, d1:m, such that

f̂u(U; (x, t)m|d1:m) ∝ fL(d1:m|U)fu(U; ϕ(m−1); (x, t)m). (3.3)

This step implies that the prior distribution in the current measurement location m obeys
the CDF equation (2.3). If observation errors are mutually uncorrelated, then fL(d1:m|U) =
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i=1 fL(di|U) and

f̂u(U; (x, t)m|d1:m) ∝
m−1∏
i=1

fL(di|U)fL(dm|U)fu(U; ϕ(m−1); (x, t)m)

∝ fL(dm|U)f̂u(U; (x, t)m|d1:m−1). (3.4)

Here, f̂u(U; (x, t)m|d1:m−1) is approximated by a solution of the CDF equation in (x, t)m

with parameters ϕ(m−1) from the previous iterative step. In other words, a solution of the
CDF equation (2.3) with parameters ϕ(m−1) serves as prior.

At the end of this sequential assimilation procedure, the CDF equation (2.3) with parameters
ϕ(Nmeas) allows us to predict the future dynamics of the CDF Fu(U; ·), i.e. to make a probabilistic
forecast.

Remark 3.4. Choice of the discrepancy metric: Our reliance on the squared L2 norm (also known
as Cramer’s distance [27]),

‖F1(U) − F2(U)‖2
2 =

∫Umax

Umin

[F1(U) − F2(U)]2dU,

as a measure of discrepancy between any two CDFs, F1(U) and F2(U), facilitates numerical
minimization of the loss function in (3.1) with a technique described in §3a. We deploy it in place
of a commonly used Kullback–Leibler (KL) divergence,

DKL(F1, F2) =
∫Umax

Umin

f1(U) ln
f1(U)
f2(U)

dU, with f1(U) = ∂F1

∂U
, f2(U) = ∂F2

∂U

for the following reasons. According to Pinsker’s inequality [28,29], DKL[F1, F2] ≥ (1/2)‖F1 − F2‖2
1,

where ‖ · ‖1 is the L1 norm. Since ‖F1 − F2‖1 ≥ ‖F1 − F2‖2 [30, Prop. 1.5], this yields DKL(F1, F2) ≥
(1/2)‖F1 − F2‖2

2. Since DKL(F1, F2) and ‖F1 − F2‖2 share the same minimum (for F1 ≡ F2 both
metrics are equal to zero), a solution of the minimization problem (3.1) would also minimize the
corresponding loss function based on the KL divergence. Moreover, it is advantageous to employ
MD in its CDF form, rather than its PDF form, because of the straightforward assignment of the
boundary conditions along ∂ΩU and smoother solutions.

Remark 3.5. Relationship to VI techniques: Our method aims at approximating posterior
densities in a Bayesian sense via a minimization procedure. As such, it connects with VI
techniques, which use optimization to identify one joint density—chosen to belong to a specified
family of approximate densities—which is close to the target posterior in KL divergence
terms [16]. We choose a physics-based family of plausible distributions, which obey the CDF
equation parametrized with a finite set of parameters. Constraining distributions to a dynamic
manifold allows us to consider sequentially the update of single-point distributions: updated
parameters can be used, in combination with the CDF equation, to obtain forecast predictions in
different space–time locations. Moreover, it reduces drastically (to one) the dimensionality of the
posterior distribution to be updated at each assimilation step.3

(a) Loss function minimization
The PDE-constrained optimization problem (3.1) can be solved with several techniques [17].
If the CDF equation (2.3) admits an analytical solution, e.g. if the system parameters θ are
deterministic and the initial and/or boundary functions are random, Fu(U; ϕ) can be expressed
as a (semi)explicit function of the statistical parameters, ϕ0 and ϕb, characterizing the initial and
boundary CDFs F0 and Fb, respectively. Section 4a deals with such a scenario; it serves to verify

3In this regard, we mention the work [24], where the reduction in complexity of statistical models is quantified by exploiting
relevant embedding constraints specifying geodesic motion on curved statistical manifolds.
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the reliability of our approach by comparing its performance with that of the standard Bayesian
update.

When the CDF equation (2.3) has to be solved numerically, we follow [19,31] to approximate
its solution, Fu(U; ϕ̃), with a neural network FNN(U; ϕ̃) whose coefficients (weights and biases)
are computed by minimizing the residual

R = ∂FNN

∂t
+ (Q − ∇̃ · D) · ∇̃FNN − D�̃FNN (3.5)

at a set of Nres points {(x, t)r}Nres
r=1 ; the initial and boundary conditions are enforced at a finite set

of Naux points {(U, x, t)r}Naux
r=1 . The derivatives in (3.5) are computed via automatic differentiation,

as implemented in TensorFlow [32]. This procedure replaces the PDE-constrained minimization
problem (3.1) with an optimization problem

ϕ(m) = argmin
ϕ

{‖F̂(U; (x, t)m) − FNN(U; (x, t)m, ϕ)‖2 + MSER(ϕ) + MSEB(ϕ)
}
, (3.6)

where

MSER(ϕ) = 1
Nres

Nres∑
r=1

‖R((x, t)r; ϕ)‖2

and

MSEB(ϕ) = 1
Naux

Naux∑
i=1

‖FNN((U, x, t)i, ϕ) − Finp((U, x, t)i)‖2,

where Finp represents the prescribed CDFs of either the initial state or the boundary functions
along ∂Ω̃ . The NN function approximation via minimization enjoys convergence guarantees in
the chosen L2 norm (e.g. [33,34]). A solution of (3.6) provides a CDF surrogate (a ‘trained’ NN)
and the set of optimal parameters ϕ. The surrogate can then be used to update predictions and
for forecast (not pursued here).

(b) Information-geometric interpretation
A family of distributions satisfying the CDF equation (2.3) defines a dynamic statistical manifold
F [Fu; ϕ̃]. Each point in this space, with coordinates ϕ̃ = (x, t, ϕ), uniquely identifies a physics-
informed CDF Fu(U; x, t) of the model’s output u(x, t) at each space–time point (x, t). The manifold
F is differentiable in all coordinate directions and equipped with a Riemannian metric. The latter
takes the form of the Fisher information metric (FIM), a (d + 1 + Nϕ) × (d + 1 + Nϕ) matrix whose
components are [35, p. 33]

gjk(ϕ̃) =
∫

∂ ln fu(U; ϕ̃)
∂ϕ̃j

∂ ln fu(U; ϕ̃)
∂ϕ̃k

fu(U; ϕ̃) dU, j, k = 1, . . . , d + 1 + Nϕ , (3.7)

where Nϕ̃ = d + 1 + Nϕ is the number of manifold coordinates, with Nϕ statistical parameters in
the CDF equation (2.3).4 The local curvature of the manifold, gjk, represents a Euclidean metric
(a distance on the manifold F ) upon an appropriate change of variable. FIM quantifies the
differential amount of information between two infinitesimally close points on a manifold; it is
formally computed as the second derivative of the KL divergence of distributions Fu(U; ϕ̃) and
Fu(U; ϕ̃′) with ϕ̃′ → ϕ̃ [36].

The significance of FIM and its geometric implications [37] will be explored elsewhere. Here,
we focus on the calculation of the information gain achieved during each step of the data
assimilation process. Specifically, we express an mth analysis step in geometrical terms as a
change of the coordinates on the statistical manifold F , from ϕ̃(m−1) to ϕ̃(m), and quantify the
corresponding information gain by DKL[Fu(U; ϕ(m)), Fu(U; ϕ(m−1))]. This quantity is computed as
a post-processing step for comparative analysis.

4This definition assumes the existence of the PDF fu; for hyperbolic PDEs (2.1) with smooth solutions, it does exist and satisfies
a PDF equation corresponding to the CDF equation (2.3) [1,6,8].
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4. Numerical experiments
Let us consider a scalar u(x, t) : R

+ × R
+ → R

+, whose dynamics satisfies a one-dimensional
dimensionless advection–reaction equation

∂u
∂t

+ ∂q(u)
∂x

= r(x, u), q ≡ vu, r ≡ −k(x)u; x > 0, t > 0, (4.1a)

subject to initial and boundary conditions

u(x, t = 0) = u0; u(x = 0, t) = ub + s(t), s(t) = a sin (2πνt + φ) . (4.1b)

This problem describes, for example, advection of a solute that undergoes linear decay; in this
example, u represents the normalized solute concentration, v is the normalized flow velocity along
a streamline and k is the normalized reaction rate. In the simulations reported below, we set v = 1,
a = 0.1, ν = 1 and φ = 3π/2. In the first test, k is a deterministic constant, while the uniform initial
state u0 and baseline state ub are random variables. In the other two tests, both u0 and ub are
deterministic, and k is alternatively treated either as a random constant or as a spatially varying
random field.

In all three experiments, datasets d = {d1, . . . , dNmeas} are generated in accordance with (2.2)
by adding Gaussian white noise, N (0, σε), to a solution of (4.1) with a given choice of model
parameters. The likelihood function, fL(dm|u(x, t)m) with m = 1, . . . , dNmeas , is assumed to be
Gaussian.

The CDF equation for (4.1) is derived, and the accuracy and robustness of the underlying
closure approximations analysed, in [2] for the three scenarios described above. Appendix A
contains a brief summary of these results.

(a) Uncertain initial and boundary conditions
Let u0 and ub be random uncorrelated random variables with (prior) PDFs fu0 (U0) and fub (Ub).
Then the random initial and boundary states u(x, t = 0) and u(x = 0, t) are characterized by
respective CDFs F0(U; ϕ0) and Fb(U; t, ϕb) with shape parameters ϕ0 and ϕb. In the absence of
other sources of uncertainty, CDF Fu(U; x, t) of the random state u(x, t) in (4.1) satisfies exactly a
PDE

∂Fu

∂t
+ ∂Fu

∂x
− kU

∂Fu

∂U
= 0, (4.2a)

subject to initial and boundary conditions

Fu(U; x, 0) = F0, Fu(U; 0, t) = Fb, Fu(Umin; x, t) = 0 or Fu(Umax; x, t) = 1. (4.2b)

This boundary-value problem admits an analytical solution, with either F0 or Fb that are
propagated along deterministic characteristic lines. The dynamic manifold F of the resulting
CDFs Fu has coordinates ϕ̃ = {x, t, ϕ0, ϕb}. The analysis step of DA-MD takes place on this
statistical manifold. Each measurement contributes to uncertainty reduction of either ϕ0 or
ϕb (i.e. sharpens either fu0 or fub ), depending on the data location (x, t)m. Half of these Nmeas

measurements are collected at locations informing the initial condition, i.e. (x/t)m > 1), and the
other half at locations informing the boundary condition, i.e. (x/t)m < 1.

To verify the accuracy of DA-MD, we compare its predictions of the optimal parameters
ϕ(Nmeas) with those given by the Bayesian posterior joint PDF:

f̂u0,ub (U0, Ub|d1:Nmeas ) = f̂u0 (U0|d1:Nmeas )f̂ub (Ub|d1:Nmeas )

∝ fL(d1:Nmeas |u[(x, t)1:Nmeas ; U0, Ub]fu0 (U0)fub (Ub)

≈
Nmeas∏
m=1

fL(dm|u[(x, t)m; U0, Ub]fu0 (U0)fub (Ub). (4.3)

To facilitate the Bayesian update, we take Fu0 and Fub to be Gaussian, fully specified by their
respective means and standard deviations, ϕ0 = {μ0, σ0} and ϕb = {μb, σb}. Then, (4.3) yields
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Figure 1. Prior and posterior distributions for the initial state u0 on the statisticalmanifold defined by the coordinates {μ0, σ0}
representing the mean and standard deviation of a Gaussian distribution (a), and in the value space (b). The black asterisk in
(a) and the black vertical line in (b) represent the true value (utrue0 = 0.391), for which a Gaussian PDF degenerates into the
Dirac distribution (delta function). The grey star (a) and the grey dashed line (b) represent a prior distribution (μprior

0 = 0.4,
σ
prior
0 = 0.1). The blue triangle (a) and line (b) identify the Bayesian solution, whereas the corresponding red symbols and lines

identify the DA-MD solution. Parameters are set to k = 1,σε = 0.04 and Nmeas = 20. (Online version in colour.)

analytically computable Gaussian posteriors f̂u0 (U0|d1:Nmeas ) and f̂ub (Ub|d1:Nmeas ). In what follows,
we compare those with the posterior parameters obtained via DA-MD, ϕ

(Nmeas)
0 and ϕ

(Nmeas)
b ,

respectively. These posterior DA-MD parameters uniquely define the coefficients of the CDF
equation (4.2), which then serves as an updated predictive tool. Equation (4.2) has an analytical
solution Fu although, in general, numerical minimization in (3.6) needs to be employed to
compute its approximation FNN.

Figure 1 exhibits the prior and posterior distributions for u0 (those for ub behave
similarly) computed with the alternative data assimilation strategies. Figure 1a represents these
distributions as coordinates (μ0, σ0) on the statistical manifold of Gaussian distributions, whereas
figure 1b shows them as PDFs in the value space ΩU0 . The Bayesian update and the DA-MD
approach yield almost identical results after assimilation of the same set of measurements,
sharpening the distribution of the parameters around the true value.

Similar to figure 1a, the prior and posterior CDFs of the state variable u(x, t), both obeying
the CDF equation (4.2), are represented as points on the statistical manifold F with coordinates
(x, t, ϕ(0)) and (x, t, ϕ(Nmeas)), respectively. The amount of information used during the analysis
and transferred from the measurements to the conditional predictions can be thought of as the
distance between these points: the information gain from prior to posterior is quantified by the
KL divergence between these distributions (§3b). For the same prior and the same observations,
DA-MD and the Bayesian update yield almost identical KL discrepancies. Moreover, DKL does
not vary within the assimilation regions, i.e. it remains constant in the regions of the space–time
domain where Fu depends on either ϕ0 or ϕb. The KL divergence also allows one to compare
the informational gain from different sets of observations: doubling the number of measurements
from Nmeas = 20 to Nmeas = 40 yields, in the assimilation regions informed by either the initial or
the boundary conditions, a gain in KL terms of 7% and 9%, respectively.

(b) Uncertain reaction rate
In the following two test cases, we treat the uncertain coefficient k in (4.1) first as a random
constant and then as a random field. The auxiliary variables u0 and ub in (4.1b) are taken to be
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deterministic, so that the CDF equation (2.3) is subject to initial and boundary conditions

Fu(U; x, 0) =H(U − u0) and Fu(U; b, t) =H(U − ub − s(t)).

(i) Random variable

The coefficients (2.4) in the CDF equation (2.3) take the form (appendix A)

Q =
⎛
⎝ 1

−〈k〉U − σ 2
k U

〈k〉 [1 − e〈k〉t∗ ]

⎞
⎠ and D =

⎛
⎝0 0

0 −σ 2
k U2

〈k〉 [1 − e〈k〉t∗ ]

⎞
⎠ , (4.4)

where t∗(U, x, t) = min{t, x, 〈k〉−1 ln(Umax/U)}, and 〈k〉 and σk are the ensemble mean and standard
deviation of k, respectively. The coordinates of the dynamic manifold F of the approximated CDFs
Fu are ϕ̃ = {x, t, 〈k〉, σk}. The CDF equation is solved via finite volumes (FV) using the Fipy solver
[38], setting the discretization elements to �t = 0.01, �x = L/200 and �U = (Umax − Umin)/128,
with domain size defined by L = 1, Umin = 0 and Umax = 1.

Minimization of (3.6) is done using the L-BFGS-B method implemented in TensorFlow [32]
with a convergence threshold for the loss function value of 10−3. The solution of the CDF
equation (2.3), whose coefficients are given by (4.4), is represented by a fully connected NN
with fixed architecture (9 layers, 20 nodes per hidden layer) and a sigmoidal activation function
(hyperbolic tangent). Weights and biases of the NN are initialized at the beginning of the
sequential procedure by approximating a solution of the CDF equation with prior statistical
parameters ϕ(0). Successive iterations are initialized with weights and biases from the previous
step. This procedure considerably accelerates the identification of the target parameters. Zero
residuals are enforced at Nres = 792 locations within the space–time domain, whereas initial
and boundary conditions are imposed at Naux = 406 locations. Furthermore, we enforce non-
negativity of σk.

Remark 4.1. The FV approximation is used to construct the observational CDFs, whereas the
NN approximation is used on a sparse set of points for numerical gradient-based minimization.
The NN surrogate solution of the CDF equation (2.3) could also be used as a prior for the next
assimilation step, with the advantage of being virtually free of artificial diffusion and with no
theoretical limitation on the number of dimensions. This is not exploited further in this work, as
research on the use of physics-informed NN to solve PDEs is not yet mature. Nevertheless, it has
been shown to yield accurate identification of PDE parameters [31] and to reproduce qualitatively
actual PDE solutions.

We compare the DA-MD estimate of the PDF of the model parameter k with the Bayesian
posterior PDF of k. The latter is obtained analytically by assuming a Gaussian prior fk(K) and
taking advantage of the analytical solution of (4.1):

f̂k(K|d1:Nmeas ) ∝ fL(d1:Nmeas |u[(x, t)1:Nmeas ; K])fk(K)

≈
Nmeas∏
m=1

fL(dm|u [(x, t)m; K])fk(K). (4.5)

The Bayesian and DA-MD posterior (and prior) PDFs of the random reaction rate k are presented
in figure 2. Figure 2b shows these densities in the value space ΩK of fk(K), whereas figure 2a
represents the state distributions as points on the dynamic manifold F . The Bayesian update
is optimal and analytical. Its sole source of error stems from the calculation of the normalization
constant via numerical integration; as such it is treated as a benchmark in this comparison. On the
contrary, DA-MD is based on a series of approximations (closures for the CDF equation, FV and
NN solutions of the CDF equation, numerical minimization of the loss function). Nevertheless,
DA-MD yields an updated posterior which is close to the Bayesian one. The DA-MD posterior
is sharper than the Bayesian posterior; this might be due to the effect of numerical diffusion that
artificially smears the CDF profiles computed as a solution of the CDF equation. Convergence of



11

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A476:20200213

...........................................................

TRUE

PRIOR

0.5 1.0 1.5 2.0
0

0.1

0.2

·kÒ

BAYES

DA-MD

1 2 3
0

2

4

6

8
TRUE

PRIOR

K

f k
 (

K
)

s k

BAYES

DA-MD

(a) (b)

Figure 2. Prior and posterior PDFs of the random variable k shown (a) on the statistical manifold defined by coordinates
{〈k〉, σk} representing the mean and standard deviation of k, and (b) in the value space ΩK . The black asterisk in (a) and
the black vertical line in (b) represent the true value (k(true) = 1.047), for which a Gaussian PDF degenerates into the Dirac
distribution (delta function). The grey star (a) and the grey dashed line (b) represent a prior distribution (〈k〉prior = 2, σ prior

k =
0.2). The blue triangle (a) and line (b) identify the Bayesian solution, whereas the corresponding red circles and lines identify
the DA-MD solution. Parameters are set to u0 = 0.4, ub = 0.5,σε = 0.02, Nmeas = 20. (Online version in colour.)
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Figure 3. Prior and posterior CDF profiles Fu(U) for the random k case at the final assimilation time tM at two spatial locations:
x = 0.1 (a) and x = 0.8 (b). The vertical black line represents the true solution, for which the CDF degenerates into a Heaviside
step function. The dotted grey line represents the prior distribution with parameters (〈k〉, σk)= {2, 0.2}; the dashed blue line
and the solid red line represent theposterior distribution computedwithupdatedBayesian andDA-MDparameters, respectively.
The updated parameters 〈k〉 and σk are those represented in figure 2. The remaining parameters are set to k(true) = 1.047,
u0 = 0.4, ub = 0.5,σε = 0.02 and Nmeas = 20, tM = 0.6. (Online version in colour.)

the DA-MD is slow, but its computational time is not expected to scale with the dimensionality
of the problem (e.g. when dealing with random parameter fields). This flexibility represents a
major advantage of the proposed procedure versus Bayesian inference, and it is explored in a
more challenging scenario in the following section.

The prior and posterior CDFs of u, Fu(U; ·), at the final assimilation time tM are shown in
figure 3. The posterior CDFs, for both the Bayesian and DA-MD assimilation, provide a state
prediction that is closer than the prior CDF to its true value thanks to a more accurate parameter
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identification (shown in figure 2). The value of measurements is evaluated in terms of their impact
on the shape of the CDF at the measurement locations, and quantified by the KL divergence
from the posterior to the prior. In this example, all locations exhibit the same information gain
quantified by the KL divergence going from the posterior to the prior. That is because of the
analytical one-to-one relation between k and u(x, t).

(ii) Random field

Keeping all other conditions and settings unchanged, we now consider a spatially varying
uncertain parameter k(x). It is treated as a second-order stationary (statistically homogeneous)
multivariate Gaussian random field with constant mean 〈k〉(true) and standard deviation σ

(true)
k ;

its two-point autocovariance function C(true)
k (x − x′) has either zero correlation length (i.e.

uncorrelated random field or white noise),

C(true)
k (x − x′) = σ 2

k δ
(
x − x′),

or a finite correlation length λ
(true)
k ,

C(true)
k (x − x′) = σ 2

k exp
(
−|x − x′|/λ(true)

k

)
.

One realization with the chosen statistical parameters represents the reference random field
k(true)(x), which was used to construct synthetic observations via the FV solution of (2.1) with (4.1).

The coefficients (2.4) in the CDF equation (2.3) now take the form (appendix A)

Q =
⎛
⎝ 1

−〈k〉U − σ 2
k U

2

⎞
⎠ and D =

⎛
⎝0 0

0
σ 2

k U2

2

⎞
⎠ , (4.6)

if k(x) is white noise, or

Q =
⎛
⎝ 1

−〈k〉U − σ 2
k U

α
[eαt∗ − 1]

⎞
⎠ and D =

⎛
⎝0 0

0
σ 2

k U2

α
[eαt∗ − 1]

⎞
⎠ (4.7)

with α = 〈k〉 − 1/λk and t∗(U, x, t) = min{t, x, 〈k〉−1 ln(Umax/U)}, if k(x) has the exponential
correlation Ck. The corresponding dynamic manifolds have either the coordinates ϕ̃ = {x, t, 〈k〉, σk}
or the coordinates ϕ̃ = {x, t, 〈k〉, σk, λk}, respectively.

Unlike Bayesian update, which identifies the k values at each spatial location with a consequent
dramatic increase of the dimensionality of the target joint posterior PDF, DA-MD focuses on a
finite set of parameters ϕ (the mean 〈k〉, the standard deviation σk and, in the correlated case,
the correlation length λk); its computational cost is comparable to that for the constant random
parameter case. We compare the updated DA-MD parameters with an approximation of the
Bayesian posterior, since the number of random parameters and the nonlinearity of the problem
prevent analytical treatment.

We employ a standard EnKF [9,10] for the update of the random field k(x), discretized into
Nx point values, with ensemble size Nens. EnKF relies on multiple solutions of the physical
model, which typically require special numerical treatment because of the high spatio-temporal
variability of the model parameters. The choice of a spatial resolution poses another difficulty
because the correlation length of the target random field is a priori unknown. This increases
the numerical complexity of EnKF, to the advantage of MD. To focus on the data assimilation
aspect of the problem, we solve both the physical model and the CDF equation on the same
grid and with the same FV numerical solver, thus not taking advantage of MD’s lower numerical
complexity. Update is done sequentially for DA-MD, and recursively for EnKF [39, and references
therein], i.e. at each assimilation step the ensemble members are forecast from the initial time to
the current assimilation time. In both cases (EnKF and DA-MD), we assimilate the same Nmeas

measurements collected at two spatial locations, x = 0.1 and x = 0.8, in ten separate temporal
instances, t = {0.15, 0.2, . . . , 0.6}.
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Figure 4. Parameter identification for the uncorrelated k(x) field via EnKF (a) and DA-MD (b). Both panels contain the true
field, k(true)(x), in black, and the prior fieldmoments (grey lines). Both the prior and posterior randomfields are defined by their
mean value 〈k〉 (solid line), and a buffer region with half-width equal to the standard deviation (dashed lines). For the EnKF
(a), both the prior and posterior ensemble members are represented. Posterior values are 〈k〉(DA-MD) = 0.86,σ (DA-MD)

k = 0.07,

〈k(EnKF)〉 = 1.7,σ (EnKF)
k = 1.19, k

(true) = 1.01,σ (true)
k = 0.1, where · represents the spatial average. Parameters are set to u0 =

0.4, ub = 0.5, Nens = 50, Nmeas = 20,σε = 0.02, Nx = 200,ϕ(0) = {〈k〉, σk}(prior) = (4, 1). (Online version in colour.)
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Figure 5. Prior and posterior CDFs (a) and corresponding KL divergence DKL (b) for the uncorrelated k(x) field. The CDF profiles
(a) are computed at (x, t)= (0.1, tM) and (x, t)= (0.8, tM) as a solution of the CDF equation with prior ϕ(0) and posterior
ϕ(Nmeas) parameters (dotted grey and solid blue lines, respectively). The CDFs from EnKF (dashed red line) are computed
as an empirical distribution of the ensemble members. The true solution is plotted as a Heaviside function centred on the
true value u(true)(x, t) (black thin line), H(U − u(true)(x, t)). The selected coordinates for the profiles (x = 0.1 and x = 0.8)
correspond to measurement locations. For both DA-MD and EnKF, the KL divergence DKL between the posterior distribution
and the prior distribution is computed as a function of x at time tM. Parameters are set to u0 = 0.4, ub = 0.5, Nens = 50,
Nmeas = 20, σε = 0.02, Nx = 200, �x = 1.6 × 10−3, �U = 8.3 × 10−4, �t = 10−3, ϕ(0) = {〈k〉, σk}(prior) = {4, 1},
tM = 0.6. (Online version in colour.)

Figures 4 and 6 exhibit the EnKF and DA-MD posterior random fields for the uncorrelated
and correlated cases, respectively. When the true field k(x)(true) is white noise, DA-MD accurately
identifies the updated mean 〈k〉(DA-MD), but underestimates the value of σ

(DA-MD)
k . The latter

might be due to the impact of artificial diffusion on the solution of the CDF equation used as a
prior in the DA-MD procedure. EnKF yields a wider posterior estimate for k, with spatial averages
for the mean 〈k〉(EnKF) and the standard deviation σ

(EnKF)
k that are further away from the spatial

averages of the moments of the true field (values in the caption).
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also represented. Posterior values are 〈k〉(DA-MD) = 0.80, σ (DA-MD)
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Nens = 50, Nmeas = 20,σε = 0.01, Nx = 200,ϕ(0) = {〈k〉, σk , λk}(prior) = {2, 0.2, 0.2}. (Online version in colour.)
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Figure 7. (a) Prior and posterior CDFs of the correlated field k(s). The CDF profiles are computed at (x, t)= (0.1, tM) and at
(x, t)= (0.8, tM) as a solution of the CDF equation with prior ϕ(0) and posterior ϕ(Nmeas) parameters (dotted grey and solid
blue lines, respectively). The CDFs from EnKF (dashed red line) are computed as an empirical distribution of the ensemble
members. The true solution is plotted as a Heaviside function centred on the true value u(true)(x, t) (black thin line),H(U −
u(true)(x, t)). (b) Semivariogram for the EnKF posterior ensemble members. Parameters are set to u0 = 0.4, ub = 0.5, Nens =
50, Nmeas = 20, σε = 0.01, Nx = 200, �U = 3.75 × 10−4, �x = 1.6 × 10−3, �U = 8.3 × 10−4, �t = 10−3, ϕ(0) =
{〈k〉, σk , λk}(prior) = (2, 0.2, 0.2), tM = 0.6. (Online version in colour.)

Despite these differences in reconstruction of the statistical properties of the posterior k(x),
both assimilation techniques yield a posterior prediction of Fu(U) that approaches the true value
of the solution (figure 5a). The information gain from the measurements is quantified in terms of
the KL divergence for both DA-MD and EnKF (figure 5b) at time tM. MD densities (both the prior
and the posterior) are calculated via finite differences from the solution of the CDF equation,
whereas EnKF densities are computed via kernel density estimation with Gaussian kernel and
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Scott’s bandwidth, using the ensemble members as data points. Our results suggest that DA-
MD extracts more information than EnKF from the same set of measurements in the current
configuration at almost all values of x, as is also reflected in an accurate characterization of the
posterior k field. Observations collected at x > tM (the region where characteristic lines originate
from the initial conditions) are more informative for DA-MD assimilation. The KL divergence
for EnKF highlights the locations of more informative measurements, displaying two distinctive
peaks.

Figure 6 exhibits the results of a similar analysis for the correlated field k(x)(true). DA-MD
posterior estimates of the mean and standard deviation of k are closer to the averaged statistical
properties of the true field than EnKF estimates are (values are in the figure caption). DA-MD
underestimates the spatial correlation length λk, whereas the identification of λk via EnKF is
inconclusive as the semivariogram for k(x) does not develop a sill. We identify an intermediate
plateau and assume the corresponding lag value as the updated correlation length for the field.
The semivariogram is computed using the posterior ensemble member values, and is shown in
figure 7b. The corresponding state CDFs Fu(U; x, t) are plotted in figure 7a in two representative
sections that correspond to measurement locations. Both DA-MD and EnKF yield a posterior state
CDF Fu considerably closer to the true value than the prior distribution.

5. Summary and future work
We proposed a novel methodology for parameter estimation that leverages the MD for both
the forecast and analysis steps. Reduction of uncertainty in model parameters is recast into a
problem of identification of closure parameters for the CDF equation, expressing the space–time
evolution of uncertainty for the model output. Specifically, we identify the parameters in the
CDF equation (2.3) that yield an estimate in the measurement locations as close as possible to
the state distribution. This is expressed by an observational Bayesian posterior in that specific
location, which is obtained by combining the data model and the physically based prior. The
procedure is done sequentially, progressively updating the parameters of the CDF equation as
more measurements are assimilated. We demonstrated that our method reproduces Bayesian
posteriors in scenarios where Bayesian inference can be performed analytically, and ameliorates
parameter identification when compared to EnKF (as an approximation of Bayesian update) in
cases where Bayesian inference is elusive.

This work opens multiple possible research a venues. In particular, we plan to (i) explore the
construction of novel data-driven closure approximations for MD; (ii) investigate the use of novel
ML techniques for more efficient optimization and/or solution of PDEs; and (iii) introduce multi-
point statistics.
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Appendix A. Derivation of cumulative distribution function equations
MD commences by defining a so-called raw CDF π (U; x, t) ≡H(U − u(x, t)), where H(·) is the
Heaviside function. Let fu(U; x, t) denote the single-point PDF of u(x, t). Then it follows from the
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definition of the ensemble mean E[·] ≡ 〈·〉 that

E[π (U; x, t)] =
∫Umax

Umin

H(U − U)fu(U ; x, t)dU =
∫U

Umin

H(U − U)fu(U ; x, t)dU

= Fu(U; x, t). (A 1)

Other useful properties of π are

∂π

∂t
= ∂π

∂u
∂u
∂t

= − ∂π

∂U
∂u
∂t

and ∇π = − ∂π

∂U
∇u. (A 2)

Accounting for these properties, multiplication of (2.1) by −∂Uπ yields

∂π

∂t
+ q̇(U) · ∇π + r(U)

∂π

∂U
= 0, (A 3)

where q̇ = dq(U)/dU. This equation is exact as long as solutions of (2.1), u(x, t), are smooth (do not
develop shocks) for each realization of random parameters θ̃ . It is subject to initial and boundary
conditions derived from the initial and boundary conditions of the physical problem, and to
π (U = Umin; x, t) = 0 and π (U = Umax; x, t) = 1.

In the absence of uncertainty, (A 3) is deterministic and equivalent to (2.1); the model output
u(x, t) can be recovered from π (U, x, t) by integration. In the presence of uncertainty affecting the
parameters and the auxiliary inputs, it follows from (A 1) that the ensemble average of (A 3) is

∂Fu

∂t
+ 〈q̇(U; θq) · ∇π〉 +

〈
r(U; θ r)

∂π

∂U

〉
. (A 4)

If the model parameters θ are deterministic, then so is the evolution dynamics, and uncertainty
in predictions of u(x, t) is solely due to uncertainty in the initial and the boundary conditions. In
that case, (A 4) gives an exact CDF equation,

∂Fu

∂t
+ q̇(U; θq) · ∇Fu + r(U; θ r)

∂Fu

∂U
. (A 5)

Otherwise, closure approximations are necessary to obtain a workable expression for the
undefined terms in (A 4). These expressions depend on the closure strategy and on the functional
form of q and r.

To be specific, we set q(u) = v(x)u and r(u) = krα(u; α, ueq) = kα(uα
eq − uα). Here, v(x) is the

divergence-free velocity, ∇ · v = 0, of steady incompressible flow; and α ∈ N
+ is the order of an

equilibrium reaction with reaction rate k(x), which drives the system towards its equilibrium
state ueq. An analogous system was studied in detail in [2,6]. In what follows, we summarize the
closure approximations developed in these works for the case of deterministic v(x) and random
k(x).

We use the Reynold decomposition to represent random quantities as the sum of their
respective means and zero-mean fluctuations around these means,

k = 〈k〉 + k′ and π = F + π ′. (A 6)

A first-order (in the variance σ 2
k of stationary random fluctuations k′) approximation of (A 4) takes

the form of (2.3) with the coefficients [2]

Qi = vi(x), i = 1, . . . , d,

Qd+1 ≈ 〈k〉rα(U) +
∫ t

0

∫
Ω̃

G(x, U, y, V, t − τ )Ck(x, y)
drα(U)

dU
dydVdτ

and Dij ≈ δi,d+1δj,d+1rα(U)
∫ t

0

∫
Ω̃

G(x, U, y, V, t − τ )Ck(x, y)rα(V)dydVdτ , i, j = 1, . . . , d + 1.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(A 7)
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Figure 8. Comparison between the FV approximation of the prior CDF and its MC counterpart for the random k scenario. Both
techniques use the samemean and variance for k, 〈k〉 = 2, σk = 0.2. MCS are repeated for different distributions of k sharing
the same mean and variance: normal, lognormal and uniform distributions, respectively. Parameters are set to: NMC = 1000,
�t = 0.001,�x = 1.6 × 10−4 and�U = 8.3 × 10−4. (Online version in colour.)

Here, δi,d+1 is the Kronecker delta, Ck(x, y) = 〈k′(x′)k′(x)〉 is the covariance function of k′(x), and
G(x, U, y, V, t − τ ) is the mean-field Green’s function that is defined as a solution of

∂G
∂τ

+ v · ∇′G + 〈k〉drαG
dU

= −δ(x − y)δ(U − V)δ(t − τ ), τ < t (A 8)

with homogeneous initial (at τ = 0) and boundary conditions on ∂Ω̃ . The closure approximations
are thus expressed in terms of the mean and two-point covariance of the random input k(x).

The derivation of (2.3) and (A 7) is based on the following assumptions: ∇F varies slowly in
space and time to justify the use of a local model, the random inputs are mutually uncorrelated,
and the variance σ 2

k is sufficiently small to warrant its use as a perturbation parameter.
Our numerical experiments consider one-dimensional (d = 1) advection in a deterministic

velocity field with v = 1 and linear reaction (α = 1) with second-order stationary reaction rate k(x)
with constant mean 〈k〉 and variance σ 2

k and covariance function Ck(x − y). The flow takes place
in the semi-infinite domain Ω , so that Ω̃ = [0, ∞) × [Umin, Umax]. The deterministic equilibrium
state is set to ueq = 0. Under these conditions, (A 7) reduces to

D11 = 0, D12 =D21 = 0, D22 = U2
∫ t∗

0
e〈k〉τ Ck(vτ )dτ

Q1 = v, Q2(x, U, t) = −U〈k〉 + U
∫ t∗

0
e〈k〉τ Ck(vτ )dτ ,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (A 9)

where t∗ = min{t, 〈k〉−1 log(Umax/U), x/v}. We consider three models of spatial correlation of k(x).
The first takes k(x) to be perfectly correlated, so that Ck(x − y) = σ 2

k ; then (A 9) simplifies to (4.4).
The second considers the opposite case, i.e. uncorrelated random field with Ck(x − y) = σ 2

k δ(x − y),
which yields (4.6). Finally, the third one deals with the exponential covariance function Ck(x −
y) = σ 2

k exp(−|x − y|/λk), where λk is the correlation length of k(x), with closure parameters (4.7).
The CDF equation (2.3), whose coefficients are defined by (A 9), depends only on the low

moments of k(x), i.e. on 〈k〉, σ 2
k and Ck, rather than on its full PDF. We study the sensitivity of our

closure to a choice of the functional form of the single-point PDF fk(K; x) of k(x) for the perfectly
correlated case. This is done by comparing a numerical (finite-volume) solution of (2.3) with the
results of MCS. The latter consist of post-processing of NMC = 1000 analytical solutions of the
physical model (4.1), whose parameters are drawn, alternatively, from the Gaussian, lognormal
and uniform PDFs fk(K; x), with negligible discrepancy in CDF terms (figure 8). As uncertainty
is reduced via data assimilation, the discrepancy between posteriors obtained with different
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assumed PDF forms of k reduces, and the impact of closure approximations on the CDF equation
decreases.
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