
Probabilistic risk analysis of building contamination

Introduction

Accurate and verifiable predictions of air flow and
contaminant transport in buildings are notoriously
tedious because of complexities introduced by turbu-
lent flows and spatial geometries within typical build-
ings. The lack of sufficient site characterization,
computational resources, and occasionally, the inade-
quacy of conceptualizations and mathematical models
of relevant physical phenomena complicate modeling
efforts further. These problems introduce a fundamen-
tal lack of certainty about the flow in a room and
cast doubts on the feasibility of obtaining a single
deterministic prediction of a building’s response to
contamination.
Most dynamic models of the physical phenomena

arising in the ventilation disciplines has been carried
out within a deterministic framework. That is, given
sufficient information at one instant in time, the
deterministic model determines �exactly� the entire
future behavior of the system. In reality, complex
room layout and air distribution systems can introduce
a significant amount of uncertainty. Even in a fully

deterministic system, different ventilation schemes can
give rise to significant concentration gradients – e.g.
Hunt and Kaye (2006) and Bolster and Linden (2007)
showed that under conditions of idealized displace-
ment, ventilated space concentrations can vary over
several orders of magnitude. Local conditions such as
occupant behavior can also significantly affect local
concentrations. Ozkaynak et al. (1982) found that
pollutant levels in a kitchen with the oven on depended
heavily on the sampling location. Rodes et al. (1991)
discovered that personal sampling almost always
reveals a higher exposure to contaminants that would
be predicted from indoor air monitoring that assumes
perfect mixing. Lambert et al. (1993) showed that the
levels of suspended particles in a non-smoking section
of a restaurant were 40–65% less than those in the
smoking section.
Some of these critical phenomena can be analyzed by

means of computational fluid dynamics (CFD). How-
ever, detailed full-scale simulations can be prohibitively
expensive, particularly for large buildings with multiply
connected spaces. Moreover, accurate CFD simula-
tions of many ventilation flows can be elusive, because
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of uncertain boundary conditions (Cook et al., 2003)
and/or the difficulty of selecting an appropriate math-
ematical description from a wide choice of turbulence
models available (Ji et al., 2007).
Probabilistic models provide an alternative to deter-

ministic descriptions of ventilation phenomena by
assuming that regardless of how much is known about
a system at a given instant, it is impossible to determine
with absolute certainty the future behavior of the
system. It is common to distinguish two types of
uncertainty: epistemic and aleatory (Tartakovsky, 2007
and references therein). The former designates uncer-
tainty introduced by incomplete knowledge about
system parameters (the so-called parametric uncer-
tainty) and/or driving forces, i.e. initial and boundary
conditions, and conceptual models (the so-called model
or structural uncertainty); it can be reduced or com-
pletely eliminated by knowledge-enhancing observa-
tions (data). The latter refers to uncertainty associated
with the random nature of a phenomenon, e.g.
turbulent dispersion of a contaminant; it is inherent
to the system and cannot be eliminated by observation.
One probabilistic approach is to model systems with
stochastic, rather than deterministic, governing equa-
tions (e.g. Flynn, 2004; Haghighat et al., 1988; Siurna
et al., 1989). While stochastic modeling can be appeal-
ing from a scientific perspective, it involves some �heavy
mathematical weightlifting� that can act as a deterrent
to its practical implementation. An essential commu-
nication of important results is often inaccessible to the
non-expert. Moreover, it can often be difficult to
efficiently apply stochastic models outside of the realm
of idealized situations because of the complexity of the
practical application.
We suggest an alternative method, namely probabi-

listic risk analysis (PRA), which can act as a translator
between scientists, engineers, investors, politicians and
decision-makers. A PRA starts from an uncertain
perspective, which, in principle, allows it to account for
both epistemic and aleatory uncertainties. PRA can be
used in parallel or instead of CFD, and can be
integrated into zonal computer models that treat
buildings as a connected network of spaces that
interact with one another (e.g. the US Department of
Energy code �EnergyPlus�). Once properly formalized,
PRA can be effectively implemented and it is used in a
range of other engineering disciplines.
In the aerospace sector a systematic approach

towards risk assessment has been common practice
since the disastrous Apollo test in 1967. Currently,
NASA and the European Space Agency (ESA) adopt
PRA methods to understand, quantify, and minimize
the risks involved in space travel (e.g. Colglazier and
Weatherwas, 1986; ESA, 1997; Fragola, 1995; Garrick,
1989). The nuclear sector, where fears and conse-
quences of failure are large, adopted these methods
after the Three Mile Island accident. The US Nuclear

Regulatory Comission (NRC) has since introduced and
developed many powerful techniques to identify and
eliminate the risks involved (e.g. Garrick, 1984; NRC,
1983; Vesely et al., 1981).
In sectors, somewhat closer to building contamina-

tion and ventilation, many risk-based approaches have
been adopted in modeling techniques. For example,
these methods are commonly used when studying fire
safety in buildings (Chua et al., 2007; Frantzich, 1998)
or assessing a building’s resilience to seismic activity
(Ellingwood, 2001). In the field of contamination in
buildings there is a clear interest in assessing the risks
of contamination. Recent studies which focus on
assessing risks associated with contaminants include
those of Gravesen et al. (1999), Jaakkola and Mietti-
nen (1995), Milton et al. (2000), and Mizoue et al.
(2001), among many others. However, most of these
investigations are either case studies or statistical
analyses of very specific scenarios.
In this paper, we introduce a general framework for

PRA that ties statistical and theoretical studies in a
way that is more accessible and useful to practitioners
and decision-makers than that routinely used by
scientists, including the stochastic differential equation
methods discussed above. While this framework is
applicable to a variety of contamination problems, we
introduce the basic ideas and concepts by considering
a very simple example described in the following
section.

Probabilistic risk analysis

The concentration of a contaminant in a space, C, is
fundamental in determining the environmental health
risks. For example, if the contaminant in question is
carcinogenic, its impact on human health can be
quantified by the Excess Lifetime Cancer Risk (ELCR)
factor (EPA, 1992)

ELCR ¼
Xn
i¼1

ISF� CDIi; ð1Þ

where

CDIi ¼
�Ci � IR

BW
; �C ¼ 1

24

Z 24

0

CðtÞdt;

ISF ¼ IUR� BW

IR

ð2Þ

where IR is the human inhalation rate, �C the average
exposure concentration over 1 day, BW is average
body weight and IUR is the inhalation unit risk (or
inhalation slope factor). While any or all parameters of
the expressions given above can be uncertain, it is
common to take IR ¼ 20 m3/day and BW ¼ 70 kg
and check for IUR in the appropriate tables. Accord-
ing to the EPA, the level of a carcinogen (e.g. asbestos)
in the air is considered safe (i.e. health risks are
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assumed acceptable) if the ELCR < 10)6. If the
ELRC > 10)3, then the situation is deemed serious
and is a high priority for attention.
Additionally, there are maximum levels of certain

contaminants that people should not be exposed to
even over short durations. A key goal of PRA is to
determine the probability that the carcinogen’s con-
centration C in a room exceeds, at time t ¼ T, the
EPA-mandated value of C*¼ a)1ELCR.
Most present-day analyses of building contamina-

tion lack PRA and uncertainty quantification of the
kind routinely required in other engineering and
environmental disciplines (Covello and Mumpower,
1985). Specifically, a comprehensive risk analysis
should provide answers to the following three ques-
tions: �What can happen?� �How likely is it to
happen?� �Given that it occurs, what are the conse-
quences?� (Bedford and Cooke, 2003). Several recent
studies (Haghighat et al., 1988; Hammitt et al., 1999;
Spicer, 2000) addressed some of these questions, but
not all.
A typical building space has a complex geometry,

variable occupational density, and a number of
distributed contamination sources. We consider con-
taminants released via internal or external sources that
migrate within the space in question (Figure 1). We say
that the ventilation system �fails� at time t ¼ T, if the
contaminant concentration exceeds some mandated
level of C*. Our objective is to assess both the
likelihood of the system failure and the efficiency of
alternative remediation strategies.
Following Bedford and Cooke (2003), we start by

constructing a �fault tree� (Figure 2), which relates the
occurrence of the system failure with the failures of its
constitutive parts (basic events), i.e. the occurrence of a
contaminant release, the failure of a filter, the failure of
natural attenuation, and the failure of a remediation
effort. The term �natural attenuation� is used here to
describe the usual transport mechanisms (mainly
advection) that enable the contaminant to leave the
room. The Boolean operators �AND� and �OR� indicate
a collection of basic events that would lead to room

contamination. The example presented here is not
meant to be an exhaustive description of all possible
contamination events, but merely a simple illustrative
example.
The second step is to identify �minimal cut sets� of the

system, i.e. the smallest collections of events that lead
to building contamination. The fault tree in Figure 2
reveals three such minimal cuts: {ICR,VF}, {ICR,FS}
and {ECR,FF}. (See Table 1 for a definition of the
abbreviations.)
The third step is to represent the fault tree in

Figure 2 by a Boolean expression. Recalling that the
Boolean operators AND and OR applied to two events
X and Y can be written as X AND Y ” XÆY ” X\Y
and X OR Y ” X + Y ” X[Y, the Boolean expres-
sion corresponding to the fault tree in Figure 2 is

SF ¼ ICR �AFþ ECR � FF
¼ ICR � ðVFþ FSÞ þ ECR � FF
¼ ICR � VFþ ICR � FSþ ECR � FF:

ð3Þ

The latter expression is known as a �cut set repre-
sentation� of the fault tree in Figure 2.
The final step is to use Equation 3 to compute

P[SF], the probability of building contamination at
time t ¼ T,

P½SF�¼P½ðICR\VFÞ[ðICR\FSÞ[ðECR\FFÞ�
¼P½ICR\VF�þP½ICR\FS�þP½ECR\FF�
�P½ICR\VF\FS�
�P½ICR\ECR\VF\FF�
�P½ICR\ECR\FS\FF�
þP½ICR\ECR\VF\FS\FF�: ð4Þ

Assuming that all the events at the bottom of the
fault tree are independent, the probability of building
contamination can be simplified to yield

P½SF� ¼ P½ICR� P½VF� þ P½FS� � P½VF�P½FS�ð Þ
þ P½ECR�P½FF� þ P½ICR�P½ECR�
P½VF�P½FF�P½FS� � P½VF�P½FF�ð
�P½FS�P½FF�Þ: ð5Þ

Definition of probabilities

The procedure described above is used extensively in
PRA of complex systems, such as nuclear power plants
and space shuttles (Bedford and Cooke, 2003). In order
to use it in building ventilation we must carefully
consider how to evaluate the probabilities entering
Equation 5.
Modern PRAs utilize subjective probability, which is

defined as the �degree of belief, of one individual�
(Bedford and Cooke, 2003). Subjective probabilities inFig. 1 Contamination scenarios for a hybrid ventilated space
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building ventilation must be used to deal with both
parametric and structural (model) uncertainties, as
many fundamental issues in ventilation flows and
transport are yet to be resolved. This is illustrated,
for example, by the ongoing debates on whether
contaminant transport can be accurately represented
by the perfect mixing assumption and whether flows
can be adequately described with simple turbulence
models. Our subjective belief is that the answer to the
first question is negative and that to the second one is
positive, but other opinions, and mathematical models
based on these opinions, should be incorporated into a
rigorous PRA to avoid a systematic predictive bias.
In other words, the ability to incorporate expert

knowledge into quantitative ventilation modeling
becomes paramount. Several formal approaches to
dealing with diverging expert opinions, originally
developed in economics (Otway and Winterfeldt,
1992), can be adapted in ventilation, just as it has
been done in other fields (NRC, 1997). (Their practical
implementation is a separate topic that is beyond the
scope of this paper.)
Probabilistic risk assessments used in most engineer-

ing applications rely on reliability databases and
manufacturing specifications to estimate the probabil-
ities of basic events. Modern reliability data banks are
used first by design engineers to insure optimum initial

performance, then by maintenance engineers to design
a proper maintenance schedule so as to maintain
optimum performance throughout the system’s life-
time, and finally by risk analysts to quantify the
reliability of the system. Examples of reliability data
banks for engineering components include Failure
Rate Data in Perspective (FARADIP; Smith, 2001),
Offshore Reliability Data Handbook (OREDA;
OREDA, 2002), and Nonelectronic Parts Reliability
Data (NPRD) (Denson, 1995). Many of these compo-
nents make up HVAC plants, and the databases can be
used to compile reliability data for specific plants.
Reliability data more specific to HVAC is more
limited, but does exist (e.g. Hale and Arno, 2001;
Hollis et al., 2000). Additional datasets should be
initiated and updated.
In ventilation, reliability databases can be supple-

mented with analytical models, such as a well-mixed
model for simple ventilation systems and geometries
Nazaroff and Cass (1991) or more complex models for
more complex systems that allow for the presence of
concentration gradients (Bolster and Linden, 2007;
Hunt and Kaye, 2006). Another alternative is to
incorporate stochastic techniques (Haghighat et al.,
1988) to compute probabilities quantifying structural
and parametric uncertainties associated with the ven-
tilation processes. The uncertainties typically arise
from an imperfect knowledge of the flow into and
within a space, which is essential in estimating the
transport of contaminants within a building. The
computed probabilities can then be used to compute
the probabilities of the basic events in Equation 4.
The practical implementation of statistical inference

relies on observations of a random phenomenon to
choose the probability distribution that best describes
it. A Bayesian approach provides a natural framework
to achieve this goal. First, expert knowledge is used to
select a prior, i.e. the form of probability distribution

Table 1 Glossary of event abbreviations

Event Abbreviation

System failure SF
Internal contaminant release ICR
External contaminant release ECR
Attenuation fails AF
Filter fails FF
Ventilation fails VF
Flow filter fails FS

Fig. 2 Fault tree for a possible building contamination
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function (PDF) that, in the expert’s opinion, is most
appropriate to a given situation. The Bayesian philos-
ophy states that the prior is to be selected without first
looking at the data. Secondly, Bayes� theorem is used
to construct the posterior distribution, the updated
PDF accounting for the available data. This Bayesian
viewpoint is popular in the risk analysis community,
because data from many different sources can be
combined to evaluate the posterior. Additionally, the
Bayesian approach allows one to refine the posterior
distributions as new datasets are acquired.
The sample problem described by the fault tree in

Figure 2 contains several probabilities that need to be
determined. For example, the probability of failure of
the filters depends on their life time, i.e. the longer the
filter operates, the more likely it is to fail. Similarly, the
ventilation has a lifetime component that depends
upon both the mechanical system and a variation
of penetrative flow caused by varying environmen-
tal conditions. Finally, one has to determine the
probability of a contaminant release.

Filter probabilities

Probability of failure of many manufactured compo-
nents, including filters, can often be described by the
exponential cumulative distribution function,

FXðtÞ ¼ P½X � t� ¼ 1� e�kt; ð6Þ

which is the probability that a component with lifetime
X has failed before time t. The reliability function,
RX(t)¼1)FX(t), represents the probability that a com-
ponent with lifetime X is still working at time t. (Note
that exponential distributions should only be applied
to systems with non-negative values of X.) The
parameter 1/k represents the expected or average life
of a component. It can be estimated from either
manufacturers� specification or reliability tables for the
specific application or maintenance data.
We assume exponential distributions for both filters,

which means that

FFF ¼ 1� ekfft; FFS ¼ 1� ekfst: ð7Þ

The values of kff and kfs should be estimated using
Bayesian inference with manufacturers� guidelines and
any available data. They will also depend on the
specific application of the filter. For example, certain
manufacturers� data state that the average lifetime of
internal filters in a restaurant kitchen will vary from
30 days in a wood-fire kitchen (i.e. k ¼ 1

30 per day), to
60 days in a greasy fast food kitchen (i.e. k ¼ 1

60 per
day), to 1 year for kitchens where items are predom-
inantly boiled (i.e. k ¼ 1/year). Therefore, it is impor-
tant not only to consider the filters being used, but
also their specific application. Another complication,

which can be addressed within our proposed
framework, is the increased probability of filters�
failure because of mechanical stresses caused by their
testing.
It is worthwhile noting that the exponential distri-

butions similar to Equation 7 are popular in reliability
and risk assessment, because they have only one fitting
parameter k, which makes them easier to use. More
complex distributions, such as the Weibul distribution,
can be used instead (Bedford and Cooke, 2003).
Among the effects contributing to a filter’s failure,
but not accounted for in Equation 7, is the deteriora-
tion of its performance with time. If this effect is
important, one can define the failure either as a
complete failure or a situation in which a filter
functions below a certain performance efficiency.

Ventilation probabilities

When considering ventilation, it is important to
account for both mechanical and natural (penetrative
or open windows) sources. The flow rate from the
mechanical system is unlikely to fluctuate much about
the programmed value. However, because it is a
complex mechanical system there is always a proba-
bility of failure associated with it. For simplicity, we
again assume an exponential distribution

FQm
¼ 1� e�kmt: ð8Þ

The expected lifetime km must be chosen from
manufacturers� guidelines and will also depend on the
specific application and type of HVAC system. For
example, according to the Consortium for Energy
Efficiency (CEE), a cheap single-room HVAC system
can have an average lifetime as low as 3 years (km ¼ 1

3
per year). However, most typical single-room HVAC
systems have an average lifetime of about 10 years
(km ¼ 1

10 per year) and a larger central system can have
an average lifetime of 18 years (Rosenquist et al.,
2001), giving km ¼ 1

18 per year.
On the other hand, the natural ventilation compo-

nent can vary greatly depending on external and
internal conditions. It is likely to have a mean value
around which it fluctuates and so we assume a normal
(Gaussian) cumulative distribution function

FXðtÞ ¼
1

r
ffiffiffiffiffiffi
2p
p

Z t

�1
exp

�ðu� lÞ2

2r2

" #
du: ð9Þ

The distribution parameters l and r, representing the
mean and the standard deviation, respectively, are to
be determined from the available data. Both positive
and negative values of X are possible, as the �bell-
shaped� curve extends to ±¥.
It is important to realize the practical limitations

imposed by any choice of a probability model, including
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the Gaussian cumulative distribution function (9). For
example, natural ventilation can depend heavily on
external conditions (e.g. temperature and wind) that
can vary substantially over time. The Gaussian model
(9) does not account for these effects; this choice is
based on both previous practice (Haghighat et al.,
1988) and its relative simplicity. A different distribu-
tion, based on another expert opinion and local
weather conditions, may be more appropriate depend-
ing on the circumstances. Alternatively, to account for
seasonal variations, multiple distributions, again based
on expert opinion, with different mean values and
variations depending on the time of year could be used.
With this caveat, we define the probability of failure

of the ventilation system based on a minimum required
flow rate, i.e. Q < Qmin�FAILURE. This minimum
flow rate must be specified and should at least be
greater than the minimum standards or recommenda-
tions specified by organizations such as ASHRAE
(Standard 62-2001), CIBSE (http://www.cibse.org),
EPA (http://www.epa.gov) and NIST (http://www.
nist.gov). Results from previous analytical and exper-
imental studies (Bolster and Linden, 2007; Hunt and
Kaye, 2006; Nazaroff and Cass, 1991) can be used to
estimate Qmin more accurately.
Let us assume that the mechanical system provides a

constant flow rate (any perturbations are considered
small relative to the mean). The flow Qm can take on
two values: either �Qm when it is functioning or 0 after
the system fails. Additionally, there is the natural flow
rate Qnat as illustrated in Figure 1. The probability of
failure for this system is given by

P½Qnat <Qmin�Qm� ¼P½Qnat <Qmin� �Qm�
�P½Qm 6¼ 0�
þP½Qnat <Qmin�
�P½Qm ¼ 0�;

ð10Þ

where

P½Qm ¼ 0� ¼ 1� P½Qm 6¼ 0�: ð11Þ

The probability of the flow rate being too small is

P½VF� ¼ P½Qnat < Qmin � �Qm�P½Qm 6¼ 0�
þ P½Qnat < Qmin�P½Qm ¼ 0�:

ð12Þ

Using the exponential distribution (8) to model
the mechanical ventilation system and the normal
distribution (9) to model the natural flow rate, we
obtain

P½VF� ¼ F1e
�kmt þ F2 1� e�kmt

� �
; ð13Þ

where F1 ¼ Fnat(Qmin ) Qm), F2 ¼ Fnat(Qmin), and

FnatðAÞ � P½Qnat < A�

¼ 1

rnat

ffiffiffiffiffiffi
2p
p

Z A

�1
exp

ðu� �QnatÞ2

2r2
nat

" #
du:

ð14Þ

Contaminant release probability

The probability of a contaminant release depends on
the type of the contaminant and the contamination
scenario. One must consider both the internal (ICR)
and external (ECR) release situations. Knowledge of
the nature of the potential contaminant sources is crit-
ical in estimating the probability of occurrence of the
contamination. One can define this probability as

P½CR� ¼ 1

T

Z T

0

H½CsðtÞ � Cmin�dt; ð15Þ

where H(x) is the Heaviside step function defined as
H(x > 0) ¼ 1 and H(x < 0) ¼ 0; T is the sampling
period, which should be sufficiently long to cover all
typical contamination situations; and Cs(t) is the
strength of the contaminant sources. The minimum
source strength Cmin is included into Equation 15 to
account for the fact that it is �dose that makes the
poison� (Ottoboni, 1997), i.e. that the contamination
with levels below Cmin is inconsequential. The value of
Cmin can be specified from standards or from other
concepts, including the ELCR described in Equation 1.
Zero tolerance for a particular contaminant corre-
sponds to setting Cmin ¼ 0.
It is important to note that with the current

approach the probability of contamination is a
constant number. One can also account for a time
dependence of this probability based on time of day,
week or year, as these can be important factors
in determining the likelihood of a contamination
release.
As an example of contamination probabilities, con-

sider the following four types of sources of contami-
nants:

Continuous sources: If a contaminant is released con-
tinuously, then the probability of contamination is,
of course, P[C] ¼ 1.

Partially continuous sources: If the contaminant (e.g.
carbon dioxide) is released into an occupied office
building only during business hours (e.g. by occu-
pants exhaling CO2 during 8 h in the office), the
probability of contamination is close to P[C] ¼ 0.33.
(On the other hand, if one is concerned with keeping
the space contaminant free during hours of occu-
pation, then CO2 will fall into the category of con-
tinuous sources.)

Intermittent sources: This category includes other con-
taminants, such as exhaust emissions from outside
traffic or contaminants associated with intermittent
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activities. For these, the probability of contamina-
tion must be estimated from experimental data and
knowledge of outside and indoor activities and
conditions.

Rare sources: If the contaminant in question is anthrax
from a terrorist attack in a standard office building,
a nuclear spill at a nearby power plant, or any other
event that does not happen on a regular basis,
then the probability of contamination is very
small P[C] ¼ e, where e � 0. Expert opinion typi-
cally informs this probability.

This line of reasoning allows one to estimate the
probabilities of internal and external contamination
(15),

P½ICR� ¼ Cicr; P½ECR� ¼ Cecr: ð16Þ

Inserting these probabilities into Equation 5, we
obtain the probability of system failure (i.e. building
contamination)

P½SF� ¼ CicrfF1e
�kmt þ F2ð1� e�kmtÞ þ 1� e�kfst

� ½F1e
�kmt þ F2ð1� e�kmtÞ�ð1� e�kfstÞg

þ Cecrð1� e�kfftÞ þ CicrCecrf½F1e
�kmt

þ F2ð1� e�kmtÞ�ð1� e�kfstÞð1� e�kfftÞ
� ½F1e

�kmt þ F2ð1� e�kmtÞ�ð1� e�kfftÞ
� ð1� e�kfstÞð1� e�kfftÞg: ð17Þ

Parameter sensitivity study

Now that we have found the probability of failure of the
system, it is important to understand how each para-
meter influences the likelihood of failure. The first thing
to note is that the probability of system failure is a
function of time that tends to some steady-state value at
large times. This is because eventually all components
(filters and the mechanical ventilation) will fail and so
the system ultimately fails when a contaminant release
occurs. The probabilities of contaminant release, Cicr

and Cecr, do not significantly influence the rate at which
the probability of system failure occurs. Their primary
influence is on the magnitude and the ultimate steady-
state value, P[SF](t fi ¥) ¼ Cicr + Cecr ) CicrCecr.
Similarly, the values of F1 and F2 do not affect the rate
at which the probability changes. These are solely
determined by the parameters k, i.e. by the mean
lifetime of the components with the exponential distri-
butions. This is because only these components have a
time-dependent probability. The natural flow rate, the
probability of contaminant release, and the average
mechanical flow rate are assumed to be constant in time.
Figure 3 illustrates how the probability of system

failure changes for different values of system para-
meters. The values of the probabilities of internal (Cicr)
and external (Cecr) contamination influence the mag-
nitude and the final steady-state values of the proba-
bility of contamination. The probability that the
mechanical system provides a sufficient flow rate, F1,

Fig. 3 Probability of building contamination, P[SF], for a range of system parameters. In each figure, one of the parameters is varied,
while the rest are kept at their reference values of CICR ¼ 0.5, CECR ¼ 0.5, F1 ¼ 0.01, F2 ¼ 0.9, km ¼ 0.1, kfs ¼ 1 and kff ¼ 1
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affects the initial value of the probability of contam-
ination. This is because the system will eventually
(i.e. at steady state) fail. However, for a well-designed
system, F1 will be small and therefore the initial
probability of failure will be small too. However, if the
initial system design is inadequate, the initial failure
rate will be high. The system is fairly insensitive to F2,
the probability that natural ventilation alone will
provide ample ventilation for contaminant removal.
As expected, the exponential constants for the failure

of the mechanical system and filters have the most
influence on the system behavior. The influence of km
seems relatively small. This is because regardless of
how good the ventilation system is, the filters will
typically fail first, thus causing the system to fail
regardless of the fact that the mechanical system is still
working. This is evident in the plots for kff and kfs,
which show that at any given time the filters with a
longer average lifetime result in significantly lower
probabilities of failure.
The sensitivity of the probability of failure to each of

the system parameters can be elucidated by analyzing
the derivative of P[SF] in Equation 17 with respect to
each of the parameters,

dP½SF�
dkm

¼ dP½VF�
dkm

P½ICR� 1� P½FS�f

þP½ECR�ðP½FF�P½FS� � P½FF�Þg ð18Þ

dP½SF�
dkff

¼ dP½FF�
dkff

P½ECR� 1þ P½ICR�ðP½VF�P½FS�f

�P½VF� � P½FS�Þg ð19Þ

dP½SF�
dkfs

¼ dP½FS�
dkfs

P½ICR� 1� P½VF�f

þP½ECR�ðP½VF�P½FF� � P½FF�Þg ð20Þ

dP½SF�
dF1

¼ dP½VF�
dF1

P½ICR� 1� P½FS�f

þP½ECR�ðP½FF�P½FS� � P½FF�Þg ð21Þ

dP½SF�
dF2

¼ dP½VF�
dF2

P½ICR� 1� P½FS�f

þP½ECR�ðP½FF�P½FS� � P½FF�Þg: ð22Þ

Figure 4, which displays these derivatives, makes it
clear that the probability of contamination is most
sensitive to F1, especially at early times. Recall that this
parameter determines the initial condition on the
probability of failure; the smaller F1, the better the
initial design. The probability of contamination is least
sensitive to F2, the probability that natural ventilation

alone will provide ample ventilation for contaminant
removal. The sensitivity of the probability of failure to
the three exponential coefficients persistent most,
reaching its maximum at about 1 year after the start
of operations.
This sensitivity analysis suggests the following

approach to minimizing contaminant exposure. The
initial design must insure adequate contaminant
removal. Otherwise, the system has an appreciable
probability of failing right from the beginning. After
this, it is most important to use high-quality filters with
long lifetimes. Finally, proper maintenance of the
ventilation system is required to avoid exposure.
However, because of the robustness and typical aver-
age lifetimes of a ventilation system, it is not necessary
to maintain it as often as it is to replace filters. This
point is further elaborated upon in the next section,
where we consider a system with a simple regular
maintenance schedule.

Allowing for maintenance

Maintenance can be subdivided into two categories
Bedford and Cooke (2003):

Preventative: Maintenance is conducted, not because a
fault or failure occurred, but as part of a regular
servicing, in order to prevent failure.

Corrective: Maintenance is conducted after a fault or
failure has occurred in order to restore the system.

Here we consider only preventative maintenance. As
our sensitivity analysis revealed that the system failure
depends most heavily on the filters, we will consider a
schedule whereby these are replaced at regular time
intervals. We assume that replacing the filters auto-
matically resets these probabilities to their initial
condition. We also assume that replacing the filters

Fig. 4 Sensitivity of the probability of contamination to each of
the system parameters. F1 (–Æ), F2 (e), km (–), kff (- -) and kfs (Æ)
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only influences their probabilities of failure, without
affecting the probabilities of failure of the other
components. Finally, we assume that both internal
and external filters are replaced at the same time.
By including maintenance of the filters at regular

time intervals tmain, the probability of failure given by
Equation 17 must be modified to

P½SF�main ¼ CicrfF1e
�kmt þ F2ð1� e�kmtÞ þ 1� e�kfst0

� ½F1e
�kmt þ F2ð1� e�kmtÞ�ð1� e�kfst0Þg

þ Cecrð1� e�kfft0Þ
þ CicrCecrf½F1e

�kmt þ F2ð1� e�kmtÞ�
ð1� e�kfst0Þð1� e�kfft0Þ
� ½F1e

�kmt þ F2ð1� e�kmtÞ�ð1� e�kfft0Þ
� ð1� e�kfst0Þð1� e�kfft0Þg; ð23Þ

where t0 is defined as

t0 ¼ mod
t

tmain

� �
: ð24Þ

Here �mod� denotes the remainder function, which
resets the filter probabilities to their initial value every
time maintenance is performed.
The probability of failure for a system under six

different maintenance schedules (i.e. tmain ¼ 1 week,
1 month, 6 months, 1 year, 2 years and 5 years) is
shown in Figure 5. Regular maintenance can decrease
the probability of failure significantly. However, there is
an upper limit to the gains of regular maintenance of the
filters, as displayed by the lower line on each of the plots.
This line corresponds to the limit of tmain fi 0, i.e.
infinite maintenance of the filters, and represents the

probability of failure of the system because of the other
components (i.e. the mechanical ventilation system).
Which of these maintenance schedules is optimal?

Clearly, the infinite maintenance case provides the best
solution but is impractical. However, both the 1-week
and 1-month maintenance schedules provide condi-
tions very close to this ideal. In a practical situation
one must also factor in the cost of maintenance and the
particular use of the space in question. For example, if
one is considering the ventilation of an operating
theatre or a high-end clean room, the extra cost of
maintenance is justifiable. On the other hand, if for the
space in question a higher risk of contamination is
acceptable, then less maintenance is required and costs
can be reduced.
Limiting maintenance to the filters is likely not the

optimum strategy, because as time advances with each
maintenance the magnitude in the reduction of prob-
ability of failure decreases. A maintenance schedule
that also considers work on the ventilation system will
probably provide better returns. This is because,
although the sensitivity study identifies the filters as
the most critical components, the sensitivity to the
mechanical ventilation system was also quite large. As
mentioned previously, accounting for its maintenance
requires a detailed study of the mechanical system to
quantify the gain associated with each maintenance
job – i.e. an additional detailed PRA study is required
for the ventilation system.
For the sake of simplicity, let us assume that

maintenance of the mechanical system can restore the
probability of failure back to original condition (i.e. a
perfect repair). Then the probability of failure of the
system where the filters are maintained on a schedule
tmain and the mechanical ventilation systems is repaired
periodically every tm years can be written as

P½SF�main ¼ CicrfF1e
�kmt1 þF2ð1� e�kmt1Þ þ 1� e�kfst0

� ½F1e
�kmt1 þF2ð1� e�kmt1Þ�ð1� e�kfst0Þg

þCecrð1� e�kfft0Þ
þCicrCecrf½F1e

�kmt1 þF2ð1� e�kmt1Þ�
ð1� e�kfst0Þð1� e�kfft0Þ
� ½F1e

�kmt1 þF2ð1� e�kmt1Þ�ð1� e�kfft0Þ
� ð1� e�kfst0Þð1� e�kfft0Þg; ð25Þ

where t0 is defined in Equation 24 and t1 is

t1 ¼ mod
t

tm

� �
: ð26Þ

Figure 6 shows how weekly maintenance of the
mechanical ventilation system (the solid line) and no
maintenance at all (the broken line) affect the
probability of system failure. (No other component
is maintained.) The two lines are virtually indistin-
guishable, which demonstrates that neglecting

Fig. 5 Comparison of six maintenance schedules for filters: no
maintenance (top dark line), maintenance (middle fluctuating
light line), and infinite maintenance (bottom dark line). The
parameters are set to CICR ¼ 1, CECR ¼ 1, F1 ¼ 0.01, F2 ¼ 0.9,
km ¼ 0.1, kfs ¼ 1 and kff ¼ 1

PRA of building contamination

359



maintenance on the filters is not a good approach and
that the influence of solely repairing the mechanical
system is negligible, no matter how often the task is
performed.
Therefore, the system’s performance can be opti-

mized by maintaining both the filter and ventilation
systems at properly selected time intervals. Several
combinations of maintenance schedules are shown in
Figure 7. The top two plots consider semi-annual
maintenance of the filters combined with either weekly
or every 5-year maintenance of the ventilation system.
While there are some qualitative and quantitative
differences between the two schedules, the overall effect
does not appear large enough to justify as rigorous a

maintenance schedule as the weekly one. Again, this is
because the filters affect the system failure probability
most and so neglecting the filters while maintaining the
mechanical system returns suboptimal gains. This leads
us to consider a monthly schedule for the filters and
weekly, monthly, every 2- and every 5-year mainte-
nance of the mechanical system, which is shown in the
lower four plots in Figure 7. The difference between the
weekly and monthly schedule is minimal, while there is
an obvious jump for the 2- and 5-year schedules.
However, the 2-year schedule still yields probabilities
that are not significantly higher than the monthly
schedule. Once again, a balance between the desired
probability of failure and the cost of maintenance is
required. In order to achieve this, an optimization
study that additionally considers cost should be con-
ducted over a range of parameter space in tmain and tm.

Practical approximations in PRA of ventilation

Any PRA of a ventilation system can be simplified by
making certain approximations that are discussed in
detail here. While the above analysis is simple and
straightforward, for many practical situations these
approximations become very useful.

Rare-event approximation

Let us, as an example, consider the situation where we
are only concerned with internal contaminants, i.e.
with the left-hand side of the fault tree in Figure 2. This
is equivalent to setting P[ECR] ¼ 0 or P[FF] ¼ 0. The
uncertainty about the basic event �internal contaminant
release (ICR)� relates not only to the occurrence of a
contaminant release per se, but also to its precise
location, strength, toxicity, duration, etc. The proba-
bility of system failure, given an internal contaminant
release, can be written as

P SF ICRj½ � ¼ P VF ICRj½ � þ P FS ICRj½ �
� P VF \ FS ICRj½ �;

ð27Þ

where P[X|Y] denotes the probability of the occurrence
of X conditioned on the occurrence of Y. Suppose, for
the sake of simplicity, that the release has already
occurred and that all of its characteristics are known
with certainty. Then P[ICR] ¼ 1, and the probability
of building contamination is given by

P½SF� ¼ P½VF� þ P½FS� � P½VF�P½FS�: ð28Þ

In most engineering applications, the probability of a
component failure, e.g. P[VF] or P[FS], is typically
small and the probability of a simultaneous failure of
more than one components, e.g. P[VF\FS], is often an
order of magnitude smaller than that. While the latter
statement is not universal and one must be cautious in
applying it, it allows one to simplify Equation 28 by

Fig. 7 Comparison of two maintenance schedules for the
mechanical system: no mechanical maintenance (top black line)
and mechanical maintenance (lower grey line). The parameters
are set to CICR ¼ 1, CECR ¼ 1, F1 ¼ 0.01, F2 ¼ 0.9, km ¼ 0.1,
kfs ¼ 1, and kff ¼ 1
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Fig. 6 Comparison of two maintenance schedules for the
mechanical system: no maintenance (the broken line) and
weekly maintenance (the solid line). The parameters are set to
CICR ¼ 1, CECR ¼ 1, F1 ¼ 0.01, F2 ¼ 0.9, km ¼ 0.1, kfs ¼ 1
and kff ¼ 1

Bolster & Tartakovsky

360



employing a �rare-event approximation� (Bedford and
Cooke, 2003),

P½SF� 	 P½VF� þ P½FS�; ð29Þ

in which the probability of a system failure depends
exclusively on the probability of failure of its constit-
utive parts.
Figure 8 compares the probability of system failure

computed with the full solution (28) and the rare-event
approximation (29). The approximation does well up to
the end of first year, overpredicting the actual proba-
bility by less than 10%. This is because the assumption
of a rare event becomes questionable with P[FS] ¼
0.63, which is clearly not small. Nonetheless, P[VF] ¼
0.095 can still be considered small and the error
introduced by the approximation is small. Beyond this
point, the approximation diverges significantly from the
actual value and becomes unphysical (i.e. predicts
probabilities greater than 1) after 2 years. Here the
rare-event approximation completely collapses, because
P[FS] ¼ 0.87, which is well beyond the limit of a rare
event. P[VF] ¼ 0.17 is still small, but not sufficiently
small as to eliminate the large influence of P[FS].
The rare-event approximation (29) provides a con-

servative estimate of the probability of the system
failure, which might prove to be overly pessimistic in
many situations. When the rare-event approximation
becomes invalid (e.g. if the probabilities of failure of
both ventilation and filters are larger than 0.5),
Equation 28 must be used instead.

Dependent probabilities – common cause approximation

In the example considered above, we assumed that all
events are independent. However, the failure of the

mechanical ventilation and filters could stem from a
�common cause (CC)�, such as a flood damage or a
power failure. In principle, any methods for uncer-
tainty quantification should also be capable of com-
puting not only the probabilities of basic events, such
as the failures of ventilation P[VF] and a filter P[FS],
but also the probability of their joint failure P[VF\FS].
However, for many practical implementations, this
might prove to be computationally prohibitive (e.g. if a
CFD analysis of the space in question is performed).
The computational burden can be reduced by iden-

tifying a CC of the failure of both the filter and
ventilation. This procedure results in a conservative
estimate of contamination risks and implies that the
CC completely couples the occurrence of VF and FS
but does not necessarily cause them,

P½VF \ FSjCC� 	 P½VFjCC�: ð30Þ

Let CC¢ denote the absence of a common cause, whose
probability is P[CC¢] ” 1 ) P[CC]. As

P½VF \ FS� ¼ P½VF \ FSjCC�P½CC�
þ P½VF \ FSjCC0�P½CC0�;

ð31Þ

the approximation (30) yields

P½VF \ FS� 	 P½VFjCC�P½CC�
þ P½VF \ FSjCC0�P½CC0�:

ð32Þ

Assume next that, in the absence of a CC, VF and
FS are independent, P[VF\FS|CC¢] 	 P[VF|CC¢]
P[FS|CC¢]. Then Equation 32 becomes

P½VF \ FS� 	 P½VFjCC�P½CC�
þ P½VFjCC0�P½FSjCC0�P½CC0�:

ð33Þ

Finally, if P[CC] << 1 it is reasonable to assume that
P[VF|CC¢] 	 P[VF] and P[FS|CC¢] 	 P[FS], so that

P½VF \ FS� 	 P½VFjCC�P½CC� þ P½VF�P½FS�P½CC0�:
ð34Þ

An in-depth discussion of conditional independence
in Bayesian systems, which encompasses the analysis
above, can be found in Pearl (2000). Expression (34) is
analogous to the �CC approximation� used in reliability
analysis; chapter 8 in Bedford and Cooke (2003)
provides a list of examples of common failures in
engineering applications and presents a number of
alternative models for dealing with them. The proba-
bility of building contamination can now be computed
by combining Equations 5 and 34.
Suppose that a probabilistic analysis of a model and

site-characterization data resulted in the following
(subjective) probabilities: the probability that a con-
taminant exceeds some threshold value at time t ¼ T
through a CC is P[CC] ¼ 0.01. If the contamination is
due to the common cause, the probabilities of failure of

Fig. 8 Probability of system failure computed with the full
solution (28) (the solid line) and the rare-event approximation
(29) (the dotted line). Also shown in this figure are the proba-
bilities of failure of ventilation, P[VF] (–Æ), and filters, P[FS] (- -)
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both ventilation and the filter at time t ¼ T are
P[VF|CC] ¼ P[FS|CC] ¼ 1. Practically speaking, an
example of such a CC could be a power failure or
flooding.
The probability of building contamination at time

t ¼ T computed with the rare-event approximation (29)
is P[SF] ¼ 0.6, while its counterpart computed with the
CC approximations (5) and (34) is P[SF] ¼ 0.54. Note
that the contribution of the low-probability common
cause PF to both the probability of the joint failure of
ventilation and filtration and the probability of building
contamination is significant. Another interesting obser-
vation is that the rare-event approximation (29) gives a
reasonably accurate risk estimate, even though the
probability of failure of ventilation failure is 50%. This
simple analysis can be used to obtain rough estimates of
the risks of building contamination. A more detailed
and rigorous PRA could incorporate the use of the
probabilistic and stochastic tools.
Figure 9 displays the influence of the CC approxi-

mation. For a very rare CC, e.g. P[CC] ¼ 0.01, the
influence of the CC on the probability of failure is very
small, as one would expect. However, the influence
becomes larger as the probability of the CC increases,
leading to differences that could be considered large
depending on the particular application. Neglecting the
influence of a CC can be thought of as a worst-case
scenario. As such, for spaces that require particularly
low probabilities of contamination, it could be
neglected, which adds an additional factor of safety.

Summary

We introduced PRA as a tool that could be used to
quantify contamination risks in ventilated buildings.

The general PRA framework is capable of handling
phenomena that range from contamination of residen-
tial houses to large office buildings to clean-room
manufacturing and operating theaters and could easily
be extended to other areas of interest, such as
contaminants in multiply connected spaces (e.g. hos-
pitals, where there are many rooms where contami-
nants are prevalent, and others where it is essential to
maintain a clean environment). This framework can be
used to make decisions under uncertainty, including:
(a) determination of the viability of the ventilation
system and other alternative remediation strategies and
(b) optimization of data collection and monitoring
campaigns. Key features of this approach are: (i) the
comprehensive treatment of structural (model) and
parametric uncertainties inherent in building flows and
contaminant transport and (ii) the use of subjective
probabilities, i.e. the reliance on expert knowledge.
Further information that would be useful in a

comprehensive PRA can be obtained by making it
problem-specific. For example, a wide range of con-
tamination problems do not necessarily require point-
wise prediction of contaminant behavior (e.g. an office
space where standards are based on average concen-
trations). For such a case, mass-balance calculations
are often sufficient to assess probabilities of the
occurrence of basic events by quantifying uncertainty
in appropriate lumped-parameter models, i.e. by com-
bining PRA with the results from lumped-parameter
models developed in Haghighat et al. (1988), Hunt and
Kaye (2006), Nazaroff and Cass (1991), etc. Other
problems may require detailed knowledge of the
contaminant distribution (e.g. an operating theater
where the sole focus is to keep patients contaminant-
free). For such scenarios, CFD studies or other
distributed (non-lumped parameter) models (Bolster
and Linden, 2007) should be used.
Lumped-parameter models yield simple, closed-form

expressions for the bulk behavior of a contaminant
and its response to various remediation strategies. A
typical example of such analyses is provided by
Nazaroff and Cass (1991), who modeled the spread
of particulate contaminants in art museums and the
spread of tobacco fumes in occupied spaces. Their
analytical solutions depend on a number of parame-
ters, some of which are measured (e.g. flow rates) and
some are fitted to data (e.g. particle-settling coeffi-
cient). In any field application, the values of these
parameters can be uncertain and probabilistic methods
could be used.
Any PRA of ventilation processes must be flexible

and extensible enough to make optimal use of existing
site characterization data and to accommodate new
information, including new data and conceptual mod-
els. The extensibility is critical for both the long-term
relevance of the framework and its impact on the
development and deployment of effective tools for

Fig. 9 Influence of a common cause (CC) on the probability of
failure. P[CC] ¼ 0 (–), P[CC] ¼ 0.01 (ÆÆ), P[CC] ¼ 0.05 (- -), and
P[CC] (–Æ)
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monitoring and/or remediation of contaminated sites.
It can be achieved by using some of the appropriate
probabilistic tools for quantification of various types
and levels of uncertainty that contribute to the overall
predictive uncertainty. The flexibility comes from the
modular use of some or all of these techniques and the
possibility of incorporating other approaches. Appli-
cations of the PRA approach to complex ventilation
problems might necessitate a computerized construc-
tion of fault trees; and commercially PRA software is
widely available.

The work presented herein is not meant to be
a comprehensive study of contamination of buildings
and all associated risks, but merely an illustration of an
as yet untapped resource available to the field of
building contamination. A real building system can
be far more complicated with many additional fac-
tors that could be considered, if necessary, in an
appropriate analysis. Additionally, further develop-
ment of the knowledge on appropriate probabilities and
proper empirical verification are required before it is
suggested as a standard tool for the practitioner.
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