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We derive deterministic cumulative distribution
function (CDF) equations that govern the evolution of
CDFs of state variables whose dynamics are described
by the first-order hyperbolic conservation laws with
uncertain coefficients that parametrize the advective
flux and reactive terms. The CDF equations are
subjected to uniquely specified boundary conditions
in the phase space, thus obviating one of the
major challenges encountered by more commonly
used probability density function equations. The
computational burden of solving CDF equations is
insensitive to the magnitude of the correlation lengths
of random input parameters. This is in contrast to both
Monte Carlo simulations (MCSs) and direct numerical
algorithms, whose computational cost increases as
correlation lengths of the input parameters decrease.
The CDF equations are, however, not exact because
they require a closure approximation. To verify
the accuracy and robustness of the large-eddy-
diffusivity closure, we conduct a set of numerical
experiments which compare the CDFs computed with
the CDF equations with those obtained via MCSs.
This comparison demonstrates that the CDF equations
remain accurate over a wide range of statistical
properties of the two input parameters, such as their
correlation lengths and variance of the coefficient that
parametrizes the advective flux.

1. Introduction
Hyperbolic conservation laws, also known as advection–
reaction equations (AREs), are ubiquitous in many
fields of science and engineering [1, §1.2]. They are
used to describe phenomena as diverse as migration of
reactive contaminants in the environment [2], immiscible

2014 The Author(s) Published by the Royal Society. All rights reserved.
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multi-phase flow in oil reservoirs [3], haemodynamics [4], river flows [5], car traffic [6], transport
of plasma blobs in tokamaks [7] and population dynamics [8]. These (typically nonlinear)
hyperbolic partial differential equations (PDEs) describe the evolution in the d-dimensional space
(x ∈ Rd) and time (t ∈ R+) of an N-dimensional set of state variables c(x, t) = {cn(x, t)}N

n=1, such that
c(x, t) : Rd × R+ → RN .

Let J(x, t, c) = {Jn(x, t, c)}N
n=1 (with each Jn : Rd × R+ × RN → Rd) and f(x, t, c) : Rd × R+ × RN →

RN denote the (linear or nonlinear) flux of the state variables c(x, t) and the rate of its
production/consumption, respectively. Then hyperbolic conservation laws for the state variables
c(x, t) take the form of an ARE

∂c
∂t

+ ∇xJ(x, t, c) = f(x, t, c). (1.1)

The ubiquity of applications renders such AREs relevant in their own right. They are also
important as approximate representations of transport phenomena in the limit of negligible
diffusion, e.g. advective transport of conservative [9,10] and reactive [11, §2.6, and references
therein] solutes in porous media, and a logistic population growth [8,12].

Equally ubiquitous is uncertainty about spatial variability of system parameters entering
AREs (1.1). In a typical application, such parametric uncertainty arises from multi-scale
heterogeneity of ambient environments, data scarcity and measurement errors. Examples of the
parameters whose spatial distributions are notoriously uncertain include the permeability of a
(natural) porous medium [3], the friction coefficient of surface topography affecting overland
flow [13] and reaction rates of (bio)chemical reactions [14]. The first two examples affect the flux
J, while the last one parametrizes the source term f.

A standard approach to quantification of parametric uncertainty is to treat the under-sampled
parameters as random fields, which renders the governing equations stochastic, even though
an underlying physical phenomenon is deterministic (e.g. [15–17]). Monte Carlo simulations
(MCSs) are often used to solve PDEs with random coefficients. MCSs of this type consist of
generating multiple realizations of system parameters, solving the corresponding deterministic
PDEs for each of these realizations, and post-processing the resulting solutions to compute the
ensemble moments (typically the mean and variance) of the system states. While conceptually
straightforward and ‘exact’, MCSs have a number of potential drawbacks. Their slow convergence
often makes MCSs computationally prohibitive, especially when the number of uncertain
parameters is large and a phenomenon, e.g. advection–reaction transport described by (1.1), is
highly nonlinear. Furthermore, the computational burden of MCSs increases as the correlation
length of input parameters decreases. That is because an accurate representation of the random
parameter fields requires at least five nodes (elements) per correlation length (e.g. [18,19] and
references therein).

Convergence of MCSs can be improved by employing various flavours of quasi-random
sampling of a parameter space, including stratified and Latin hypercube sampling. Other
numerical approaches that often outperform direct MCSs include polynomial chaos expansions
and stochastic collocation on sparse grids. Under certain conditions, especially when random
system parameters exhibit short correlation lengths, such approaches can be computationally
more demanding than MCSs (e.g. [20], [21, §3.3.3, and references therein]). Application of these
numerical techniques to hyperbolic PDEs (1.1) is especially challenging owing to degradation of
their convergence rate with time [22–24]. Additionally, like MCSs such approaches provide little
or no physical insight into the computed moments of system states.

By deriving deterministic PDEs for ensemble moments (typically, mean and variance) of
system states, the moment differential equations (MDEs) approach provides a conceptual
alternative to the numerical methods described above. In general, MDEs require a closure
approximation, such as perturbation expansions in the (small) variance of system parameters
(e.g. [25, and references therein]) or Gaussianity assumptions [26]. These and other closures limit
the range of applicability of such analyses. For nonlinear hyperbolic PDEs (1.1), perturbation-
based MDE solutions were shown either to exhibit non-physical behaviour [3] or to diverge at
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finite times [27]. Even when accurate, MDEs yield only the first few statistical moments of system
states rather than their full probability density functions (PDFs).

PDF methods overcome the latter shortcoming as they result in deterministic differential
equations for PDFs of system states. They have an added benefit of allowing one to avoid
linearization of nonlinear terms in equations similar to (1.1). PDF methods were originally
developed to model turbulent flows [28], where it is common to assume that flow domains are
infinite, and random parameters (e.g. flow velocity) are statistically homogeneous (stationary)
and Gaussian. These (overly restrictive) assumptions were relaxed to relate uncertainty in reaction
rate coefficients to PDFs of concentration c(x, t), which is governed by an ARE with a linear and
deterministic flux J [2,29].

The lack of uniquely defined boundary conditions in the probability space remains a
major drawback of PDF methods, which would have to be addressed if they were to be
used for uncertainty quantification. In this analysis, we resolve this issue by deriving a
deterministic equation satisfied by a cumulative distribution function (CDF) of the state variable
c(x, t). Specification of boundary conditions for the resulting CDF equation is unique and
straightforward. Another contribution of our analysis is to account for parametric uncertainty
(randomness) in both the flux J, which is assumed to be linear in the state variable c, and the
reaction term f(x, t, c).

Section 2 contains a probabilistic formulation of advection–reaction PDEs with uncertain
coefficients. Corresponding raw (stochastic) and averaged (deterministic) CDF equations are
derived in §3. Numerical algorithms for solving these equations are presented in §4. In §5,
we analyse the accuracy of the CDF equations based on a large-eddy-diffusivity (LED) closure
approximation by comparing their solutions with those computed in a Monte Carlo framework.

2. Problem formulation
Consider a hyperbolic conservation law (1.1) in which a state variable c(x, t) : Rd × R+ → R+ is
advected by a linear flux J(x, t, c) ≡ v(x)c(x, t),

∂c
∂t

+ ∇x · (vc) = f (x, t, c), x ∈ D ⊂ Rd. (2.1)

Here v(x) : Rd → Rd is assumed, without the loss of generality, to be divergence free (∇ · v =
0); ARE (2.1) is defined on domain D; and the source term f (x, t, c) is parametrized with M
time-invariant parameters κ(x) ≡ {κ1(x), . . . , κM(x)} : Rd → RM. ARE (2.1) is subjected to an initial
condition

c(x, 0) = C0(x), x ∈ D, (2.2)

where C0(x) : Rd → R+ denotes the initial distribution (at time t = 0) of the state variable c(x, t).
If the domain D is bounded, (2.1) is supplemented with boundary conditions for c(x, t) and/or
its normal gradient along the boundary x ∈ ∂D. To be concrete, we consider the nonlinear source
term f (x, t, c) in the form

f (x, t, c) = κ(x)fα(c), κ(x) : Rd → R+, fα(c) : R+ → R. (2.3)

Examples of such nonlinear terms include fα = c(Ceq − c) and fα = α(Cα
eq − cα) encountered in

models of population dynamics [8] and transport in porous media [27], respectively. The latter
case, which we use as a computational example, represents an effective (Darcy-scale) description
of a heterogeneous reaction that causes solute concentration c(x, t) to change from its initial value
C0 to equilibrium concentration Ceq. In this description, α denotes the solute’s stoichiometric
coefficient and the reaction rate κ is determined by both a kinetic rate constant and a specific
reactive surface. The resulting model (2.1)–(2.3) is an approximation in that it is applicable
to kinetically controlled reactive processes in which both diffusion and local dispersion are
negligible [11, §2.6, and references therein].

In a typical application, the spatially varying coefficients v(x) and κ(x) are sampled at
a few locations throughout their domain of definition D and their measurements might be
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corrupted by experimental and/or interpretive errors. Additionally, the initial distribution C0(x)
and boundary functions are often uncertain. Uncertainty about parameter values at points x ∈ D
where measurements are not available can be quantified by treating these parameters as random
fields, whose ensemble statistics are inferred from available data. Thus, the uncertain functions
v(x), κ(x) and C0(x) are replaced with corresponding (possibly cross-correlated) random fields
v(x, ωv), κ(x, ωκ ) and C0(x, ωc). Here, ωa ∈ Ωa (a = v, κ , c) denotes a random realization drawn from
a complete probability space (Ωa,Aa,Pa), whose event space Ωa generates its σ -algebra Aa ⊂ 2Ωa

and is characterized by a probability measure Pa.
The ensemble means of the input parameter fields, ⟨v⟩ ≡ E[v] and ⟨κ⟩ ≡ E[κ], serve to non-

dimensionalize (2.1)–(2.3). Let L and V denote a characteristic length (e.g. a typical size of
the domain D) and a characteristic velocity (e.g. the magnitude of a spatially averaged ⟨v⟩),
respectively. Then non-dimensional independent variables and input parameters, including the
Damköhler number Da (the ratio of the advection and reaction time scales), are defined as

x̂ = x
L

, t̂ = tV
L

, v̂ = v
V

, κ̂ = κ

⟨κ⟩
, Ĉ0 = C0

Ceq
and Da =

⟨κ⟩LCα−1
eq

V
. (2.4)

The non-dimensional state variable ĉ = c/Ceq satisfies a rescaled ARE

∂ ĉ
∂ t̂

+ ∇x̂ · (v̂ĉ) = f̂ (x̂, t̂, ĉ), f̂ = Da κ̂ f̂ α , f̂ α = α(1 − ĉα), x̂ ∈ D̂ ⊂ Rd, (2.5)

subjected to the non-dimensionalized initial condition

ĉ(x̂, 0) = Ĉ0(x̂), x̂ ∈ D̂ (2.6)

and the appropriate boundary condition on ∂D̂. In the following, we drop the hats identifying
dimensionless quantities.

A solution of (2.5) and (2.6) is given in terms of a PDF or, equivalently, a CDF of the
random state variable c(x, t, ω). Let p(C; x, t) : R+ × Rd × R+ → R+ and F(C; x, t) : R+ × Rd × R+ →
R+ denote, respectively, a single-point PDF and CDF of the state variable c at a point (x, t). Our
goal is to derive a deterministic boundary value problem (BVP) for the CDF F(C; x, t). This is done
for a general form of the source term f (x, t, c), while the computational examples are presented for
f (x, t, c) = Da ακ(x, ω)(1 − ĉα).

3. Cumulative distribution function method
Let H(·) : R → R denote the Heaviside step function, and consider a function Π (c, C; x, t) : R+ ×
R+ × Rd × R+ → R,

Π (c, C; x, t) ≡H[c(x, t) − C]. (3.1)

The ensemble mean of Π over all possible realizations of c at a point (x, t) is the single-point CDF,

⟨Π (c, C; x, t)⟩ ≡
∫∞

0
H(C − C)p(C; x, t) dC = 1 − F(C; x, t). (3.2)

An equation for F(C; x, t) is derived by noting that

∂Π

∂t
= ∂Π

∂c
∂c
∂t

= −∂Π

∂C
∂c
∂t

, ∇ · (vΠ ) = ∂vΠ

∂c
· ∇c = −∂Π

∂C
v · ∇c (3.3a)

and

f (·, ·, c)
∂Π

∂C
= −f (·, ·, c)δ(c − C) ≡ −f (·, ·, C)δ(c − C) = f (·, ·, C)

∂Π

∂C
. (3.3b)

Multiplying (2.5) with ∂Π/∂C and accounting for (3.3) yields

∂Π

∂t
+ ∇ · (vΠ ) = −f (C)

∂Π

∂C
. (3.4)
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Let us introduce a four-dimensional space x̃ = (x1, x2, x3, x4 ≡ C)T in which the gradient and
‘velocity’ are defined as

∇̃ ≡
(

∂

∂x1
,

∂

∂x2
,

∂

∂x3
,

∂

∂x4
≡ ∂

∂C

)T
and ṽ = (v1, v2, v3, v4 ≡ f )T. (3.5)

Then (3.4) can be written in the form of an advection equation

∂Π

∂t
= −ṽ · ∇̃Π and x̃ ∈ D̃ ≡ D × (C0, 1), (3.6)

which describes the advection of Π in the random velocity field ṽ. Two comments regarding the
nature of this advection equation are in order. First, the velocity field ṽ is no longer divergence
free; instead, ∇̃ · ṽ = Da dfκ/dx4. Second, Π (c, x4; x, t) is defined on the bounded segment C0 ≤
c(x, t; ω) ≤ 1 and C0 ≤ x4 ≤ 1. As written, C0 < 1; the case of C0 > 1 can be treated identically.

Stochastic averaging of advective transport equations with random velocity has been the
subject of numerous studies (e.g. [9,10] and references therein). Most approaches start by
employing the Reynolds decomposition, A= ⟨A⟩ + A′, to represent the random quantities in (3.6)
as the sum of their ensemble means ⟨A⟩ and zero-mean fluctuations about the mean A′. Then,
taking the ensemble average of (3.6) yields an unclosed CDF equation

∂F
∂t

= −⟨ṽ⟩ · ∇̃F + ⟨ṽ′ · ∇̃Π ′⟩. (3.7)

This equation contains the unknown cross-correlation term Q = ⟨x̃′ · ∇̃Π ′⟩ and, hence, requires
a closure approximation. A phenomenological closure described below gives rise to a diffusive
term that is referred to as macrodispersion [29].

(a) Large-eddy-diffusivity approximation
Following [9] and others, we demonstrate in appendix A that the cross-correlation Q(ṽ, t) satisfies
exactly a non-local (unclosed) equation

Q(x̃, t) =
∫ t

0

∫

D̃
∇̃F(ỹ, τ ) · ⟨ṽ′(ỹ)[ṽ′(x̃) · ∇̃x̃G(x̃, ỹ, t − τ )]⟩ dỹ dτ

+
∫ t

0

∫

D̃
⟨ṽ′(x̃) · ∇̃x̃G(x̃, ỹ, t − τ )⟩Q(ỹ, τ ) dỹ dτ . (3.8)

Here, G(x̃, ỹ, t − τ ) is the random Green’s function for (3.6) defined as a solution of

∂G
∂τ

+ ∇̃ỹ · (ṽG) = −δ(x̃ − ỹ)δ(t − τ ), (3.9)

subjected to the homogeneous initial and boundary conditions. Evaluating the kernel and source
term in integral equation (3.8) requires a closure. Here, we employ the so-called LED closure,
which replaces the random Green’s function G with its ‘mean-field approximation’ G. The latter is
given by a solution of (3.9) with the average velocity ⟨ṽ⟩ used in place of its random counterpart ṽ.
Assuming that the CDF gradient ∇̃F(ỹ, t) varies slowly in space and time, we obtain a closed-form
expression for the cross-correlation term Q (appendix A),

Q(x̃, t) ≈ ∂

∂ x̃i

[
∂F(x̃)
∂ x̃j

∫ t

0

∫

D̃
G⟨ṽ′

j(ỹ)ṽ′
i(x̃)⟩ dỹ dτ

]

− ∂F(x̃)
∂ x̃j

∫ t

0

∫

D̃
G
〈
ṽ′

j(ỹ)
∂ ṽ′

i(x̃)
∂ x̃i

〉
dỹ dτ , (3.10)

where the Einstein notation is used to indicate summation over repeated indices.

 

http://rspa.royalsocietypublishing.org/
http://rspa.royalsocietypublishing.org/


6

rspa.royalsocietypublishing.org
Proc.R.Soc.A470:20140189

...................................................

Substituting (3.10) into (3.7) yields a closed CDF equation,

∂F
∂t

= −ũi
∂F
∂ x̃i

+ ∂

∂ x̃i

(

D̃ij
∂F
∂ x̃j

)

, i, j = 1, . . . , d + 1 (3.11)

in which the components of the macrodispersion tensor D̃ and drift velocity ũ are given by

D̃ij(x̃, t) ≈
∫ t

0

∫

D̃
G(x̃, ỹ, t − τ )⟨ṽ′

i(x̃)ṽ′
j(ỹ)⟩ dỹ dτ (3.12a)

and

ũi(x̃, t) ≈ ⟨ṽi(x̃)⟩ + Da
∫ t

0

∫

D̃
G(x̃, ỹ, t − τ )⟨ṽ′

i(ỹ)κ ′(x)⟩dfα(x4)
dx4

dỹ dτ . (3.12b)

Note that the coefficients D̃ and ũ are expressed in terms of (cross-)correlations of the input
parameters and, hence, are computable. If the input parameters v(x, ω) and κ(x, ω) are mutually
uncorrelated, the covariance tensor simplifies to

⟨ṽ′
i(x̃)ṽ′

j(ỹ)⟩ = ⟨v′
i(x)v′

j(y)⟩ ≡ Cvij (x, y), i, j = 1, 2, 3 (3.13a)

and

⟨ṽ′
4(x̃)ṽ′

4(ỹ)⟩ = Da2 Cκ (x, y)fα(x4)fα(y4), (3.13b)

where Cκ (x, y) represents the two-point covariance of the random coefficient κ(x, ω).

(b) Auxiliary conditions for the cumulative distribution function equation
The initial condition for F(x̃, t),

F(C; x, t = 0) = Fin(C; x), (3.14)

depends on the degree of uncertainty about C0(x) in (2.6). If C0(x) is known with certainty, then

F(C; x, 0) = Fin(C; x) =
∫C

C0

δ[C − C0(x)] dC =H[C − C0(x)]. (3.15)

If C0(x) is uncertain, then Fin(C; x) is given by the prescribed CDF of C0(x, ω).
Boundary conditions for F(C; x, t) along the boundary ∂D of the physical domain D are given

by CDFs of the boundary conditions for c(x, t; ω) at x ∈ ∂D. Boundary conditions for F(C; x, t) at
C = C0 and C = 1 are uniquely defined by the definition of a CDF,

F(C0; x, t) = 0 and F(1; x, t) = 1. (3.16)

This is in contrast to PDF equations (e.g. [29]) for which the specification of boundary conditions
at C = C0 and C = 1 is more ambiguous, except in a few special cases. For example, one can
postulate that the PDF p(C; x, t) = ∂F(C; x, t)/∂C has zero gradient at the boundary surfaces C = C0
and C = 1, i.e. prescribe the boundary condition ∂p(C; x, t)/∂C = 0 at C = C0 and 1 for all (x, t).
Alternatively, one can extend the domain of definition of the random state variable c(x, t; ω) into
an unphysical range, e.g. −∞ < c < +∞, and specify the boundary conditions for the PDF as
p(C → ±∞; x, t) = 0.

4. Computational examples
In order to quantify the accuracy and robustness of CDF equation (3.11), i.e. to assess the validity
of the LED closure, we compare numerical solutions of (3.11) with the CDF computed via high-
resolution Monte Carlo numerical simulations of (3.6).
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(a) Test cases
Consider a one-dimensional version of (2.5) with fα = α(1 − xα

4 ) defined on the semi-infinite
domain D = R+. We treat the uncertain coefficients v(x) and κ(x) as mutually uncorrelated multi-
variate lognormal random fields v(x, ω) and κ(x, ω), with ⟨v⟩ = 1 and exponential covariance
functions Cv(x, y) and Cκ (x, y), respectively. The one-dimensional version of (2.5) is subjected to
the initial and boundary conditions

c(x, 0) = 0, c(x = 0, t) = 0 and c(x → ∞, t) = 1. (4.1)

We analyse both linear (α = 1) and nonlinear (α = 2) sources fα .

(b) Cumulative distribution function equations
For the problem under consideration, CDF equation (3.11) reduces to

∂F
∂t

= −∂F
∂x

− u4
∂F
∂x4

+ ∂

∂x1

(
D11

∂F
∂x1

)
+ ∂

∂x4

(
D44

∂F
∂x4

)
(4.2)

with

u4(x̃, t) = Da fα(x4) + Da2 dfα(x4)
dx4

∫ t

0

∫

D̃
Cκ (x, y)fα(y4)G(x̃, ỹ, T) dỹ dT, (4.3a)

D11(x̃, t) =
∫ t

0

∫

D̃
G(x̃, ỹ, T)Cv(x, x − T) dỹ dT (4.3b)

and

D44(x̃, t) = Da2fα(x4)
∫ t

0

∫

D̃
G(x̃, ỹ, T)Cκ (x, y)fα(y4) dỹ dT. (4.3c)

CDF equation (4.2) is subjected to the initial condition

F(x̃, t = 0) = 1, x̃ ∈ D̃, (4.4)

and the boundary conditions

F(x4; x = 0, t) = 1 and F(x4; x → ∞, t) = 0, x4 ∈ (0, 1), t > 0 (4.5a)

and

F(x4 = 0; x, t) = 0, F(x4 = 1; x, t) = 1, x ∈ D, t > 0. (4.5b)

For operational reasons, the boundary condition at x → ∞ is replaced by ∂F/∂x = 0.
The BVP (4.2)–(4.5) is solved with an explicit higher order finite difference method for

hyperbolic equations with variable coefficients [30]; the diffusive operator is handled with a
semi-implicit Crank–Nicolson algorithm.

(c) Monte Carlo simulations
No approximations have been made to derive stochastic equation (3.6), which governs the
dynamics of Π . Consequently, we use this equation, rather than original equation (2.5), in our
MCSs. This is advantageous for two reasons. First, (3.6) is always linear even if (2.5) is highly
nonlinear. Second, the ensemble mean of the solution to (3.6) yields the full CDF of the solution
to (2.5), ⟨Π⟩ = 1 − F.
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For the problem under consideration, we perform MCSs on the two-dimensional version
of (3.6),

∂Π

∂t
+ v(x, ω)

∂Π

∂x
+ Da ακ(x, ω)(1 − xα

4 )
∂Π

∂x4
= 0, (4.6)

subjected to the initial and boundary conditions

Π (x, x4, t = 0) = 0, Π (x = 0, x4, t) = 0 and Π (x, x4 = 0, t) = 1. (4.7)

To solve this hyperbolic BVP with discontinuous initial conditions by means of MCSs, we
generate multiple realizations of characteristic lines along which the solution is determined
semi-analytically. Then, the single-realization results are averaged to compute F = 1 − ⟨Π⟩. A
set of Monte Carlo realizations are characterized by a probability distribution of the uncertain
parameters κ(x) and v(x); each realization represents a sample with given multi-variate statistics.
To properly capture the spatial variability of these fields, we construct a mesh which consists of
four or five equally spaced nodes per correlation length [18].

As before, we use the notation x̃ = (x, x4)⊤ and ṽ = [v, Da ακ(x, ω)(1 − xα
4 )]⊤. Then equations of

characteristics for (4.6), dx̃/dt = ṽ, take the form

dx
dt

= v(x), x(t = 0) = ξ and
dx4

dt
= Da ακ(x)(1 − xα

4 ), x4(t = 0) = η. (4.8)

Along these characteristics,
dΠ

dt
= 0, Π (t = 0) = 0. (4.9)

The characteristic lines propagate boundary or initial conditions in the three-dimensional semi-
infinite space D̃ × R+. Their random realizations correspond to that of the coefficients κ(x; ω) and
v(x; ω).

To facilitate numerical integration, we rewrite (4.8) as

t =
∫ x

0

ds
v(s; ω)

−
∫ ξ

0

ds
v(s; ω)

,
dx4

1 − xα
4

= Da α
κ(x; ω)
v(x; ω)

dx, (4.10a)

subjected to
x4(t = 0) = x4(x = ξ ) = η. (4.10b)

Along the characteristics that cross the x = 0 boundary, (4.9) takes the form

dΠ

dt
= 0, Π (x = 0) = 0, (4.11)

while the characteristics crossing the x4 = 0 boundary give rise to

dΠ

dt
= 0, Π (x4 = 0) = 1. (4.12)

Equation (4.9) has the solution Π (x, x4, t) = Π (t = 0) = 0 whenever (ξ , η) ∈ D̃. Otherwise, if x4(x =
0) = η ∈ (0, 1), then Π (x, x4, t) = Π (x4 = 0) in (4.12); else, the solution is Π (x, x4, t) = Π (x = 0)
in (4.11).

Finally, F = 1 − ⟨Π⟩ where the ensemble average ⟨Π⟩ is obtained by averaging over an
adequate number of realizations Nr. In the present setting, the convergence was achieved with
Nr = 10 000 for all parameter sets.

5. Results and discussion
In order to quantify the impact of the employed assumptions and the predictive capability
of (3.11), we compare the CDFs F(C; x, t) computed by solving the deterministic CDF equation
and via MCSs. The comparison is performed for a number of different scenarios, which include
both linear (α = 1) and nonlinear (α = 2) sources fα , and different correlation models for the
random coefficients v(x; ω) and κ(x; ω). The effective parameters for these different scenarios are
summarized in appendix C.
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Figure 1. CDFprofiles at the space–timepoint (x, t)= (25.0, 5.0) computedwith the LED closure andMCSs for the linear source
(α = 1), deterministic v(x)≡ 1 and uncertain κ (x). The latter is modelled as an exponentially correlated lognormal random
field with varianceσ 2

κ = 0.1, correlation lengthλκ = 1.0, and themean that corresponds to the Damköhler number Da= 0.1
or 0.75.

All results are presented as profiles of the CDF F(C; x, t) over the whole range of C ∈ [0, 1] at a
specific space–time location (x, t). The theoretical considerations discussed above dictate that, for
deterministic initial (C0) and equilibrium (Ceq = 1) conditions, F(C; x, t = 0) =H(C − C0) =H(0)
and F(C; x, t → ∞) =H(C − 1) =H(1). The rate of transition between these two deterministic
states depends on the space–time location (x, t) and the degree of uncertainty in the input
parameters v(x) and κ(x). Close to the initial and equilibrium states, the profiles of F(C; x, t)
are expected to be close to the Heaviside function, reflecting relatively low levels of predictive
uncertainty. These profiles are expected to be smoother in intermediate regimes, reflecting
increased degrees of predictive uncertainty.

(a) Sources of uncertainty: κ (x)
We start by considering deterministic v(x) ≡ 1 and treating κ(x) as the sole source of uncertainty.
If the random parameter κ(x; ω) is spatially uncorrelated (white noise), then the system state
PDF, p(C; x, t) = dF(C; x, t)/dC, satisfies exactly the Fokker–Planck equation in [2] and the CDF
equation (3.11) or (4.2) are exact. In other words, the cross-correlation term Q(x̃, t) defined by (3.8)
does not require any closure approximation, yielding exactly the macrodispersion tensor D̃ and
drift velocity ũ in (3.12) or (4.3).

If the random parameter κ(x; ω) exhibits a spatial correlation, then the CDF equations (3.11)
or (4.2) are based on the LED closure (3.12) or (4.5). Figure 1 demonstrates the accuracy of this
approximation for κ(x; ω) with the exponential covariance function Cκ (|x − y|) = σ 2

κ exp(−|x −
y|/λκ ) with σ 2

κ = 0.1 and λκ = 1.0. The semi-analytical MCSs serve as an ‘exact’ solution in this
comparison. Figure 1 also reveals that the CDF F(C; x, t) is sensitive to the Damköhler number Da.
The predictive uncertainty is higher for slow reactions (Da = 0.1) than for faster ones (Da = 0.75),
as evidenced by the widths of the transition zone between F = 0 and F = 1. Higher values of Da
not only increase the predictive uncertainty. They also accelerate the transition of the system
towards its equilibrium state F =H(C − 1), resulting in the sharper CDF profiles shifted to the
right (figure 1).

(b) Sources of uncertainty: κ (x) and v(x)
In this section, we analyse the combined effect of uncertainty in the two input parameters, v(x) and
κ(x), on uncertainty in predictions of the state variable c(x, t). The two uncertain parameters a
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Figure 2. CDF profiles at the space–time point (x, t)= (10.0, 5.0) computed with the LED closure and MCSs for the linear
source (α = 1) and uncertain v(x) and κ (x). The two parameters are modelled as exponentially correlated lognormal random
fields with variancesσ 2

v = 0.1 or 4.0 andσ 2
κ = 0.1, and correlation lengthsλv = λκ = 1.0. The Damköhler number is set to

Da= 0.25.

modelled as mutually uncorrelated lognormal random fields, each of which is characterized by an
exponential correlation function. Comparison of figures 2 and 3 reveals the relative importance of
these two sources of uncertainty, as quantified by their respective variances σ 2

v and σ 2
κ . For a fixed

value of σ 2
κ , the predictive uncertainty captured by the CDF F(C; x, t) is relatively insensitive to

the magnitude of σ 2
v (figure 2), with the fourfold increase in σ 2

v translating into a slight increase in
predictive uncertainty (the width of the transition zone between F = 0 and 1). Note that F(C; x, t)
displays an asymmetric behaviour with respect to the median, which indicates that the state
variable c(x, t; ω) is non-Gaussian. This behaviour stems from the dependence of the effective
diffusion coefficient D44 in (4.2) on the phase–space coordinate x4 ≡ C. For the example under
consideration, the non-monotonic dependence of D44 on x4 is given explicitly by (C 5b). That
gives rise to longer tails of the CDF profiles for small C, indicating a non-negligible probability of
encountering small values of C owing to the presence of low-κ regions. The agreement between
the CDFs computed with the LED closure and MCSs demonstrates the accuracy and robustness
of the CDF equation (4.2) with respect to σ 2

v . Figure 2 also demonstrates that the predictive
uncertainty (the CDF F) is relatively insensitive to the level of uncertainty in the input parameter
v(x), as quantified by its variance σ 2

v .
The predictive uncertainty is more sensitive to the level of uncertainty in the other input

parameter, κ(x) (figure 3). The magnitude of its variance, σ 2
κ , affects not only the CDF profile

F(C; x, t) but also the accuracy of the LED approximation that underpins CDF equation (4.2). This
approximation remains accurate for σ 2

κ up to 0.1. As σ 2
κ increases, the LED closure underestimates

the predictive uncertainty, i.e. leads to the CDF profiles that are sharper than their counterparts
computed with the MCSs. These MCSs also demonstrate that the asymmetry of the CDF profiles,
i.e. the non-Gaussianity of the state variable c(x, t; ω), increases with the level of uncertainty in the
input parameter κ(x) (as quantified by its variance σ 2

κ ).
Another measure of uncertainty about the input parameter κ(x) is λκ , the correlation length of

the random field κ(x; ω). For the perfectly correlated (random constant) parameter v(ω), figure 4
shows both that predictive uncertainty (the width of the CDF profiles F) increases with λκ and
that the accuracy of the LED approximation is relatively insensitive to the magnitude of λκ . It also
demonstrates that the degree of non-Gaussianity of the state variable c(x, t; ω) increases with λκ .

It is worthwhile emphasizing here that the computational burden of solving the CDF
BVP (4.2)–(4.5) is insensitive to the magnitude of λκ . This is in contrast to both MCSs and
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Figure 3. CDFprofiles at the space–timepoint (x, t)= (10.0, 5.0) computedwith the LED closure andMCSs for the linear source
(α = 1) and uncertain v(x) and κ (x). The two parameters are modelled as exponentially correlated lognormal random fields
with variances σ 2

v = 1.0 and σ 2
κ = 0.01, 0.05, 0.1 or 0.5, and correlation lengths λv = λκ = 1.0. The Damköhler number is

set to Da= 0.25.
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Figure 4. CDF profiles at the space–time point (x, t)= (10.0, 5.0) computed with the LED closure and MCSs for the linear
source (α = 1), perfectly correlated (random constant) v and exponentially correlated κ (x) with λκ = 0.1, 1.0 and 5.0. The
twoparametershave lognormaldistributionswith variancesσ 2

v = 1.0andσ 2
κ = 0.1. TheDamköhler number is set toDa= 0.1.

direct numerical algorithms (e.g. polynomial chaos expansions or stochastic collocation methods),
whose computational cost increases as correlation lengths of the input parameters decrease.
The cost of the former increases because at least five nodes per correlation length are required
to accurately discretize a random input parameter. The latter methods rely on finite-term
representations of random fields, e.g. Karhunen–Loève expansions, whose convergence rate
decreases as the correlation lengths of the random fields become smaller.

(c) Effects of nonlinearity on predictive uncertainty
In the previous section, we analysed the impact of uncertain parameters v(x) and κ(x) on the
predictive uncertainty of the linear conservation law expressed by the one-dimensional version
of (2.5) and (2.6) with α = 1. Here, we explore the effects of nonlinearity of the governing
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Figure 5. CDF profiles at the space–time point (x, t)= (10.0, 5.0) computed with the LED closure and MCSs for (a) the linear
(α = 1) and (b) nonlinear (α = 2) sources, perfectly correlated (random constant) v and uncorrelated κ (x) with λκ = 1.0.
The two parameters have lognormal distributions with variancesσ 2

v = 1.0 andσ 2
κ = 0.05. (a)α = 1, (b)α = 2.

equation by setting α = 2 in (2.5). The simulations reported below correspond to the perfectly
correlated (random constant) parameter v(ω) and uncorrelated (white noise) parameter κ(x; ω).
Both parameters are lognormal, with respective variances σ 2

v = 1.0 and σ 2
κ = 0.1.

Figure 5 exhibits the effect of the Damköhler number Da on predictive uncertainty (the CDF
F) of the linear (α = 1) and nonlinear (α = 2) systems. In both cases, small Damköhler numbers
(Da = 10−3) yield the sharp CDF profiles F(C) centred around small C’s, which indicates that
the dimensionless state variable c(x = 10.0, t = 5.0) is close to its deterministic initial value C0 = 0.
At the same space–time point (x, t) = (10.0, 5.0), large Damköhler numbers (Da = 0.5) give rise to
the state variable c that approaches its deterministic equilibrium C = 1, resulting in the sharp
CDF profiles centred around large C’s. For intermediate Da, the state variable c(x, t) is far
from its deterministic bounds, giving rise to higher predictive uncertainty (wider CDF profiles).
Comparison of figure 5a,b reveals that the nonlinearity accelerates the transition to equilibrium,
shifting the CDF profiles to the right. The nonlinearity also increases the asymmetry (non-
Gaussianity) of F(C), enhancing the skewness of the CDF profiles towards low values of C. These
long tails are reduced faster with time in the nonlinear than in the linear case (not shown here), as
a result of a faster transition towards equilibrium. Another effect of the nonlinearity is to reduce
the accuracy of the LED closure at intermediate values of the Damköhler number (Da = 0.1
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6. Summary and conclusion
We derived deterministic CDF equations that govern the evolution of CDFs of state variables
whose dynamics are described by the first-order hyperbolic conservation laws (AREs) with
uncertain input parameters. Uncertainty (randomness) in two input parameters, which
parametrize the (linear) advective flux and (nonlinear) reactive terms in hyperbolic conservation
laws, was considered. The CDF equations possess the following advantages over other statistical
and stochastic approaches to uncertainty quantification.

(i) CDF equations are subjected to uniquely specified boundary conditions in the phase
space: if a random state variable c(x, t; ω) takes values on an interval [C0, Ceq], its CDF
F(C; x, t) satisfies the conditions F(C0; x, t) = 0 and F(Ceq; x, t) = 1. This is in contrast to PDF
methods (e.g. [29]), which generally defy unique specification of boundary conditions for
the PDF p(C; x, t) at C = C0 and C = 1.

(ii) The computational burden of solving CDF equations is insensitive to the magnitude
of the correlation lengths of random input parameters. This is in contrast to both
MCSs and direct numerical algorithms (e.g. polynomial chaos expansions or stochastic
collocation methods), whose computational cost increases as correlation lengths of the
input parameters decrease. The cost of the former increases because at least five nodes
per correlation length are required to accurately discretize a random input parameter.
The latter methods rely on finite-term representations of random fields, e.g. Karhunen–
Loève expansions, whose convergence rate decreases as their correlation lengths become
smaller.

The LED closure, which underpins the presented CDF method, consists of two
approximations: a perturbation expansion of the third ensemble moments and the assumption
that ∇F varies slowly in space and time. To verify the accuracy and robustness of the LED closure,
we conducted a set of numerical experiments which compared the CDFs computed with the
CDF equations with those obtained via MCSs. This comparison leads to the following major
conclusions.

(i) The CDF equations remain accurate over a wide range of statistical properties of the two
input parameters, such as their correlation lengths and variance of the coefficient that
parametrizes the advective flux.

(ii) The parameter that affects the performance of the LED closure is σ 2
κ , variance of the

coefficient that parametrizes the (nonlinear) source term. The CDF equations remain
accurate for σ 2

κ ≤ 0.1.
(iii) The order of the reaction does not seem to affect the predictive capabilities of the LED

approach, with a good match for a wide range of Da since early times.

Funding statement. This work was supported in part by the Computational Mathematics Program of the Air
Force Office of Scientific Research and by the National Science Foundation award EAR-1246315.

Appendix A. Large-eddy-diffusivity closure
The equation for the random fluctuations Π ′ = Π − ⟨Π⟩ can be obtained by subtracting the
equation for ⟨Π⟩ (3.7) from the equation for Π (3.4), both written in terms of space–time
coordinates ỹ and τ , to obtain

∂Π ′

∂τ
+ ṽ(ỹ) · ∇̃ỹΠ ′(ỹ, τ ) = −ṽ′(ỹ) · ∇̃ỹ⟨Π⟩ + ⟨ṽ′(ỹ) · ∇̃ỹΠ ′(ỹ, τ )⟩. (A 1)

Multiplying (A 1) with the random Green’s function G(x̃, ỹ, t − τ ) defined by (3.9) and the
corresponding homogeneous initial and boundary conditions and integrating the left-hand side
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of the resulting equation in space and time leads to

Π ′ =
∫

D̃
Π ′

0G(x̃, ỹ, t) dỹ −
∫ t

0

∫

Γ̃
ṽnΠ ′G ds̃ dτ −

∫ t

0

∫

D̃
(ṽ′ · ∇̃⟨Π⟩ − Q)G dỹ dτ . (A 2)

Here, Π ′
0(ỹ) = Π ′(ỹ, τ = 0), Q = ⟨ṽ′ · ∇̃Π ′⟩, ṽn = ñ · ṽ and ñ is the outward normal vector to the

boundary Γ̃ ≡ ∂D̃ of the hyper-domain D̃ ≡ D × (C0, 1).
Applying the differential operator ṽ′(x̃) · ∇x̃ to both sides of (A 2) and taking the ensemble

mean yields the expression for Q(x, t) in (3.8). To render this expression computable, we drop
the last term in (3.8) because it is of lower order than the other terms. Then, we assume that ∇̃F
varies slowly in time and space, which allows us to take the unknown outside the integrals. This
approximation is valid at asymptotical times, when F is smooth. Finally, we replace the random
Green’s function G with its ‘mean-field’ (deterministic) counterpart G that is defined as a solution
of (3.9) in which the mean ⟨ṽ⟩ is substituted for the random ṽ. This gives (3.10).

Appendix B. Green’s functions
If the random parameter v(x; ω) is either statistically homogeneous, ⟨v(x; ω)⟩ = v̄, or divergence
free, ∇ · v̄(x) = 0, then the deterministic Green’s function G(x̃, x̃, t − τ ) satisfies

∂G
∂τ

+ v · ∇yG + Da
∂fα(y4)G

∂y4
= −δ(x − y)δ(x4 − y4)δ(t − τ ), τ < t, (B 1)

subjected to G(x̃, ỹ, 0) = 0 and G(x̃, ỹ, t < τ ) = 0. A solution of (B 1) can be expressed as the
product G(x̃, ỹ, T) = GNd(x, y, T)G4(x4, y4, T). Here, T = t − τ ; x, y ∈ D; x4, y4 ∈ (C0, 1); and GNd and
G4 satisfy, respectively,

∂GNd
∂T

− v̄ · ∇yGNd = δ(x − y)δ(T), T > 0; GNd(x, y, T = 0) = 0 (B 2)

and
∂G4

∂T
− Da

∂fα(y4)G
∂y4

= δ(x4 − y4)δ(T), T > 0; G4(x4, y4, T = 0) = 0. (B 3)

Solving (B 2) with the method of characteristics gives

GNd(x, y, T) = δ(x − y − vT), T > 0. (B 4)

For fα(y4) = −α(yα
4 − 1), the characteristics of (B 3) satisfy a Cauchy problem

dy4

dT
= −Da fα = αDa(yα

4 − 1), y4(0) = ξ , (B 5)

whose general solution is

2F1

[
1
α

, 1; 1 + 1
α

, yα
4

]
y4 − 2F1

[
1
α

, 1; 1 + 1
α

, ξα

]
ξ = α Da T, (B 6)

where 2F1 is the hypergeometric function. For α = 1 and 2, (B 6) reduces to closed-form
expressions for the characteristic

y4(T) = (ξ − 1)eDa T + 1 (B 7)

and

y4(ξ , T) = 2
(

1 − ξ − 1
ξ + 1

e4Da T
)−1

− 1, (B 8)

respectively. Along these characteristics

dG4

dT
− Da

∂fα
∂y4

G4 = δ[x4 − y4(ξ , T)]δ(T), T > 0; G4(x4, ξ , 0) = 0. (B 9)
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As δ[x4 − y4(ξ , T)]δ(T) = δ[x4 − y4(ξ , 0)]δ(T) = δ(x4 − ξ )δ(T), the solution of (B 9) is

G4(x4, ξ , T) = exp

(

−Da
∫T

0

∂fα
∂y4

dt

)

H(T)δ(x4 − ξ ) =H(T)
fα(ξ )
fα(y4)

δ[x4(τ ) − ξ ]

=H(T)
fα(x4)
fα(y4)

δ[x4(τ ) − ξ ]. (B 10)

Green’s function G(x̃, ỹ, t − τ ) is obtained by combining (B 4) and (B 10),

G(x̃, ỹ, t − τ ) =H(T)δ(x − y − v̄T)
fα(ξ )
fα(y4)

δ[x4(τ ) − ξ ]. (B 11)

To eliminate ξ , we use either (B 7) if α = 1 or (B 8) if α = 2. In N = 1 spatial dimensions and for
v̄ = 1, this yields

G(x̃, ỹ, T) =H(T)δ(x − y − T)e−Da Tδ[x4 − (y4 − 1)e−Da T − 1] if α = 1 (B 12)

and

G(x̃, ỹ, T) =H(T)δ(x − y − T)
4e4Da T

[e4Da T(y4 + 1) − (y4 − 1)]2

× δ

(

x4 − e4Da T(y4 + 1) + (y4 − 1)
e4Da T(y4 + 1) − (y4 − 1)

)

if α = 2. (B 13)

Appendix C. Coefficients in cumulative distribution function equation (4.2)
Here, we compute the coefficients u4, D11 and D44 given by the general expressions (4.3) for the
several examples considered in §5.

(a) Sources of uncertainty: κ (x)
If the parameter v is deterministic, then D11 = 0. For a given Cκ (x, y) and α = 1 or 2, analytical
expressions for D44 and u4 are computed as follows.

(i) Linear reaction law (α = 1)
Green’s function G is given by (B 12), and u4 and D44 in (4.3) reduce to

u4 = Da(1 − x4) − Da2(1 − x4)
∫ t∗

0
Cκ (x, x − T)eDa T dT (C 1a)

and

D44 = Da2(x4 − 1)2
∫ t∗

0
Cκ (x, x − T)eDa T dT, (C 1b)

where

t∗ = min
{

t,
1

Da
ln
(

1
1 − x4

)
, x
}

. (C 2)

If κ(x; ω) is uncorrelated (white noise), then

Cκ (x, y) = σ 2
κ δ(x − y), (C 3)

where δ is the Dirac delta function and σ 2
κ is the variance of κ(x; ω). This state is reached

asymptotically in time by correlated κ(x) [2]. Substituting (C 3) into (C 1) yields

u4(x4) = Da

(

1 − Da σ 2
κ

2

)

(1 − x4) and D44(x4) = Da2σ 2
κ

2
(1 − x4)2. (C 4)

These expressions correspond to the approximations obtained in [29] and the theoretical results
in [2].
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If κ(x; ω) has an exponential covariance function Cκ (x, y) = σ 2
κ exp(−|x − y|/λκ ), then u4 and

D44 in (C 1) become

u4(x, x4, t) = Da(1 − x4) − Da2 σ 2
κ (1 − x4)

(Da − 1/λκ )
[e(Da−1/λκ )t∗ − 1] (C 5a)

and

D44(x, x4, t) = Da2 σ 2
κ (x4 − 1)2

(Da − 1/λκ )
[e(Da−1/λκ )t∗ − 1]. (C 5b)

(ii) Nonlinear reaction law (α = 2)
Substituting (B 13) into (C 1) gives

u4 = 2Da(1 − x2
4) + 32 Da2 x4(x4 + 1)

x4 − 1

∫ t∗

0
Cκ (x, x − T)

exp (−4 Da T)
(g − 1)2 dT (C 6a)

and

D44 = 16 Da2(x4 + 1)2
∫ t∗

0
Cκ (x, x − T)

exp (−4 Da T)
(g − 1)2 dT, (C 6b)

where
t∗ = min

{
t,

1
4 Da

ln
(

1 + x4

1 − x4

)
, x
}

and g(x4, T) = x4 + 1
x4 − 1

exp (−4 Da T). (C 7)

If κ(x; ω) is uncorrelated, then

u4(x4) = 2 Da(1 − x2
4)(1 − 2 Da σ 2

κ x4) and D44(x4) = 2 Da2 σ 2
κ (x2

4 − 1)2, (C 8)

which is exactly as in [2,29].

(b) Sources of uncertainty: κ (x) and v(x)
We consider two types of the uncertain parameter v: (i) a random variable v(ω) with variance
σ 2

v and (ii) a correlated random field v(x; ω) with the exponential covariance function Cv(x, y) =
σ 2

v exp(−|x − y|/λv) and the correlation length λv .
For the uncertain v of the first type, combining (4.3b) with Cv ≡ σ 2

v and G given by either (B 12)
for α = 1 or (B 13) for α = 2 gives rise to

D11 = σ 2
v t∗, (C 9)

where t∗ depends on G and thus on α. A similar procedure applied to the uncertain v of the second
type yields

D11 = σ 2
v λv(1 − e−t∗/λv ). (C 10)
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