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Abstract We present an information-theoretic approach for integration of multiresolution data into
multiscale simulations. This general framework is used to upscale and downscale equations of fluid flow in
heterogeneous porous media. Fine-scale information can comprise observational data and/or simulation
results related to both system states and system parameters. It is aggregated into its coarse-scale
representation by setting a probabilistic equivalence between the two scales, with parameters that are
determined via minimization of observable error and mutual information across scales. The same quantities
facilitate the use of coarse-scale data to constrain compatible fine-scale distributions.

Plain Language Summary Information-theoretic arguments are used to construct probabilistic
descriptions of effective hydraulic conductivity for mean uniform and convergent flows in heterogeneous
formations. For classical uniform and convergent flow scenarios where the comparison with Monte Carlo
is available, different coarse-scale parameter distributions are identified, and an overall quantification of
uncertainty in the coarse-scale estimates is obtained.

1. Introduction

Fusion of multiresolution data with multiscale modeling and simulations is an essential component of modern
science-based predictions. It poses a number of questions, such as how do experimental and/or simulation
data collected at one scale inform model predictions at another scale? How much information is lost/gained
in the process of moving upscale or downscale? and How does structural and/or parametric uncertainty prop-
agate between scales? Considerable advancements have been made in relating smaller-scale models and
their parameters to their larger-scale counterparts: various deterministic and stochastic upscaling strategies
were deployed to relate pore-scale models to Darcy-scale models (e.g., Korneev & Battiato, 2016, and the ref-
erences therein) and Darcy-scale models to field-scale ones (e.g., Neuman & Tartakovsky, 2009, among many
others); to compute, analytically (e.g., Lichtner & Tartakovsky, 2003) or numerically (e.g., Efendiev & Pankov,
2004), effective coarse-scale parameters from their spatially varying fine-scale counterparts; and to propagate
parametric uncertainty from the pore scale to the Darcy scale (e.g., Um et al., 2018) and from the Darcy scale
to the field scale (e.g., de Barros & Rubin, 2011).

Progress in the opposite direction, from a large scale to a smaller one, is significantly more modest, in large
part because of the lack of uniqueness (Wigmosta & Prasad, 2005). Downscaling aims to identify plausible
fine-scale scenarios that are compatible with coarse-scale observations and/or numerical simulations. Given
its intrinsic ill-posedness, downscaling employs mostly probabilistic techniques (such as refinement of spa-
tial resolution, spatial interpolation/Kriging, and disaggregation of coarse-scale information) and, typically,
requires auxiliary information (Blöschl, 2005), for example, knowledge of the spatial correlation of properties
of interest. Downscaling is routinely used in atmospheric sciences and climatology (e.g., Fowler et al., 2007),
for instance, to disaggregate remote sensing and precipitation data (e.g., Ferraris et al., 2003). Applications of
downscaling techniques in subsurface modeling are appreciably more scarce; for example, downscaling pro-
cedures have been used as an inverse modeling tool (Hassane & Ackerer, 2017) and to estimate groundwater
recharge (Allen et al., 2010).

While downscaling is data driven, upscaling is largely physics based with fine-scale measurements (e.g., of
hydraulic conductivity) typically used to parameterize fine-scale models (e.g., a groundwater flow equation).
Within the latter framework, measurements of system states (e.g., hydraulic head) on a given scale serve to
either validate or calibrate a same-scale model. If explicit mappings between the fine- and coarse-scale mod-
els and between their corresponding parameters are available, for example, from homogenization, then data
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assimilation techniques (various flavors of Kalman filters, Bayesian updating, etc.) allow one to pass informa-
tion between the scales (Montzka et al., 2012; Zhu et al., 2017). Regardless of the data assimilation strategy
adopted, system states and system parameters are treated as random fields/processes, which are specified in
terms of their respective probability density functions (PDFs).

We posit that information theory (IT) provides a unifying framework for bidirectional (upscale and down-
scale) transfer of information (experimental or simulated data) and allows one to study questions similar to
those raised in the opening paragraph of this article. IT uses probabilistic concepts to quantify the amount
of information present in uncertain quantities. Specifically, information content at a given scale is quantified
in terms of differential entropy, whose definition relies on the probabilistic description of a system in terms
of (joint) PDFs of its system states and system parameters. These PDFs, which codify uncertain knowledge
of the system behavior, are constructed from experimental measurements, numerical simulations, or both.
They constitute a training set on which the learning process is based. Relevant information from the training
set is then propagated to a different scale to obtain conditional probabilistic predictions. Relative entropy
and mutual information are used to quantify the difference in information content between scales, while scal-
ing is directed by the minimization of an average measure of discrepancy between estimates of quantities of
interest (QoI) at both scales. Similar information-theoretic techniques have been used, mostly for upscaling,
in computer science (e.g., Rose, 1998) with the purpose of reducing storage requirements, and in biology and
material science to obtain bulk descriptions of molecular ensembles (e.g., Schöberl et al., 2017; Shell, 2008) or
material properties (Koutsourelakis, 2007).

We employ information-theoretic tools to upscale and downscale flow fields in heterogeneous media, either
in terms of state variables (i.e., hydraulic head) or parameters (i.e., hydraulic conductivity). Our goal is to
identify probability distributions of effective variables (upscaling) and fine-scale quantities (downscaling)
informed by data collected at the opposite scale. Section 2 contains a brief overview of information-theoretic
concepts used to quantify information content at each scale and information transfer between scales; in this
section we also deploy those concepts to minimize the discrepancy between predictions at the two scales.
Our information-theoretic approach to bidirectional scaling and introduction of the novel discrepancy mea-
sure represent the main contributions of this work. In section 3, we formulate two examples of fluid flow in
heterogeneous porous media with uncertain hydraulic conductivity, which are used to illustrate this general
information-theoretic approach. The first deals with flow induced by externally imposed hydraulic head gra-
dient, while the second concerns groundwater flow toward a pumping well. The upscaling and downscaling
results for both problems are presented in sections 4 and 5, respectively. Major conclusions drawn from this
study are summarized in section 6.

2. Information Theory and Bidirectional Scaling

We use lower- and upper-case letters to designate physical quantities on a fine scale and coarse scale, respec-
tively. Thus, s̃ and S̃ denote state variables (e.g., fluid pressure or solute concentration at each element of a
numerical mesh) at these two scales; their behavior is described by corresponding models m and M, with
respective sets of parameters p and P, such that

m(s̃;p) = 0 and M(S̃;P) = 0. (1)

The models m and M can take the form of either an identical differential operator (e.g., the groundwater flow
equation defined, respectively, on the Darcy and field scales) or distinct differential operators (e.g., Stokes
equations defined on the pore scale, and a groundwater flow equation defined on the field scale). In the
former case the parameters p and P represent upscaled/downscaled versions of each other (e.g., hydraulic
conductivities defined on the Darcy and field scales), while in the latter case they are distinct sets (e.g., pore
geometry used in the pore-scale simulations and hydraulic conductivity used in the field-scale model). Data
scarcity and spatial heterogeneity are ubiquitous at any scale, rendering both model parameters, p and P,
and model predictions, s̃ and S̃, uncertain. We model this uncertainty in probabilistic terms, such that PDFs
of p and P (denoted by fp and fP) are inferred from either data or expert knowledge, while PDFs of s̃ and S̃
(denoted by fs̃ and fS̃) are computed by solving (1) with, for example, Monte Carlo simulations or more efficient
uncertainty quantification techniques (Tartakovsky, 2016). Alternatively, both (or one of) fs̃ and (or) fS̃ can be
inferred directly from measurements of the system states at their corresponding scale.
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2.1. Basic Concepts of Information Theory
Let s = (s̃,p) and S = (S̃,P) denote complete sets of random variables (consisting of both the system param-
eters and the system states) at the fine and coarse scales, respectively. These so-called augmented states are
characterized by corresponding joint PDFs fs(s′) ≡ fs̃,p(s̃′,p′) and fS(S′) ≡ fS̃,P(S̃′,P′), where the primes are
used to indicate deterministic arguments (e.g., s′) of the PDFs of the corresponding random variables (e.g., s).
Differential entropy, (s), provides a measure of the fine-scale information content (e.g., Cover & Thomas,
2012). It is defined as

(s) = −∫Ωs

fs(s′) ln
[

fs(s′)
]

ds′, (2)

with an analogous definition for coarse-scale differential entropy (S), given in terms of PDF fS. The integra-
tion is over the domain of definition of the fine- and coarse-scale augmented states, Ωs and ΩS, respectively.
For example, if p and s̃ represent two N-dimensional arrays of values of hydraulic conductivity and fluid
pressure in N elements of a fine-scale numerical mesh, then Ωs = R

2N.

Let fs,S(s′, S′) denote a joint PDF of the augmented states on the fine and coarse scales. Then the amount of
information contained at both scales is quantified in terms of mutual information (e.g., Cover & Thomas, 2012),

(s, S) = ∫Ωs
∫ΩS

fs,S(s′, S′) ln
[

fs,S(s′, S′)
fs(s′)fS(S′)

]
ds′dS′. (3)

If the fine- and coarse-scale augmented states s and S are statistically independent, then fs,S = fsfS and (3)
yields (s, S) = 0. In other words, if the fine- and coarse-scale models (augmented states) are fully decoupled,
that is, statistically independent, then the mutual information between the scales is zero.

2.2. An Information-Theoretic Approach to Bidirectional Scaling
Multiscale modeling and data assimilation rely on the ability to estimate the relation between model pre-
dictions at the fine (m) and coarse (M) scales. In the probabilistic context, these predictions are expressed in
terms of PDFs of the augmented system states fs(s′) and fS(S′), so this question translates into a question of
how to quantify a distance between two functions. The task of defining such a distance is by no means trivial
(or unique), and in our case it is complicated further by the fact that fs(s′) and fS(S′) are defined on different
domains Ωs and ΩS.

One possibility is to employ the Kullback-Leibler divergence DKL as a measure of distance between two PDFs
(see Appendix A for detail). This approach has been used in, for example, multiscale simulations of molecular
dynamics (e.g., Schöberl et al., 2017; Shell, 2008). It requires knowledge of a map, Ŝ = (s) with Ŝ ∈ ΩS,
between the states at different scales, which replaces fs(s′) with fŜ(Ŝ′) and renders DKL(fŜ, fS) meaningful. If
one were to deal only with state variables, then the operational definition of is straightforward; for example,
if s represents pore-scale concentration c(x), then  represents a volume-averaging operator which yields
Darcy-scale concentration Ĉ = 𝜙|Δ|−1 ∫Δ c(x)dx, where 𝜙 is porosity and |Δ|, the volume of Δ, defines the
coarse scale. When information about parameter states is of interest and hence forms part of the augmented
states, the mapping  and its inverse −1 are unknown; finding them is a purpose of bidirectional scaling
(upscaling and downscaling).

We, therefore, pursue an alternative strategy, which focuses on the difference (distance), d(̂,) = ‖̂(s) −
(S)‖, between QoIs predicted with the fine-scale model, ̂(s), and its coarse-scale counterpart, (S). As
usual, the choice of the norm‖⋅‖ is somewhat arbitrary (Marošević, 1996). Clustering algorithms, whose goal is
to reduce the size of data sets, employ a squared error distortion norm (Parekh et al., 2015), while Koutsourelakis
(2007) used the 𝓁2 norm, d(̂,) =

∑M
i=1(̂i − i)2 for M point-wise QoIs  = (i,… ,M), to upscale

descriptive material properties. We generalize the latter approach by assigning weights wi (i = 1,… ,M) to
individual point-wise QoIs,

dw(̂,) =
M∑

i=1

wi[̂i(s) −i(S)]2. (4a)

These weights can be defined, for example, in terms of the means, ⟨̂i⟩ or ⟨i⟩, or the standard deviations,
𝜎̂ or 𝜎. We choose a dependence on the means, such that either

wi =
1⟨̂i⟩2

with ⟨̂i⟩2 = ∫ ̂i(s′)fs(s′)ds′ (4b)
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or

wi =
1⟨i⟩2

with ⟨i⟩2 = ∫ i(S′)fS(S′)dS′, (4c)

depending on the scale at which the data are available, that is, on whether upscaling or downscaling is to be
performed.

A goal of bidirectional scaling (upscaling or downscaling) can then be thought of as finding (joint) PDFs of s
and S, which minimize the expected value (mean) of the distance,

⟨dw(̂,)⟩ = M∑
i=1

wi ∫ΩS
∫Ωs

[̂i(s′) −i(S′)]2fs,S(s′, S′)ds′dS′. (5)

Functional minimization problems of this kind are notoriously challenging because of the dependence of dw

on noisy Monte Carlo estimates. Following the standard practice (Rose, 1998), we regularize this problem by
replacing the goal of finding the minimum of ⟨dw⟩ in (5) with an optimization problem

argmin
fs,S

(s, S),  ≡ (s, S) + 𝜆

{⟨dw[̂(s),(S)]⟩ − d0

}
, (6)

where 𝜆 is a Lagrange multiplier, d0 is a prescribed mean discrepancy or scaling error, and (s, S) is the mutual
information defined in (3). In upscaling applications, the fine-scale PDF fs is known and, since fs,S = fS|sfs, the
optimization is over the conditional PDF fS|s. The situation is reversed for downscaling, wherein fS is accessible
and the optimization is over the conditional PDF fs|S. In either case, the goal is to minimize the average dis-
crepancy between the QoIs inferred from the fine- and coarse-scale models, while keeping the information
transfer across the scales (as quantified by the mutual information) to a minimum.

For upscaling, we set to 0 the functional derivative of  with respect to fS|s(S′; s), that is, the PDF for the
augmented coarse-scale state S conditioned on the augmented fine-scale state s. This yields a solution of (6)
in the form of a Gibbs distribution (Rose, 1998),

fS|s(S′; s) =
fS e−𝜆dw [̂(s),(S′)]

∫ΩS
fS(S′) e−𝜆dw dS′

, (7)

where fS(S′) is an unknown prior coarse-scale distribution. This formal solution holds for any distance d(̂,),
including dw given by (4). We use deterministic annealing (see Appendix B for detail) to compute fS and,
hence, fS|s(S′; s) in (7). This procedure carries high computational cost but yields a nonparametric estima-
tion of fS|s(S′; s), that is, it does not require any assumptions about its functional form. Another attractive
feature of this approach (as opposed to, say, the postprocessing of Monte Carlo realizations) is its ability to
directly recover (joint) PDFs of the coarse-scale parameters regardless of the existence of an analytical relation
between the QoIs and the effective parameters.

For downscaling, we minimize (6) with respect to fs|S, which gives an expression for this conditional PDF in
the form of a Gibbs distribution,

fs|S(s′; S) =
fs e−𝜆dw [̂(s),(S′)]

∫Ωs
fs(s′) e−𝜆dw ds′

, (8)

where fs(s′) is an unknown prior fine-scale distribution. Substituting (8) into (6) yields

ds(s, S) = −1
𝜆 ∫ΩS

fS(S′) ln
(
∫Ωs

fs(s′) e−𝜆dw (̂(s′),(S′))ds′
)

dS′. (9)

We use parametric estimation to identify fs|S(s′, S′), thus assigning to the prior fs(s) a functional form and
identifying its parameters via minimization of (9). This strategy enables us to reduce the computational cost of
evaluating the quadrature over Ωs. Expert knowledge and/or site-specific information can be used to guide
the selection of fs (Blöschl, 2005); for example, it is common in subsurface hydrology to assume that hydraulic
conductivity is multivariate lognormal and hydraulic head is multivariate normal (PDFs of these and other
physicochemical QoIs are collated in Table 1 in Tartakovsky, 2013).
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3. Formulation of Computational Examples

We assume that fluid flow models at fine and coarse scales, m and M in (1), are the same and consist of
steady-state two-dimensional groundwater flow equations,

∇ ⋅ (k∇h) = 𝜌(x) and ∇ ⋅ (K∇H) = R(X). (10)

Here the spatial coordinates x and X represent centroids of the volumes of a heterogeneous porous medium
corresponding to the fine and coarse scales, respectively; k(x), h(x), and 𝜌(x) denote fine-scale hydraulic con-
ductivity, hydraulic head, and sources/sinks; and K(X), H(X), and R(X) stand for their coarse-scale counterparts.
Fine- and coarse-scale Darcy velocities are computed as u(x) = −k(x)∇h(x) and U(X) = −K(X)∇H(X).

Hydraulic conductivity at both scales is uncertain. We define the coarse scale as a scale on which a single con-
ductivity value K is assigned over the whole computational domain. Since this value is uncertain, and treated
as random, it is characterized by a PDF fK . When used in the upscaling mode, the fine-scale conductivity field
k(x) is assumed to be lognormal, such that log-conductivity Y = ln k has mean Ȳ = 0.0, variance 𝜎2

Y = 1.0,

and an isotropic exponential autocorrelation function 𝜌Y (x, x′) = exp (−
√

(x1 − x′1)2 + (x2 − x′2)2∕𝓁Y ) with
correlation length 𝓁Y = 0.05 (these and other physical quantities are defined in consistent units). This choice
of the statistical properties of k(x) is for illustrative purposes only and can be replaced with other statistical
models. We use Hydro_gen (Bellin & Rubin, 1996) to generate Nr = 100 realizations of the fine-scale con-
ductivity field k(x) on a discretized staggered grid of size Δx < 𝓁Y , and MODFLOW (Harbaugh et al., 2000) to
solve the fine-scale flow equation in (10). Representative realizations of fine-scale hydraulic conductivity k(x)
and hydraulic head h(x) for two flow scenarios considered below are shown in Figure 1.

3.1. Mean Uniform Flow
Flow takes place in a square domain  = {x = (x1, x2)⊤ ∶ 0 ≤ x1 ≤ L, 0 ≤ x2 ≤ L} with L = 1.0 in the
absence of sources 𝜌 = R = 0. Hydraulic heads H1 and H2 imposed at the vertical Dirichlet boundaries,
x1 = 0 and x1 = L, combined with the impermeable horizontal boundaries, x2 = 0 and x2 = L, result in a
mean uniform hydraulic gradient of (H2 − H1)∕L = 0.01 in the longitudinal direction. The top row in Figure 1
shows a representative realization of the fine-scale hydraulic conductivity k(x) and the resulting hydraulic
head h(x) computed on a uniform square mesh of size Δx = 1∕64. The coarse-scale model with uniform,
albeit uncertain, hydraulic conductivity K admits an analytical solution,

H(X) = −
H2 − H1

L
X1, (11)

leading to the constant coarse-scale flow velocity in the horizontal direction, U = K(H1 − H2)∕L, and the
volumetric flux  = UL.

3.2. Radially Convergent Flow
Flow takes place in a circular domain  = {x = (x1, x2)⊤ ∶ r2 ≡ x2

1 + x2
2 ≤ r2

e} with re = 0.5. It is driven
by groundwater withdrawal with rate Q = −1.0 from a well located at the center of the domain; constant
hydraulic head He is imposed at the external boundary, h(r = re) = He = 1.0. The bottom row in Figure 1
shows a representative realization of the fine-scale hydraulic conductivity k(x) and the resulting hydraulic
head h(x) computed on a uniform square mesh of size Δx = 1∕101. The coarse-scale model with uniform,
albeit uncertain, hydraulic conductivity K admits an analytical solution,

H(X) = He −
Q

4𝜋K2
ln

(
X2

1 + X2
2

r2
e

)
. (12)

Upscaling of convergent flows in randomly heterogeneous porous media has been extensively investigated
(e.g., Sanchez-Vila & Tartakovsky, 2007, and the literature therein). A key quantity of interest in such studies is
well productivity  , defined as (Durlofsky, 2000)

 ≡ − Q
He − Hw

= 2𝜋K
ln(re∕rw)

. (13)

Here Hw and rw are the hydraulic head in the well and the well radius, respectively. Following Peaceman (1978),
we set rw = 0.2Δx.
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Figure 1. Typical realizations of the fine-scale hydraulic conductivity k(x) (left column) and hydraulic head h(x)
(right column) for (a) the mean uniform (top row) and (b) convergent (bottom row) flow regimes.

4. Information-Theoretic Approach to Upscaling

For both flow scenarios, our goal is to upscale the fine-scale hydraulic conductivity k(x) to the coarse scale, that
is, to estimate fK , the PDF of the coarse-scale conductivity K , from its fine-scale counterpart. The discretization
of the flow domains  into Nel square elements translates into the fine-scale parameter set p = {k1,… , kNel

};
the coarse-scale parameter set consists of a single member, P = {K}. The mean uniform flow example has
one QoI (the total flux through the domain), while the radially convergent flow example has two (the well
productivity and the volume of the depression cone around the well).

4.1. Mean Uniform Flow
For the flow conditions described in section 3.1, our QoI is the total volumetric flux through the flow domain
. Its coarse-scale prediction is given by  = K(H1 − H2) with uncertain K , while its fine-scale estimate is
computed as ̂ = ∫ L

0 u1(L, x2)dx2. Our goal is to obtain a probabilistic description of unknown K , that is, its
PDF fK , via minimization of (6) wherein dw = (̂ −)2.

We start by generating fine-scale raw data consisting of Nr solutions of the fine-scale model (10) with different
realization of the parameter p, and computing the corresponding values of ̂. Next, we use deterministic
annealing (see Appendix B) to solve the optimization problem (6). For the discrepancy level set to d0 = 1.5 ×
10−7, this procedure results in a discrete approximation of fK (K ′), which is shown by the solid line in Figure 2a.
This value of d0 is achieved by discretizing fK (K ′) with Ndis = 35 points. One can decrease the computational
burden of deterministic annealing by reducing Ndis at the cost of increasing the discrepancy level; for example,
using Ndis = 19 discretization points results in d0 = 1.6 × 10−6 and leads to the estimate of fK (K ′) exhibited
in Figure 2b.

Mean uniform flow provides a rare example of subsurface models in which an analytical (and invertible) map
between the coarse-scale QoI  and the coarse-scale parameter K is available; in our example, they are lin-
early related! This map enables one to represent FK (K ′) as a histogram of K values computed from individual
realizations of the QoI ̂(k) by setting ̂ = . Figure 2 demonstrates the consistency between the resulting
histogram and our information-theoretic estimate of FK (K ′). Also shown in this figure is a histogram of the
geometric means Kg = exp(

∑Nel
i=1 ki) computed for each realization of the fine-scale conductivity field k(x),

discretized into Nel square elements. The theoretical result of K = Kg is strictly valid for two-dimensional flow
domains of infinite extent (Matheron, 1967) or, as in the present test case, when 𝓁Y ≤ L so that the presence
of boundaries has a negligible effect on K (Paleologos et al., 1996).
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Figure 2. Probability density functions, fK (K′), of the effective (coarse scale) hydraulic conductivity K for the mean
uniform flow. (a) The estimates of fK (K′) predicted with the information-theoretic approach (solid line), histogram of
K ’s resulting from Nr = 100 fine-scale flow simulations (bars), and histogram of geometric mean (Kg , dashed line)
estimated from each realization of k(x). (b) Comparison of the estimates of fK (K′) computed via deterministic annealing
with Ndis = 35 and 19 discretization points, whose locations are shown by the filled and open circles, respectively.

4.2. Radially Convergent Flow
For the flow conditions described in section 3.2, we have two QoIs,  = {1,2}. The first is the well pro-
ductivity 1 ≡  , which on the coarse scale is computed from (12) as  = 2𝜋K∕ ln(re∕rw), and on the fine
scale as ̂ = −Q∕(He − hw) where the hydraulic head at the well walls hw is computed by solving (10). The
second QoI is the volume of the depression cone around the well, 2 ≡  , whose fine- and coarse-scale
representations are

̂ = ∫
He − h(x)dx and  = 2𝜋 ∫

re

rw

Qr
2𝜋K

ln
(

r∕re

)
dr ≈ −

Qr2
e

4K
, (14)

respectively.

Estimates of the PDF fK (K ′), obtained with our information-theoretic approach for one ( =  ) and two
(1 =  and 2 =  ) QoIs, are shown in Figures 3a and 3b, respectively. In this flow regime, the reliance
on two QoIs slightly reduces the predictive uncertainty about K : the PDF fK (K ′) in Figure 3a, computed with
our IT approach, is wider than that in Figure 3b. This result also demonstrates a well-known observation that
effective (upscaled) parameters depend not only on their fine-scale counterparts and flow regime but also on
QoIs used to establish equivalency between scales.

The radial flow regime is another example where explicit maps between QoIs and coarse-scale parame-
ter(s) are available. These are constructed by equating their fine- and coarse-scale estimates, ̂ =  and
̂ =  . This yields realizations of K corresponding directly to realizations of the fine-scale solutions of the
flow equation (raw data); the histogram of these K ’s closely matches the information-theoretic estimate of
fK (K ′) in the case of one QoI (Figure 3a) but is qualitatively different when two QoIs are present (Figure 3b).

Figure 3. Probability density function, fK (K′), of the effective (coarse scale) hydraulic conductivity K for the radially
convergent flow in the case of one (a) and two (b) quantities of interests. The estimates of fK (K′) are alternatively
obtained with the information-theoretic approach (IT, solid line), histograms of the raw data (samples of K) resulting
from Nr = 100 fine-scale flow simulations (bars), a mixture of the histograms for two quantities of interest (dash-dotted
line), and histograms of the weighted averages estimated from each realization of k(x) (Kw , dashed line).
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Figure 4. (a) Frequency distributions for the well productivity  obtained directly from the fine-scale simulations
(from  data) and inferred from the depression cone volume data  (from  data), as well as the probability density
function f ( ′) estimated with the information-theoretic approach for  = { ,}. (b) Frequency distributions for the
depression cone volume  obtained directly from the fine-scale simulations (from  data) and inferred from the well
productivity data  (from  data), as well as the probability density function f ( ′) estimated with the
information-theoretic approach for  = { ,}.

That is because the Monte Carlo-like approach used to generate these histograms aims to minimize the dis-
crepancy with one QoI at a time, resulting in a large discrepancy with the other QoI. One can alleviate this
problem by using a weighted sum of the two histograms (the dash-dotted line in Figure 3b with both weights
equal to 1∕2), which has an effect of looking for a compromise between the two discrepancies, just as the
information-theoretic approach does.

Empirical studies (Desbarats, 1992) suggest the use of a weighted spatial average Kw ,

ln Kw = 1|| ∫
ln k(x)
x2

1 + x2
2

dx, || = ∫
dx

x2
1 + x2

2

, (15)

as an effective (coarse-scale) representation of the fine-scale conductivity k(x). The frequency distribution of
Kw estimates from Nr = 100 realizations of k(x) is shown by the dashed line in Figure 3b. The performance
of this empirical mapping improves when both QoIs are taken into account. The effective conductivity Kw

accounting solely for the well productivity  is inadequate because of the local nature of the latter quantity,
which depends on the hydraulic head at the well; Kw becomes more representative of the whole formation
when the depression cone volume  is accounted for as well.

The estimates of fK (K ′) shown in Figure 3 can be used to compute PDFs of the QoIs via the coarse-scale model
(10). These PDFs quantify uncertainty in estimates of the QoIs obtained from the coarse-scale model, tak-
ing into account all the available information. We compare the PDFs f ( ′) and f ( ′) predicted by our
information-theoretic approach, (4) and (6), with the raw data for the well productivity  and the volume
of the depression cone  (histograms with filled bars in Figure 4). A Monte Carlo-like estimate of the PDF of
one QoI, for example, f ( ′), is appreciably off when using the raw data of the other QoI, for example,  ,
(histograms with patterned bars in Figure 4), with our PDF predictions striking a balance between the two.

Figure 5. Scatter plots of the average distortion rates ⟨dw⟩ and the mutual information (k, K) for (a) the mean uniform
flow, dw = dw(̂,); (b) the radial flow with one quantities of interest, dw = dw(̂ ,); and (c) the radial flow with two
quantities of interests, dw = dw(̂,) where  = { ,}. Iteration of the deterministic annealing progresses from blue
to red, achieving better accuracy (i.e., smaller ⟨dw⟩) and approximating the posterior probability density functions fK
with a larger number of discretization points Ndis.

BOSO AND TARTAKOVSKY 4923



Water Resources Research 10.1029/2017WR021993

Figure 6. Top: Probability density functions of the fine- and coarse-scale predictions of the quantities of interests
for the mean uniform flow (left) and the convergent flow (right). At the coarse scale, the distribution is provided
by either simulations or measurements (solid line). The histograms representing the quantities of interests are obtained
by generating one fine-scale realization with the statistical properties inferred by the information-theoretic downscaling
procedure. Bottom: Representative spatial distributions of uiΔx (left) and vi (right).

The magnitude of the discrepancy level d0 is controlled by the number of discretization points Ndis used in
deterministic annealing (Figure 2b). In general, the average discrepancy ⟨dw(̂,)⟩decreases and the mutual
information (k, K) increases as Ndis becomes larger. This finding is illustrated by the scatter plots in Figure 5,
wherein the colors become warmer as the iteration of deterministic annealing progresses (Ndis increases, i.e.,
d0 decreases). The increase in  indicates that larger amount of information is passed between scales in order
to achieve better overall accuracy of the coarse-scale model. At convergence,  quantifies the amount of
information, which is transferred from the fine scale to the coarse scale upon upscaling.

5. Information-Theoretic Approach to Downscaling

Stochastic downscaling aims to identify the joint PDF of the fine-scale state variables and/or parameters
that are compatible with available coarse-scale data. Coarse-scale (experimental or simulation) data sel-
dom include coarse-scale (effective) parameters, since those often cannot be directly observed. That is
because their physical meaning is conferred on them by a coarse-scale model (e.g., hydraulic conductivity, as
opposed to fine-scale properties such as pore geometry that can be measured directly). Hence, we focus on
downscaling of state variables.

5.1. Mean Uniform Flow
A coarse-scale model of the mean uniform flow regime is described in section 3.1. The coarse-scale quantity
U1, the longitudinal Darcy velocity across the domain , is measured to have a lognormal PDF fU1

(U′
1) with

mean 𝜇ln U1
and variance 𝜎2

ln U1
, giving rise to the longitudinal volumetric flux by  = U1L whose PDF is shown

in Figure 6a (solid line). It is compatible with a coarse-scale hydraulic conductivity K , a constant whose uncer-
tain value is assigned a lognormal PDF fK (K ′). Our goal is to identify a PDF of the fine-scale Darcy velocity,
u1(L, x2), at the outlet x1 = L, which provides a fine-scale estimate of the volumetric flux through the outlet,
̂ = ∫ L

0 u1(L, x2)dx2, and, by continuity, in all transverse cross sections of .
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Using a numerical solution of the fine-scale flow field, ̂ = Δx
∑N2

i=1 u1,i where N2 = L∕Δx is the number of
cells in the x2 direction along the outflow boundary, and u1,i is the longitudinal velocity in the ith cell. We
assume u1,i to be identical and independently distributed (i.i.d.) lognormal random variables (RVs). Then the
goal is identify their mean and variance, 𝜇i and 𝜎2

i , which minimize (9). (Alternatively, one could assume these
RVs to be correlated and treat the correlation length as another optimization variable.)

For dw(̂,) = (ln ̂− ln)2, we employ the Fenton-Wilkinson approximation (e.g., Cobb et al., 2012) for the
summation of i.i.d. lognormal RVs to obtain a closed-form solution of this optimization problem,

𝜇i = 𝜇ln − 1
2
(𝜎2

i − 𝜎2
ln) − ln(Δx), 𝜎2

i = ln
[
−N2(1 − e𝜎2

ln ) + 1
]
. (16)

Generating fine-scale samples of ui with these statistical properties yields a frequency distribution for ̂ that
is in agreement with the coarse-scale input data (histogram in Figure 6a). N2 realizations of ui constitute one
realization of a random field; generating a random field with the same statistical properties for each transverse
section, we obtain a random field of the fine-scale longitudinal fluxes in  (Figure 6c).

5.2. Convergent Flow
For the convergent flow regime described in section 3.2, we consider downscaling based on the
depression-cone volume  whose PDF is estimated from coarse-scale measurements or simulations. For a
homogeneous coarse-scale hydraulic conductivity K with lognormal PDF, both hydraulic head at the well,
Hw , and depression-cone volume  have lognormal PDFs (solid line in Figure 6b). Our goal is to identify a
compatible PDF of the fine-scale hydraulic heads within the flow domain  via minimization of (9).

The volume of the depression cone is approximated from the fine scale by

̂ = Δx2
N∑

i=1

vi, (17)

where vi = He −hi is the drawdown in each of the N cells with area Δx2. As before, we treat vi as independent.
RVs and approximate the sum of independent. lognormal RVs with the Fenton-Wilkinson formula. Then, the
optimization problem (9) admits an analytical solution for the uniform variance of the lognormal PDF of vi,

𝜎2
i = 1

N

[
exp (𝜎2

ln ) − 1
] [

exp

(
𝜇ln − ln(Δx2) +

𝜎2
ln
2

)]2

, (18)

whose mean is given by the coarse-scale solution; and, hence a lognormal PDF of hi. Here 𝜇ln and 𝜎2
ln are

the prescribed the mean and variance of the coarse-scale PDF of  in Figure 6b. This figure demonstrates an
agreement between this PDF (solid line) and that of ̂ in (17)–(18) (histogram). Figure 6d exhibits a fine-scale
lognormal field vi whose statistics are given by (18). The fact that thus inferred v(x) (Figure 6d) displays
stronger variability than u(x) (Figure 6c) reveals how the choice of observables determines the uncertainty
level in predictions of downscaled quantities.

6. Summary and Conclusions

We present a probabilistic framework, which uses information-theoretic concepts to transfer information from
a fine scale to a coarse scale (upscaling) or from a coarse scale to a fine scale (downscaling). The bidirec-
tional scaling is guided by the functional minimization of a modified cost function, where mutual information
between scales is minimized subject to a constrain imposed by a weighted-average discrepancy measure
between the fine- and coarse-scale model predictions for a set of QoIs.

The optimization yields conditional PDFs for system states and/or system parameters at either scale, taking
into account the available information at the opposite scale. The procedure enables one to evaluate the accu-
racy of the scaled predictions in terms of the average discrepancy and PDF of the observables. It also allows
one to quantify both the loss of information upon upscaling and the redistribution of information upon down-
scaling: mutual information measures the difference in information content between the scaled description
of (augmented) states and their probabilistic description if they were independent.

The performance and challenges of our approach are discussed in the context of two examples of ground-
water flow in heterogeneous formations: mean uniform flow and radial convergent flow. These examples
have been used in the past to derive theoretical and empirical expressions for the effective conductivity,
respectively. They provide familiar settings to study the assimilation of conductivity measurements collected
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at different scales and the quantification of differences in the information content provided by the fine- and
coarse-scale models. Future work will explore applications of this approach to dynamical systems and to the
inference (learning) of coarse-scale models.

Appendix A: Kullback-Leibler Divergence and Distance Between Two PDFs

A distance between any two PDFs f1(s) and f2(s), both defined on the same domain Ωs, can be quantified in
terms of the Kullback-Leibler (KL) divergence

DKL(f1, f2) ≡ ∫Ωs

f1(s′) ln
[

f1(s′)
f2(s′)

]
ds′. (A1)

It is also referred to as relative entropy between two PDFs, rel = DKL(f1, f2). In the context of bidirec-
tional scaling, we deal with fs(s′) and fS(S′), PDFs of the fine- and coarse-scale states s and S, respectively.
The KL divergence cannot be used to compare these PDFs, since s and S have different dimensions and,
correspondingly, fs(s′) and fS(S′) have different domains of definition Ωs and ΩS.

Instead, given the knowledge of a deterministic mapping, Ŝ ≡ (s), between the fine- and coarse-scale
states, (A1) is used to compare f1 ≡ fs(s′) and f2 ≡ fŜ(s;𝝓) (Schöberl et al., 2017),

fŜ(s
′) =

fS[Ŝ(s′)[
ZŜ[Ŝ(s′)]

, ZŜ(s) = ∫Ωs

𝛿(S − Ŝ(s′))ds′, (A2)

where fS(S′) is the prior coarse-scale PDF. Minimization of (A1) with respect to the PDF parameters 𝝓 yields a
parameterized fŜ(s′) as close as possible to fs(s′). This approach is used in chemistry as a fundamental quan-
tity for multiscale analysis of molecular dynamics (Shell, 2008). This procedure does not yield dimensionality
reduction because the PDFs are defined on the same space Ωs. A posteriori estimates of QoIs in the form of
their ensemble averages are given by ⟨̂(s)⟩ = ∫Ωs

̂(s′)fŜ(s′)ds′. A coarse-to-fine probabilistic mapping can
be used to estimate PDFs of the observables (Schöberl et al., 2017).

Dimensional reduction and upscaling can be achieved by setting f1 ≡ f
̂
(′) and f2 ≡ f(

′;𝝓) in (A1)
(Arnst & Ghanem, 2008). Here ̂(s) and (S) are defined in section 2 as the QoIs obtained from the fine-scale
and the coarse-scale, respectively. Next, (A1) is minimized with respect to the parameters 𝝓 of f(

′;𝝓) to
obtain an optimal probabilistic description of the QoIs at the coarse scale, which are equivalent to those at the
fine scale.

Appendix B: Deterministic Annealing

We employ deterministic annealing (Rose, 1998) to minimize (6) with respect to fS|s(S′|s). Deterministic
annealing replaces the continuous fS(S′) in (7) with its discrete version composed of Ndis pairs (Sk, fk) with
k = 1,… ,Ndis, such that

∑Nk
k=1 fk = 1. Upon substituting (7) into (6) this minimization problem is replaced with

argmin
{Sk ,fk}

Ndis
k=1

D, D = −1
𝜆 ∫Ωs

fs(s′) ln

(
Ndis∑
k=1

fke−𝜆dw (s′ ,Sk)

)
ds′ + 𝜆q

(
Ndis∑
k=1

fk − 1

)
, (B1)

where 𝜆q is a Lagrange multiplier. This is advantageous because no assumption on the parametric form of fS|s
is needed. Gradient-based minimization of (B1) with respect to Sk and fk is performed by solving ∇Sk

D = 0
and 𝜕D∕𝜕fk = 0. Recalling (7) and making use of the definition fk = ∫ fs(s′)fSk |s(S′

k|s′)ds′, these yield

∫Ωs

fs(s′)fS|s(S′
k|s)𝜕dw(s′, Sk)

𝜕Si
k

ds′ = 0, i = 1,… ,dim(S); k = 1,Nk (B2)

and

− 1
𝜆 ∫Ωs

1
(s′, 𝜆)

exp
(
−𝜆dw(s′, Sk)

)
ds′ + 𝜆q = 0, (B3)
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respectively. Equation (B3) is solved exactly by 𝜆 = 1∕𝜆q, while the solution of (B2) proceeds iteratively
as follows:

1. Initialization of 𝜆, Sk and fk with Nk = 1;
2. fS|s and fk are updated using the definitions:

fSk |s(S′
k|s) = fk exp

(
−𝜆dw(s, Sk)

)
∑Nk

l=1 fl exp
(
−𝜆dw(s, Sl)

) k = 1,… ,Nk (B4)

fk = ∫Ωs

fs(s̃′)fSk |s(S′
k|s′)ds′. (B5)

The integral inΩs is computed approximately from the training set (i.e., the finite set of fine-scale realizations
that inform upscaling).

3. The expression for 𝜕dw∕𝜕Si
k (i = 1,… ,dim(S) and k = 1,… ,Nk) in (B2) depends on the choice of dw(s, S).

The weighted 𝓁2 norm introduced in (4) yields a system

∑
j

wjj(S)
𝜕j(S)
𝜕Si

k

fk =
∑

j

wj

𝜕j(S)
𝜕Si

k
∫Ωs

fs(s′)fS|s̃(S|s′)̂j(s′)ds′, (B6)

whose solution Sk guarantees the minimization of (B1) for the chosen𝜆 and Nk ; in case of multiple solutions,
we retain the one that provides the smallest ⟨dw⟩.

4. The updated average discrepancy is computed and compared with the convergence tolerance; if conver-
gence is not reached, iteration is repeated. At each iteration, 𝜆 is increased and, if the components of Sk are
distinct enough (i.e., the critical annealing of the objective function is reached), Nk is artificially doubled.

Convergence proceeds along a rate distortion curve that is characterized by a decreasing average discrep-
ancy and increasing mutual information between scales, progressively taking into account larger exchange
of information between levels.
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