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Abstract Predictions of solute transport in subsurface environments are notoriously unreliable due to
aquifer heterogeneity and uncertainty about the values of hydraulic parameters. Probabilistic framework,
which treats the relevant parameters and solute concentrations as random fields, allows for quantification
of this predictive uncertainty. By providing deterministic equations for either probability density function or
cumulative distribution function (CDF) of predicted concentrations, the method of distributions enables one
to estimate, e.g., the probability of a contaminant’s concentration exceeding a safe dose. We derive a deter-
ministic equation for the CDF of solute concentration, which accounts for uncertainty in flow velocity and
initial conditions. The coefficients in this equation are expressed in terms of the mean and variance of con-
centration. The accuracy and robustness of the CDF equations are analyzed by comparing their predictions
with those obtained with Monte Carlo simulations and an assumed beta CDF.

1. Introduction

Advection-dispersion equations (ADEs) are routinely used by hydrogeologists to model solute transport in
the subsurface. Just as ubiquitous as their applications is uncertainty about the values of the coefficients
that parameterize ADEs, e.g., flow velocity, dispersivity, and initial and boundary conditions. This parametric
uncertainty, which arises from subsurface heterogeneity and limited amounts of hydrologic data, renders
ADE-based predictions of solute concentrations fundamentally uncertain. (Another source of uncertainty—
the veracity of ADEs stemming from their purported failure to capture non-Fickian transport in heterogene-
ous formations [Cushman and O’Malley, 2015; Neuman and Tartakovsky, 2009; Berkowitz et al., 2006]—lies
outside the scope of the present study.)

This pervasive uncertainty raises practical questions of how to act upon such predictions and how to com-
municate them to nonspecialists. Faced with similar questions, the climate change community has adopted
the language in Table 1, which we propose to use for groundwater modeling. This language implies the
necessity of relying on the probabilistic framework when dealing with uncertainty, such that a prediction
‘‘solute concentration Cðx; tÞ at the location x and time t is likely to stay below a safe limit c’’ is equivalent to
estimating the probability P½Cðx; tÞ $ c% > 0:66. In other words, rather than computing a single prediction
of concentration one has to find its cumulative distribution function (CDF), FCðc; x; tÞ & P½Cðx; tÞ $ c%.

This goal is achieved by treating input parameters in an ADE as random fields and solving the stochastic
version of this equation, i.e., by propagating the parametric uncertainty through the modeling process.
Monte Carlo simulations (MCS) are often used for this purpose, but they are computationally expensive, and
often prohibitively so. This is because an accurate estimation of the CDF FC requires a large number of sol-
ves of the ADE (realizations) in order to obtain a representative histogram of the solution. Much of research
in stochastic hydrogeology is driven by the need to develop computationally efficient alternatives to MCS.

Moment differential equations (MDEs) provide one such alternative by deriving deterministic equations
governing the dynamics of statistical moments of solute concentration. Most, if not all, MDEs are limited to
the first two statistical moments, i.e., concentration mean hCðx; tÞi &

R
c dFCðc; x; tÞ and variance r2

Cðx; tÞ
&
R

c2 dFCðc; x; tÞ2hCðx; tÞi2 [Winter et al., 1984; Dagan, 1989; Cushman, 1997; Dagan and Neuman, 1997;
Kapoor and Kitanidis, 1998]. (A reason is that while derivation of MDEs for higher statistical moments is rela-
tively straightforward, solving them numerically is computationally more demanding than MCS.) They pro-
vide only a limited probabilistic information, with hCðx; tÞi serving as the ‘‘best’’ prediction and r2

Cðx; tÞ
providing a measure of predictive uncertainty. They cannot be used to determine whether a particular
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prediction is ‘‘likely’’ or ‘‘almost certain’’ (see Table 1) in
all but a few limited scenarios, e.g., when Cðx; tÞ can be
approximated as a multivariate Gaussian random field.
Yet such information is what is needed for probabilistic
risk assessment of subsurface contamination [e.g.,
Tartakovsky, 2013], which typically requires estimates of
probability of occurrence of rare (e.g., ‘‘extremely
unlikely’’) events.

The method of distributions [Tartakovsky and Gremaud,
2016] overcomes this limitation by deriving deterministic
equations for the concentration’s CDF FC (CDF equations)
or PDF fC & dFC=dc (probability density function or PDF)
equations, rather than for its moments. PDF equations origi-

nated in the statistical theory of turbulence [Lundgren, 1967] and have since been modified to deal with uncertain
flow velocity and/or reaction rate constants in advection-reaction transport problems [Lichtner and Tartakovsky,
2003; Shvidler and Karasaki, 2003; Tartakovsky et al., 2009; Venturi et al., 2013]. Like their PDF counterparts, CDF
equations treat nonlinear reaction terms in the transport equations exactly, without resorting to linearization
required by MDEs [Boso et al., 2014; Tartakovsky and Gremaud, 2016]. Other advantages of CDF equations include
the uniqueness of boundary conditions in the event space, e.g., FCðc50; x; tÞ50 for any x and t, and the numeri-
cal efficiency of having to find a solution that is a smooth function in c, which increases from 0 and 1.

The presence of a Laplace operator, i.e., diffusion or dispersion terms, in the ADE complicates the derivation
of PDF/CDF equations by requiring a closure approximation. Examples of such closures include a Gaussian-
ity assumption for the dynamics of a plume’s center of mass [Dentz and Tartakovsky, 2010; Dentz, 2012], per-
turbation expansions [de Barros and Fiori, 2014], and the interaction by exchange with the mean (IEM)
closure [Pope, 2000]. The original IEM formulation fails to capture the correct space-time behavior of both
the mean and the variance of concentration unless dispersion is negligible or these statistics are constant in
space. Subsequent IEM modifications [e.g., Raman et al., 2005] capture the mean behavior, but fail to match
the concentration variance.

We develop a new closure for the method of distributions that, unlike the original IEM procedure and its sub-
sequent generalizations [Haworth, 2010], captures the correct behavior of both the mean and the variance of
solute concentration. Section 2 contains the derivation of a general CDF equation for the ADE with uncertain
(random) flow velocity. This equation is solved for transport in a stratified flow in section 3 to obtain a com-
plete probabilistic description of solute concentration at any space-time point ðx; t); the latter is used to com-
pute maps of probability of exceedance of a safe concentration limit c?; P½Cðx; tÞ > c?%512FCðc?; x; tÞ.
Section 4 provides a comparison of the CDFs FCðc; x; tÞ computed with our method and MCS, as well as with
an assumed b-CDF Fb

Cðc; x; tÞ that is often used as a surrogate of the actual CDF FCðc; x; tÞ [Fiori, 2001; Bellin
and Tonina, 2007; Bellin et al., 2011]. Major conclusions drawn from our study are summarized in section 5.

2. CDF Equation

Following Dagan [1987], Cushman et al. [2002], Morales-Casique et al. [2006], Neuman and Tartakovsky
[2009] and many others, we postulate the existence of a spatial scale x on which an ADE

@C
@t

5r ( ðDrCÞ2r ( ðvCÞ (1)

is valid for any ‘‘point’’ x 2 X inside a computational domain X and any time t> 0. At this scale, the second-
order tensor D is a local diffusion/dispersion coefficient, which is independent of the uncertain divergence-
free flow velocity vðx; tÞ that is treated as a random vector field with prescribed (or obtained from flow sim-
ulations) statistics. The ADE is supplemented by initial and Dirichlet boundary conditions

Cðx; 0Þ5C0ðxÞ; x 2 X; Cðx; tÞ5/ðx; tÞ; x 2 @X; (2)

where @X is the boundary of the simulation domain X, and C0ðxÞ and /ðx; tÞ are uncertain auxiliary func-
tions that are treated as mutually independent random fields with given distributions. Randomness of v, C0,

Table 1. A Common Language Description of Probabilis-
tic Occurrence of an Event, Suggested by the 2007
Intergovernmental Panel on Climate Change

Description
Probability of
Occurrence

Virtually certain >99%
Extremely likely >95%
Very likely >90%
Likely >66%
More likely than not >50%
Unlikely <33%
Very unlikely <10%
Extremely unlikely <5%
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and / renders a solution of this transport problem, Cðx; tÞ, random as well. Instead of developing determin-
istic equations for the concentration moments hCðx; tÞi and r2

Cðx; tÞ, we derive a deterministic equation
that governs the space-time evolution of the full CDF FCðc; x; tÞ.

We introduce a random function Pðc; CÞ5H½c2Cðx; tÞ%, where H½(% is the Heaviside function. The ensemble
average of Pðc; CÞ over all possible values of C at the space-time point ðx; tÞ yields FCðc; x; tÞ. Indeed, if fCðc;

x; tÞ is the PDF of C at ðx; tÞ, then

hPðc; CÞi5
Z Cmax

Cmin

Hðc2CÞfCðC; x; tÞdC5
Z c

Cmin

fCðC; x; tÞdC5FCðc; x; tÞ: (3)

This property suggests a two-step procedure for deriving a CDF equation. First, derive a stochastic equation
for Pðc;CÞ from (1). Second, average the result to obtain an equation for FCðc; x; tÞ. After a series of approxi-
mations, this procedure leads to the CDF equation (see Appendix A for details)

@FC

@t
1hvi (rFC2

v
2

1
DrhCi (rhCi

r2
C

! "
c2hCið Þ @FC

@c
5r ( ðDeffrFCÞ; (4)

where v is a closure parameter in the equation for the concentration variance r2
C (see equation (B10)),

Deff5D1Dm; Dmðx; tÞ5
Z t

0

Z

X
Cvðx; t; n; sÞGðx; t; n; sÞdnds; (5)

Gðx; t; n; sÞ is the mean-field Green’s function for the transport problem (1) and (2), defined in Appendix A,
and Cvðx; t; n; sÞ is a given space-time auto-covariance matrix of velocity v.

The CDF equation (4) is subject to the initial condition

FCðc; x; 0Þ5FC0ðc; xÞ; Cmin < c < Cmax; x 2 X; (6a)

the boundary conditions along the computational domain’s boundary

FCðc; x; tÞ5F/ðc; x; tÞ; Cmin < c < Cmax; x 2 @X; t > 0; (6b)

and the boundary conditions for the limiting values of the concentration’s variation

FCðc5Cmin; x; tÞ50; FCðc5Cmax; x; tÞ51; x 2 X; t > 0; (6c)

which follow from the very definition of the CDF. Here FC0 and F/ are the CDFs of the initial and boundary
functions C0 and /, respectively. If any of these inputs is deterministic, then its CDF is the Heaviside function
centered on the prescribed deterministic value.

The CDF equation (4) ensures its solution FC has the same mean hCi and variance r2
C as those predicted

with the MDEs, and share the same closure parameters: the variance dissipation rate v and the macrodisper-
sion tensor Dm. It captures both the propagation and dissipation effects of dispersion on uncertainty
through an explicit dependence on D and v, respectively. The classic IEM approach [Villermaux and Falk,
1994],

@FC

@t
1hvi (rFC2

v
2

c2hCið Þ @FC

@c
5r ( ðDmrFCÞ; (7)

accounts for uncertainty dissipation and dispersion only through v; in the turbulence literature, v is a calibra-
tion parameter that is usually set to be inversely proportional to the timescale of turbulence [Pope, 2000].
This is only adequate when dispersion has a negligible role (high Reynolds number flows) or when the con-
centration is statistically homogeneous (has constant mean and variance). Subsequent modifications of (7)
introduced dependencies on r2hCi [Raman et al., 2005] and the velocity [Haworth, 2010, and the references
therein], but did not solve the issue of moment reproduction in dispersion-dominated conditions.

3. Computational Example

We consider solute transport in a two-dimensional domain of infinite extent, X5fðx; zÞ : 21
< x <1;21 < z <1g, which takes place in a stratified flow, v5ðv; 0Þ> with v5vðz; tÞ, induced by a
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mean uniform pressure gradient applied in the horizontal (x) direction. Assuming that transverse dispersion,
which contributes to dilution in the vertical (z) direction, is negligible, the transport problem (1)–(2) reduces to

@C
@t

1vðz; tÞ @C
@x

5D
@2C
@x2 ; Cðx; z; t50Þ5C0ðx; zÞ: (8)

Both the flow velocity v(z, t) and the initial condition C0ðx; zÞ are uncertain and treated as random fields. To be
specific, we consider the initial condition in the form of a localized source with maximum concentration Cmax,

C0ðxÞ5Cmaxexp 2
ðx2x0Þ2

2l2

" #
; (9)

that is centered around an uncertain location x0, and whose width is controlled by the parameter l. Rewrit-
ing (8) in terms of dimensionless quantities

~x5
x
l
; ~t5

thvi
l
; ~v5

v
hvi ;

~C5
C

Cmax
; Pe5

hvil
D

(10)

yields a transport problem for dimensionless concentration ~Cð~x ;~z ;~tÞ,

@~C
@~t

1~vð~z ;~tÞ @
~C
@x

5
1

Pe
@2 ~C
@~x 2 ;

~Cð~x ;~z ; 0Þ5e2ð~x2~x 0Þ2=2: (11)

In the following, we omit the tilde~. The random variable x0 is assumed to be statistically independent from
the random field v(z, t). Similar problem formulations for solute transport in stratified flows have been a sub-
ject of numerous investigations [e.g., Jarman and Tartakovsky, 2013; Dentz and Carrera, 2007; Li and
McLaughlin, 2002; McLaughlin and Majda, 1996]. In the simulations reported below, we treat the source loca-
tion x0 as a Gaussian variable with mean hx0i50 and variance r2

0, and the flow velocity v(z, t) as either a
steady or time-dependent lognormal field with constant mean hvi and variance r2

v and no spatial correla-
tion along z. In the time-dependent case, ln v has an exponential temporal covariance function with correla-
tion time k. Appendix C summarizes the expressions presented by Jarman and Tartakovsky [2013] for
lognormal velocity fields v(z, t), without and with time dependence. Unless specified otherwise, the subse-
quent results are for uncorrelated lognormal velocity field v(z) (section C1) with P!eclet number Pe50:1.

A solution of the CDF equation (4) for this problem is shown in Figure 1 in the form of risk maps of subsur-
face contamination, i.e., the spatiotemporal evolution of the exceedance probability for a given (e.g., regula-
tory) concentration value c); P½Cðx; tÞ > c)%512FCðc); x; tÞ. The color scheme in these graphs represents
various degrees of certainty in the model predictions (see Table 1). The space-time region over which the
predictions are ‘‘extremely likely’’ to be correct increases significantly as the normalized threshold concen-
tration decreases from c)51=50 (first row) to c)51=100 (second row).

Figure 1 also provides a comparison between the computed CDF (left column), FCðc; x; tÞ, and its assumed b-
distributed counterpart (right column), Fb

Cðc; x; tÞ5Bðc; a1; a2Þ=Bða1; a2Þ where Bðc; a1; a2Þ and Bða1; a2Þ are the
complete and incomplete beta functions, respectively, and the parameters a1 and a2 are chosen such that hCi5a1

=ða11a2Þ and r2
C5a1a2=½ða11a2Þ2ða11a211Þ%. While, by construction, FC and Fb

C have the same mean and var-
iance, their tails differ, resulting in appreciably different risk maps, especially for low threshold concentrations c) .

4. Accuracy and Robustness of the CDF Method

Two levels of approximation underpin our derivation of the CDF equation (4) in Appendices A and B. One is
required to close the formal CDF equation (A2), and the other to close the moment equations (B1) and (B2).
We conduct a series of numerical experiments to analyze the accuracy and robustness of these approxima-
tions and the resulting CDF equation. This is done by comparing solutions of the CDF equation with MCS of
the stochastic transport problem (1)–(2), with (semi)analytical expressions for the corresponding concentra-
tion moments hCi and r2

C , and with the assumed b-CDF Fb
C .

4.1. Comparison of Alternative CDF Solutions
The transport scenario under investigation lends itself to exact analytical treatment in terms of the concen-
tration statistics hCðx; tÞi and r2

Cðx; tÞ. By eliminating the need for a closure of the MDEs, it facilitates an
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analysis of the accuracy of the approximations used to close the formal CDF equation (A2). The same statis-
tics are used to parameterize the assumed b-CDF Fb

C . To establish the veracity of these two CDF estimates,
we compare them with the ‘‘exact’’ CDF computed with MCS, FMC

C ðc; x; tÞ. The latter involved 10,000 realiza-
tions, which proved to be sufficient to converge to the exact solutions for hCðx; tÞi and r2

Cðx; tÞ. The errors
of our CDF solution FCðc; x; tÞ and the assumed CDF Fb

Cðc; x; tÞ are computed as

EFðx; tÞ5
Z 1

0
jFC2FMC

C jdc; Eb
Fðx; tÞ5

Z 1

0
jFb

C2FMC
C jdc: (12)

The numerical quadratures are computed by rectangular integration on the numerical grid points of the
CDF method (dc50:001).

The errors EFðx; tÞ and Eb
F ðx; tÞ are plotted in Figure 2. The EFðx; tÞ error is confined to the immediate vicinity

of the source and to early times, while the Eb
F ðx; tÞ is significantly more persistent in time. The CDF solution

error EFðx; tÞ5Em
F ðx; tÞ1En

F ðx; tÞ comprises the modeling error Em
F ðx; tÞ and the numerical error En

F ðx; tÞ. The
former stems from the inability of IEM approximations, including ours given (A7) and (A10), to handle the
early-time bimodality. The dispersive term in the CDF equation (4) quickly dissipates this bimodality, while
allowing the CDF FC to exhibit intermittency, i.e., to maintain the asymmetry at intermediate times and tran-
sition to a Gaussian distribution at later times. The numerical error En

F ðx; tÞ is dominant in space-time
regions where the CDF profiles are sharp, i.e., where the concentration variance is small, because of numeri-
cal diffusion. At very early times, Eb

F ðx; tÞ < EFðx; tÞ, especially in the regions where the CDF is very sharp.
However, the performance of Fb

C does not improve with time; it moves towards a symmetric distribution
faster than the benchmark MC solution does. In other words, Fb

C fails to capture the asymmetric features of
the concentration CDF at intermediate times. Figure S1 in Supporting Information further elucidates the
dynamics of FCðc; x; tÞ; Fb

Cðc; x; tÞ and FMC
C ðc; x; tÞ by exhibiting their temporal snapshots at x 5 0.0.

At later times, the system approaches its deterministic equilibrium state, which both FC and Fb
C capture well.

In this regime, any method that accurately reproduces the mean concentration hCðx; tÞi would perform

Figure 1. Spatiotemporal maps of the exceedance probability P½Cðx; tÞ > c)%512FCðc); x; tÞ computed with the CDF equation (4) (left
column) and the assumed b-CDF (right column) for concentration threshold values c)51=50 (top row) and c)51=100 (bottom row). The
statistical parameters of the inputs are set to hx0i50; r2

0510; r2
v 50:1, and Pe50:1.
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well, since the concentration CDF becomes progressively symmetric and its variance decreases with time.
Figure S2 in Supporting Information substantiates this point by showing the error maps for FC, Fb

C and the
Gaussian CDF FG

C for dimensionless times t> 10. The error EF is practically time-invariant, depending mostly
on the accuracy of the numerical solution of the CDF equation (4): EF * Oð1023Þ, which is the same as the
numerical accuracy. The spatial distributions of Eb

F and EG
F are more heterogeneous, reaching their respec-

tive maxima close to the mean hCðx; tÞi.

Derivation of CDF equations for advection-dominated transport does not require an IEM closure and is often
exact [Boso et al., 2014; Tartakovsky and Gremaud, 2016]. It is therefore reasonable to expect that the per-
formance of the IEM-based CDF equation (4) depends on the P!eclet number Pe. Figure 3 exhibits the errors
EF and Eb

F for transport regimes with Pe51:0 and Pe50:01 (dispersion-dominated). The errors of both PDF

Figure 2. Spatiotemporal maps of the errors of the CDF solution FCðc; x; tÞ and the assumed b-CDF Fb
C ðc; x; tÞ; EFðx; tÞ (left) and Eb

F ðx; tÞ
(right), respectively. The statistical parameters of the inputs are set to hx0i50; r2

0510; r2
v 50:1, and Pe50:1.

Figure 3. Spatiotemporal maps of the errors EFðx; tÞ (left) and Eb
F ðx; tÞ (right) for transport regimes with Pe51:0 (top) and Pe50:01

(bottom). The other statistical parameters of the inputs are set to hx0i50; r2
0510, and r2

v 50:1.
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estimates decrease by more than one order of magnitude as Pe decreases from 1.0 to 0.01, as more pro-
nounced dispersion acts to homogenize the system leading to a symmetric CDFs. The snapshots of FC, Fb

C ,
and FMC

C in Figure S3 in Supporting Information reveal that for Pe51:0 the bimodality of CDFs/PDFs persists
for longer times, causing FC and Fb

C to deviate more from the MCS benchmark FMC
C . This bimodality is largely

absent in the dispersion-dominated regime (Pe50:01), resulting in significantly reduced approximation
errors. For advection-dominated regimes it is advisable to resort to a different closure of the CDF equation
[Boso et al., 2014], with closure coefficients that account for random advection.

4.2. Sensitivity to Approximation of Moments
The FC solutions reported above were obtained by solving the CDF equation (4) with the analytical expres-
sions for hCi and r2

C . In general, one would have to deploy closure approximations to derive the MDEs and,
hence, to obtain numerical approximations of hCi and r2

C . Based on the analysis of Jarman and Tartakovsky
[2013] we adopted the macrodispersion approximation (see Appendix B). Figure 4 shows FCðc; x; tÞ com-
puted with the CDF equation (4) in which we alternatively used the exact expressions for hCi and r2

C and
their approximations given by solutions of the MDEs (B9) and (B10); the PDFs were computed by numerical
differentiation of the corresponding CDFs. While the approximation error for the moments grows with time
(only the concentration variance r2

C is shown), the accuracy of the CDF and PDF solutions remains relatively
insensitive to it.

4.3. Impact of Increasing Input Uncertainty
The CDF method is expected to loose accuracy as the input variances, r2

0 and r2
v , increase. To isolate the

effect of the input variances on the robustness of the IEM-based closure, we use the semi-analytical expres-
sions for hCi and r2

C in the CDF equation (4). A larger uncertainty (variance) in the inputs translates into a
large uncertainty in the output: r2

C increases with r2
0 and/or r2

v (Figure S4 in Supporting Information). This
smooths the CDF profiles and widens the corresponding PDF (Figure S5 in Supporting Information). The
overall accuracy of the CDF solution FCðc; x; tÞ, quantified in terms of the error EFðx; tÞ, deteriorates as r2

0

and/or r2
v become larger (Figure 5). Yet, FCðc; x; tÞ reproduces the asymmetric features of the distributions,

which are especially visible in the PDF plots in Figure S5. Figure S5 also reveals that FCðc; x; tÞ predicted
with the CDF method has longer tails than the exact (MCS-based) CDF, i.e., it provides a conservative esti-
mate of uncertainty over the whole range of possible concentration levels. This is in contrast to the
assumed b-CDF Fb

Cðc; x; tÞ, which underestimates uncertainty at low and high concentration levels.

Figure 4. (Left) Profiles of the CDF FCðc; x50:0; tÞ and PDF fCðc; x50:0; tÞ at times t152:5 and t2510:0 computed with the CDF equation
(4) (patterned lines) and Monte Carlo simulations (solid lines); hCi and r2

C in the CDF equation are given, alternatively, by their exact expres-
sions (dashed lines) and the approximate MDEs (B9) and (B10) (dotted lines). Right column: the concentration variance r2

Cðx50:0; tÞ at
times t152:5 and t2510:0, computed with its exact expression (solid lines), the approximate MDEs (B9) and (B10) (dash-dotted lines), and
integration of FCðc; x50:0; tÞ obtained with the exact (dashed lines) and approximate (dotted lines) expressions for the moments.
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4.4. Impact of Temporal Correlation
For temporally correlated velocity fields, analytical expressions for the moments hCi and r2

C are not avail-
able; instead, they are computed by solving the MDEs (B9) and (B10). Figure 6 reveals that EFðx; tÞ slightly
decreases as the dimensionless correlation length k changes from 1 to 100. This effect is also observed in
Figure S6 in Supporting Information, which compares the CDF and PDF profiles computed with the CDF
method, the b-CDF, and the MCS for k 5 1 and 100. Increasing k does not affect much the space-time
behavior of the mean hCi, but its effect on the variance r2

C is more pronounced (Figure S7 in Supporting
Information).

5. Summary

We developed a deterministic equation for the CDF of solute concentration, whose behavior is governed by
an advection-dispersion equation with uncertain (random) flow velocity and initial conditions. This CDF
equation is closed by introducing a nonlinear ‘‘drift’’ velocity, which depends on the mean and variance of

Figure 5. Spatiotemporal maps of the errors EFðx; tÞ (left) and Eb
F ðx; tÞ (right) for hx0i50; Pe50:1 and different combinations of the

degrees of uncertainty: r2
0510:0 and r2

v 50:5 (first row), r2
0550:0 and r2

v 50:1 (second row), and r2
0550:0 and r2

v 50:5 (third row).
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solute concentration. In contrast to the classic IEM closure and its modifications, which generally fail to
reproduce these statistics, our closure preserves the mean and variance. It does so by adding a correction
that is proportional to the scalar dissipation rate, a measure of local mixing. The resulting CDF equation is
capable of reproducing asymmetric CDF/PDF profiles at intermediate times and Gaussin-like profiles at late
times. At very early times, the CDF method does not capture the bimodality imposed by initial conditions.
Validation against (semi-)analytical solutions and Monte Carlo simulations and comparison with the b distri-
bution show that the CDF method is robust with respect to both the correlation lengths of the random
parameters and their variances.

The CDFs and PDFs obtained with the proposed method of distributions can be used as priors to be refined
through Bayesian update as concentration measurements become available. An efficient numerical imple-
mentation of this approach to data assimilation is a subject of our ongoing research.

Appendix A: Closures for the CDF Method

It follows from the definition of P that @P=@t52ð@P=@cÞð@C=@tÞ and rP52ð@P=@cÞrC. Multiplying
both sides of (1) with @P=@c and using these relations yields

@P
@t

1v (rP5r ( ðDrPÞ2ðDrCÞ (rC
@2P
@c2 : (A1)

Employing a Reynolds decomposition, v5hvi1v0 and P5Fc1P0 where the primed quantities denote zero-
mean fluctuations about their respective means, and taking the ensemble average of (A1) yields a formal,
i.e., unclosed, equation for FCðc; x; tÞ

@FC

@t
1hvi (rFC5r ( ðDrFC2QÞ2M; Q & hv0P0i; M &

#
DrC (rC

@2P
@c2

$
; (A2)

which requires closure approximations to compute Q and M.

Figure 6. Spatiotemporal maps of the errors EFðx; tÞ (left) and Eb
F ðx; tÞ (right) for the correlation time of the velocity field v(z, t) set to

k51:0 (first row) and k5100:0 (second row). The other input statistics are hx0i50 and Pe50:1.
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The derivation of an approximation for Qðx; tÞ starts with an equation for the fluctuations P0, which is obtained
by subtracting (A2) from (A1). Its solution is written in terms of the random Green’s function Gðx; y; t2sÞ as

P0ðx; tÞ52
Z t

0

Z

X

v0 (rFC1DrC (rC
@2P
@c2 2r ( hv0P0i2

#
DrC (rC

@2P
@c2

$! "
Gdyds

1
Z

X

P00Gðs50Þdy1
Z t

0

Z

@X

P0/n ( DrGdyds; (A3)

where P00 and P0/ represent the initial and boundary fluctuations, and n is the unit normal vector to the
boundary @X. The Green’s function G is defined as a solution of

@G
@s

2r ( ðvGÞ5r ( ðDrGÞ1dðx2yÞdðt2sÞ; (A4)

where dð(Þ is the Dirac delta function, subject to the homogeneous initial and boundary conditions. Multi-
plying (A3) with v0ðx; tÞ and taking the ensemble mean yields

Q52
Z t

0

Z

X

½hGv0ðx; tÞv0ðy; sÞ>i (rFC1hv0M0Gi%dyds; M05DrC (rC
@2P
@c2 2M: (A5)

The initial and boundary terms are zero because the sources of uncertainty are mutually uncorrelated. In
Appendix B we show that approximating (A5) with

Qðx; tÞ + 2
Z t

0

Z

X
Ghv0ðx; tÞv0ðy; sÞ>i (rFC dyds (A6)

leads to a CDF equation that reproduces the mean hCðx; tÞi predicted with the corresponding MDE. Here
Gðx; y; t2sÞ is the mean-field approximation of the Green’s function G obtained by replacing the random
velocity v with its hvi in (A4). Finally, localizing (A6), i.e., assuming that the CDF gradient rFC varies slowly in
space and time and, hence, can be taken outside the integral, yields a dispersive closure
Qðx; tÞ + 2DmrFC , where the macrodispersion tensor Dmðx; tÞ is defined by (5). This expression for Q is
similar to the large-eddy-diffusivity closure developed by Boso et al. [2014] for advection-reaction equations.

Classic perturbation techniques do not allow one to obtain workable closure expressions for M. Inspired by
Villermaux and Falk [1994], we look for a closure for M in the form

M5Vðx; tÞðc2hCðx; tÞiÞ @FC

@c
; (A7)

and determine the constant of proportionality Vðx; tÞ by requiring the resulting CDF equation to yield the
same mean, hCðx; tÞi, and variance, r2

Cðx; tÞ, as the MDEs,

hCi5Cmax2
Z Cmax

Cmin

FCðc; x; tÞdc; r2
C5C2

max22
Z Cmax

Cmin

cFCðc; x; tÞdc2hCi2: (A8)

Substituting the macrodispersion closure Q52DmrFC into (A2), integrating over c 2 ½Cmin; Cmax%, and
accounting for the boundary conditions (6c) yields the MDE for the mean (B9) for any choice of Vðx; tÞ.
Hence, our closure (A7) automatically preserves the mean, without constraining V . The same procedure, but
applied to (A2) multiplied by c, leads to

@r2
C

@t
1hvi (rr2

C5r ( ðDeffrr2
CÞ12ðDeffrhCiÞ (rhCi12Vr2

C ; (A9)

after accounting for (B9) and setting Deff5D1Dm. Comparing (A9) with the MDE for the variance MDE (B10)
defines V as

V52
v
2

2
ðDrhCiÞ (rhCi

r2
C

; v5
2n
r2

C
; n5hDrC0ðx; tÞ (rC0ðx; tÞi: (A10)
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Substituting these approximations for Q and M into (A2) yields (4). Derivation of the closures Q and M, and
the resulting CDF equation (4), is the main result of our study.

Appendix B: MDEs and Macrodispersion Theory

When applied to (1), a standard procedure for derivation of MDEs [e.g., Morales-Casique et al., 2006] yields
unclosed equations for the mean and variance of C,

@hCi
@t

1hvi (rC5r ( ðDrhCiÞ2r ( hv0C0i; (B1)

@r2
C

@t
1hvi (rr2

C5r ( ðDrr2
CÞ22hDrC0 (rC0i2hv0C0i (rhCi2r ( hv0C02i: (B2)

They require closure expressions to compute the means of the fluctuation products. This can be achieved
with different approximation strategies, including recursive perturbation expansions [Tartakovsky and
Neuman, 1998] and nonlocal models [Morales-Casique et al., 2006]. We adopt a closure based on the ‘‘macro-
dispersion theory’’ [e.g., Morales-Casique et al., 2006, and the references therein] because it seems to provide
accurate results for a range of test problems [Jarman and Tartakovsky, 2013].

Derivation of this and the other closures mentioned above starts with an equation for concentration fluctu-
ations, obtained by subtracting (B1) from (1),

@C0

@t
1r ( ðvC0Þ5r ( ðDrC0Þ2r ( ðv0hCiÞ1r ( hv0C0i: (B3)

Its formal solution is written in terms of the random Green’s function Gðx; y; t2sÞ in (A4) as

C0ðx; tÞ52
Z t

0

Z

X
r ( ðv0hCiÞGdyds1

Z t

0

Z

X
Gr ( hv0C0idyds1a:i:t:; (B4)

where ‘‘a.i.t.’’ refers to the auxiliary integral terms representing the contribution of the initial and boundary
conditions, similar to the last two terms in (A3); contribution of these terms to the subsequent solutions is
exactly 0 because random fluctuations of the auxiliary functions C

0

0 and /0 are statistically independent
from the velocity fluctuations v0. Multiplying (B4) with v0ðx; tÞ and taking the ensemble average gives

hv0C0i52
Z t

0

Z

X

hv0ðx; tÞv0ðy; sÞ>GirhCidyds1
Z t

0

Z

X

hv0ðx; tÞGir ( hv0C0idyds: (B5)

The lowest-order approximation of this expression is given by

hv0C0i + 2
Z t

0

Z

X
hv0ðx; tÞv0ðy; sÞ>iGrhCidyds; (B6)

where G is the mean-field Green’s function defined in (A6). Localization, which is based on the assumption
that the mean concentration gradient rhCðy; sÞi varies slowly in space and time, yields the macrodisper-
sion closure

hv0C0i + 2Dmðx; tÞrhuðx; tÞi; (B7)

where Dm is the macrodispersion tensor defined in (5). (B7) can be used to close (B1) and (B2). Similar
manipulations with (B4) are used to compute approximate relations for r2

Cðx; tÞ5h C0ðx; tÞ½ %2i and
nðx; tÞ5hDrC0ðx; tÞ (rC0ðx; tÞi. Finally, we use the Kapoor and Kitanidis [1998] closure

hv0C02i + 2Dmrr2
C : (B8)

Substituting these closures into (B1) and (B2) gives a set of closed MDEs for the mean and variance of solute
concentration C,

@hCi
@t

1hvi (rC5r ( ðDeffrhCiÞ; (B9)
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@r2
C

@t
1hvi (rr2

C5r ( ðDeffrr2
CÞ2vr2

C12DmrhCi (rhCi; (B10)

where Deff & D1Dm is the effective macrodispersion coefficient, and v52n=r2
C is the ‘‘variance destruction

rate.’’ The latter can be either used as a fitting parameter [e.g., Kapoor and Kitanidis, 1998] or approximated
by using its definition and the closure relations for n and r2

C . In the simulations reported in this study, we
adopt the second approach.

Appendix C: Computational Examples

Solute transport in stratified flow has been used by Jarman and Tartakovsky [2013] as a computational
testbed for comparison and validation of several closure strategies for the MDEs. We use this setting to ana-
lyze the performance of our CDF equation, and extend it by including uncertainty (randomness) in the initial
condition.

C1. Stratified Flow With Steady Lognormal Velocity
For steady flow velocity v(z), the ADE (8) admits an analytical solution

Cexðx; z; tÞ5 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pð2Pe21t11Þ

q exp 2
x2x02vðzÞtð Þ2

4Pe21t12

 !

; (C1)

which establishes an explicit relation between solute concentration, Cðx; z; tÞ, the center of mass of the ini-
tial plume, x0, and the flow velocity v(z). This enables one to compute, by direct integration, the moments of
C from the PDFs of v(z) and x0, denoted by fv and f0, respectively. To be concrete, we take fv and f0 to be log-
normal and Gaussian, respectively, with constant means, hvi and hx0i, and variances, r2

v and r2
0. The numeri-

cal integration necessary to compute the moments of Cðx; z; tÞ is performed with the trapezoidal rule with
dv50:03. Assuming the lack of spatial correlation of v(z) along z, the macrodispersion coefficient in (5) is
computed analytically, Dm5r2

v t, as are all the other closure parameters in the MDEs (Appendix B).

C2. Stratified Flow With Time-Dependent Lognormal Distribution
In this setting, flow velocity is a time-dependent random field, v(z, t), uncorrelated in space and correlated
in time. The field Yð(; tÞ5ln v has an exponential covariance function with correlation time k, so that the
temporal covariance for the velocity at a given "z is

hv0ð"z ; tÞv0ð"z ; sÞi5r2
v5exp ½2lY 1r2

Y 1r2
Y exp ð2jt2sj=kÞ%2exp ð2lYÞ1r2

Y ; (C2)

where lY and r2
Y are the mean and variance of Y, respectively.

A (semi-)analytical solution of the ADE (8) is

Cexðx; z; tÞ5 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pð2Pe21t11Þ

q exp 2
1

4Pe21t11
x2x02

Z t

0
vðz; sÞds

! "2
" #

: (C3)

The solution for each realization of v(z, t) and x0, as well as the moments of C, are computed via numerical
integration.
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