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We present a tensor-decomposition method to solve the Boltzmann transport equation 
(BTE) in the Bhatnagar-Gross-Krook approximation. The method represents the six-
dimensional BTE as a set of six one-dimensional problems, which are solved with the 
alternating least-squares algorithm and the discrete Fourier transform at N collocation 
points. We use this method to predict the equilibrium distribution (steady-state simulation) 
and a non-equilibrium distribution returning to the equilibrium (transient simulation). Our 
numerical experiments demonstrate N log N scaling. Unlike many BTE-specific numerical 
techniques, the numerical tensor-decomposition method we propose is a general technique 
that can be applied to other high-dimensional systems.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Whenever the mean free path of molecules becomes larger than the characteristic length scale of a system, the continuity 
assumption breaks down and so does the validity of the Navier-Stokes equations. This phenomenon occurs in a number of 
settings, including splashing droplets [1], moving contact lines [2], super- and hyper-sonic flows [3], and flow of electrons in 
metals [4] and silicon [5]. The physics in this flow regime is often described by the six-dimensional (plus time) Boltzmann 
transport equation (BTE) [6].

Like many other high-dimensional partial differential equations (PDEs), the BTE suffers from the curse of dimensionality: 
the computational cost of conventional numerical schemes, such as those based on tensor product representations, grows 
exponentially with an increasing number of degrees of freedom. One way to mitigate such computational complexity is to 
use particle-based methods [7], e.g., direct simulation Monte Carlo (DSMC) [8] or the Nambu-Babovsky method [9]. These 
methods preserve the main physical properties of the system, even far from equilibrium, and are computationally efficient 
away from near-fluid regimes. In particular, they have low memory requirements and their cost scales linearly with the 
number of particles. However, their accuracy, efficiency and convergence rate tend to be poor for non-stationary flows, or 
flows close to continuum regimes [10–12]. This is due to the non-negligible statistical fluctuations associated with finite 
particle numbers, which are difficult and expensive to filter out in such flow regimes [10,13]. While several general purpose 
algorithms have been proposed, the most efficient techniques are problem specific [7,14–16]. These methods exploit the 
BTE’s mathematical properties to arrive at an efficient algorithm, but are not generally applicable to other high-dimensional 
PDEs.

We present a new algorithm based on tensor decompositions to solve the BTE in the Bhatnagar-Gross-Krook (BGK) 
approximation [17]. The algorithm relies on canonical tensor expansions [18], combined with either alternating direction 
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least squares methods [19–22] or alternating direction Galerkin methods [23,24] or any other version of the method of 
mean weighted residuals (MWR) [25]. Unlike the BTE-specific numerical techniques, tensor-decomposition methods are 
general-purpose, i.e., they can be applied to other high-dimensional nonlinear PDEs [26,27], including but not limited to the 
Hamilton-Jacobi-Bellman equation [28], the Fokker-Planck equation [29], and the Vlasov equation [30–32]. This opens the 
possibility to use tensor methods in many research fields including chemical reaction networks in turbulent flows [33], neu-
roscience [34], and approximation of functional differential equations [24]. Recently, we developed the tensor-decomposition 
method [18] to solve a linearized BGK equation. In this paper, we extend it to the full BTE in the BGK approximation, i.e., 
to obviate the need for the assumption of small fluctuations and to allow for variable density, velocity, temperature, and 
collision frequency fields.

This paper is organized as follows. Section 2 contains a brief overview of the Boltzmann-BGK equation. In section 3, we 
propose an efficient algorithm to compute its solution based canonical tensor expansions. Numerical experiments reported 
in section 4 are used to demonstrate the algorithm’s ability to accurately predict the equilibrium distribution of the system 
(steady-state), and the exponential relaxation to equilibrium (transient simulation) of non-equilibrium initial states. The 
algorithm exhibits O(N log(N)) scaling, where N is the number of degrees of freedom in each of the phase variables. Main 
conclusions drawn from the numerical experimentation and future directions of research are summarized in section 5.

2. Boltzmann equation

In the classical kinetic theory of rarefied gas dynamics, flow of gases is described in terms of a probability density 
function (PDF) f (x, ξ , t), which estimates the number of gas particles with velocity ξ ∈ R3 at position x ∈ R3 at time 
t ∈ R+ , such that dN = f dxdξ with N denoting the number of particles (in moles). In the absence of external forces, the 
PDF f satisfies the Boltzmann equation [35],

∂ f

∂t
+ ξ · ∇x f = Q ( f , f ), (1)

where Q ( f , f ) is the collision integral describing the effects of internal forces due to particle interactions. From the math-
ematical viewpoint, the collision integral is a functional of the PDF f , whose form depends on the microscopic dynamics. 
For example, in classical rarefied gas flows [36,37],

Q ( f , f )(x, ξ , t) =
∫
R3

∫
S2

B(ξ , ξ1,ω)
∣∣ f (x, ξ ′, t) f (x, ξ ′

1, t) − f (x, ξ , t) f (x, ξ1, t)
∣∣dωdξ1. (2)

Here, ξ and ξ1 are the velocities of two particles before the collision; ξ ′ = (ξ + ξ1 + ∥∥ξ − ξ1

∥∥
2 ω)/2 and ξ ′

1 = (ξ + ξ1 −∥∥ξ − ξ1

∥∥
2 ω)/2 are these velocities after the collision; and ω is the unit vector to the three-dimensional unit sphere S2. 

The collision kernel B(ξ , ξ1, ω) is a non-negative function of the Euclidean 2-norm 
∥∥ξ − ξ1

∥∥
2 and the scattering angle θ

between the relative velocities before and after the collision,

cos θ = (ξ − ξ1) · ω∥∥ξ − ξ1

∥∥
2

. (3)

Specifically,

B(ξ , ξ1,ω) = ∥∥ξ − ξ1

∥∥
2 σ(

∥∥ξ − ξ1

∥∥
2 cos θ), (4)

where σ is the cross-section scattering function [37]. The collision operator (2) satisfies a system of three conservation 
laws [7],∫

R3

Q ( f , f )(x, ξ , t)ψ(ξ)dξ = 0, ψ(ξ) = 1 or ξ or ‖ξ‖2
2, (5)

for mass, momentum, and energy, respectively. It also satisfies the Boltzmann H-theorem,∫
R3

Q ( f , f )(x, ξ , t) log ( f (x, ξ , t)) dξ ≤ 0, (6)

that implies that any equilibrium PDF, i.e., any PDF f for which Q ( f , f ) = 0, is locally Maxwellian:

feq(x, ξ , t) = n(x, t)

(2πkBT (x, t)/m)3/2
exp

(
−m ‖U(x, t) − ξ‖2

2

2kBT (x, t)

)
. (7)

Here kB is the Boltzmann constant; m is the particle mass; and the number density n, mean velocity U, and temperature T
of a gas are defined as
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n(x, t) =
∫
R3

f (x, ξ , t)dξ , (8)

U(x, t) = 1

n(x, t)

∫
R3

ξ f (x, ξ , t)dξ , (9)

T (x, t) = m

3kBn(x, t)

∫
R3

‖U(x, t) − ξ‖2
2 f (x, ξ , t)dξ . (10)

The Boltzmann equation (1) is a nonlinear integro-differential equation in six dimensions plus time. By taking suitable 
averages over small volumes in position space, one can show that the Boltzmann equation is consistent with both the 
compressible Euler equations [38,39] and the Navier-Stokes equations [40,41].

2.1. BGK approximation of the collision operator

The simplest collision operator satisfying the conservation laws (5) and the Boltzmann H-theorem (6) is the linear 
relaxation operator,

Q ( f , f ) = ν(x, t)
[

feq(x, ξ , t) − f (x, ξ , t)
]
, ν(x, t) > 0. (11)

It is known as the Bhatnagar-Gross-Krook (BGK) model [17]. The collision frequency ν(x, t) is usually set to be proportional 
to the gas number-density and temperature [42],

ν(x, t) = nK T 1−μ. (12)

The exponent μ of the viscosity law depends on the molecular interaction potential and on the type of the gas; and 
K = kBTref/(mμref) > 0, with μref denoting the gas viscosity at the reference temperature Tref .

The combination of (1) and (11) yields the Boltzmann-BGK equation,

∂ f (x, ξ , t)

∂t
+ ξ · ∇x f (x, ξ , t) = ν(x, t)

[
feq(x, ξ , t) − f (x, ξ , t)

]
. (13)

By virtue of (8)–(10), both feq(x, ξ , t) in (7) and ν(x, t) in (12) are nonlinear functionals of the PDF f (x, ξ , t). Therefore, (13)
is a nonlinear integro-differential PDE in six dimension plus time. It converges to the Euler equations of incompressible 
fluid dynamics with the scaling x′ = εx and t′ = εt , in the limit ε → 0. However, it does not converge to the Navier-Stokes 
equations in this limit. Specifically, it predicts an unphysical Prandtl number [43], which is larger than the one obtained 
with the full collision operator (2). The Navier-Stokes equations can be recovered as ε-limits of more sophisticated BGK 
models, e.g., the Gaussian-BGK model [44].

In [18], we introduced additional simplifications, i.e., assumed ν to be constant and the equilibrium density, temperature 
and velocity to be spatially homogeneous. If one additionally assumes U ≡ 0, the resulting model yields an equilibrium 
PDF feq in (7). The last assumption effectively decouples the BGK collision operator from the PDF f (x, ξ , t). This, in turn, 
turns the BGK equation into a linear six-dimensional PDE. In this paper, we develop a numerical method to solve the fully 
nonlinear Boltzmann-BGK equation.

2.2. Scaling

Let us define the Boltzmann-BGK equation (13) on a six-dimensional hypercube, such that f : 	x ×	ξ ×R+ →R+ with 
	x = [−bx, bx]3 and 	ξ = [−bξ , bξ ]3 representing the spatial domain and the velocity domain, respectively. Furthermore, we 
impose periodic boundary conditions on all the surfaces of this hypercube. We transform the hypercube 	x × 	ξ into the 
“standard” hypercube 	π = [−π, π ]6, perform simulations in 	π , and then map the numerical results back onto 	x × 	ξ . 
This is accomplished by introducing dimensionless independent and dependent variables

ξ̃ = ξπ

bξ

, x̃ = xπ

bx
, t̃ = tbξ

bx
, ñ = nb3

x , Ũ = Uπ

bξ

, T̃ = T

Tc
, ν̃ = νλ

bξ

,

where λ is the mean free path of a gas molecule, and Tc is a characteristic temperature. Furthermore, we define the 
dimensionless Knudsen (Kn) and Boltzmann (Bo) numbers as

Kn = λ

bx
and Bo = mb2

ξ

π2kBTc
. (14)

Then, the rescaled PDF f̃ (x̃, ̃ξ , ̃t) = f (x, ξ , t)b3
xb3/π3 satisfies a dimensionless form of the Boltzmann-BGK equation (13),
ξ
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∂ f̃

∂ t̃
= L(ξ̃ ) f̃ + C(x̃, ξ̃ , t̃), L(ξ̃ ) ≡ −ξ̃ · ∇x̃, C(x̃, ξ̃ , t̃) ≡ ν̃

Kn
( f̃eq − f̃ ), (15)

where

f̃eq(x̃, ξ̃ , t̃) = ñ

(2π T̃ /Bo)3/2
exp

(
−Bo

‖ξ̃ − Ũ‖2

2T̃

)
, (16)

with

ñ(x̃, t̃) =
∫

[−π,π ]3

f̃ (x̃, ξ̃ , t̃)dξ̃ , (17)

Ũ(x̃, t̃) = 1

ñ(x̃, t̃)

∫
[−π,π ]3

ξ̃ f̃ (x̃, ξ̃ , t̃)dξ̃ , (18)

T̃ (x̃, t̃) = Bo

3ñ(x̃, t̃)

∫
[−π,π ]3

‖ξ̃ − Ũ(x̃, t̃)‖2
2 f̃ (x̃, ξ̃ , t̃)dξ̃ . (19)

For notational convenience, we drop the tilde below, while continuing to use the dimensionless quantities.

3. A tensor method to solve the Boltzmann-BGK equation

Temporal discretization of the Boltzmann-BGK equation (15) is complicated by the presence of the collision term 
C(x, ξ , t), whose evaluation is computationally expensive. The combination of the Crank-Nicolson time integration scheme 
with alternating-direction least squares, implemented in [18], would require multiple evaluations of C(x, ξ , t) per time step, 
undermining the efficiency of the resulting algorithm. To ameliorate this problem, we replace the Crank-Nicolson method 
with the Crank-Nicolson Leap Frog (CNLF) scheme [45–48],

f (·, tn+1) − f (·, tn−1)

2�t
= L(ξ) f (·, tn+1) + L(ξ) f (·, tn−1)

2
+ C(·, tn) + τn+1, (20)

where τn+1 is the local truncation error at time tn+1.
The CNLF scheme has several advantages over other time-integration methods when applied to tensor discretization of 

the Boltzmann-BGK equation. First, being an implicit scheme, CNLF allows one to march forward in time by solving systems 
of linear equations on tensor manifolds with constant rank.1 Since such manifolds are smooth [50,51], one can compute 
these solutions using, e.g., Riemannian quasi-Newton optimization [50,52,53] or alternating least squares [19,54,55]. Second, 
CNLF facilitates the explicit calculation of the collision term C (x, ξ , t), and only once per time step. To demonstrate this, we 
rewrite (20) as

[I − �t L(ξ)]︸ ︷︷ ︸
A(ξ)

f (·, tn+1) = [I + �t L(ξ)] f (·, tn−1) + 2�t C(·, tn)︸ ︷︷ ︸
h(x,ξ ,tn,tn−1)

+2�t τn+1, (21a)

where I is the identity operator; or

A(ξ) f (·, tn+1) = h(x, ξ , tn, tn−1) + 2�t τn+1. (21b)

Given f (x, ξ , tn) and f (x, ξ , tn−1), this equation allows us to compute f (x, ξ , tn+1) by solving a linear system. In the nu-
merical tensor setting described below, this involves only iterations in f (x, ξ , tn+1), which makes it possible to pre-calculate 
the computationally expensive collision term C(x, ξ , t) once per time step.

The choice of the time step �t in (21) requires some care, since CNLF is conditionally stable [56]. We transform this 
scheme into an unconditionally stable one by using, e.g., the Robert-Asselin-Williams (RAW) filter [57–59].

3.1. Canonical tensor decomposition and alternating least squares (ALS)

We expand the PDF f (x, ξ , tn) in a truncated canonical tensor series [18,22],

f (x, ξ , tn) 

rl∑

l=1

f l
1(x1, tn) f l

2(x2, tn) f l
3(x3, tn) f l

4(ξ1, tn) f l
5(ξ2, tn) f l

6(ξ3, tn). (22)

1 Explicit time-integration algorithms require rank reduction [49] as application of linear operators to tensors, tensor addition, and other tensor operations 
results in increased tensor ranks.
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The separation rank rl is chosen adaptively to keep the norm of the residual below a pre-selected threshold at each time tn . 
To simplify the notation, we introduce the combined position-velocity vector ζ = (x, ξ) and rewrite (22) as

f (ζ , tn) 

rl∑

l=1

6∏
k=1

f l
k(ζk, tn), ζ ∈ 	π = [−π,π ]6. (23)

Next, we expand each function f l
k (ζk, tn) in a finite-dimensional Fourier basis φs(ζk) [60] on [−π, π ],

f l
k(ζk, tn) =

Q∑
s=1

βl
k,s(tn)φs(ζk), (24)

where Q is the number of modes of the Fourier-series expansion, βl
k,s (tn) are the (unknown) Fourier coefficients, and φs(ζk)

are the orthogonal trigonometric functions. Substituting (23) into (21) yields the residual

R(ζ , tn+1, tn, tn−1) =
rl∑

l=1

A (ξ) f l
1 (ζ1, tn+1) . . . f l

6 (ζ6, tn+1) − h (ζ , tn, tn−1) . (25)

The coefficients βl
k,s(tn) are obtained by minimizing the L2 norm of this residual with respect to

β(tn+1) = [β1(tn+1), . . . ,β6(tn+1)]. (26)

The kth vector βk(tn+1) = [(β1
k,1, . . . β

1
k,Q ), . . . (βr

k,1, . . . β
r
k,Q )]� , for k = 1, . . . , 6, collects the degrees of freedom representing 

the PDF f in (23) corresponding to the phase variable ζk at time tn+1, in accordance with (24).
We employ the alternating least squares (ALS) algorithm [55,61] to solve the minimization problem

min
βk

‖R (ζ , tn+1, tn, tn−1)‖2
L2(	π )

(27)

sequentially and iteratively for k = 1, . . . , 6. The ALS algorithm is locally equivalent to the linear block Gauss–Seidel iteration 
method applied to the Hessian of the residual R . As a consequence, it converges linearly with the iteration number [54], 
provided that the Hessian is positive definite (except on a trivial null space associated with the scaling non-uniqueness of 
the canonical tensor decomposition). Each minimization in (27) yields an Euler-Lagrange equation,

Mk(tn+1)βk(tn+1) = γ k(tn+1), k = 1, . . . ,6. (28)

Its expanded form reads⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡
⎢⎢⎣

(Mk)
1,1
1,1 · · · (Mk)

1,1
Q ,1

...
. . .

...

(Mk)
1,1
1,Q · · · (Mk)

1,1
Q ,Q

⎤
⎥⎥⎦
⎡
⎢⎢⎣

(Mk)
2,1
1,1 · · · (Mk)

2,1
Q ,1

...
. . .

...

(Mk)
2,1
1,Q · · · (Mk)

2,1
Q ,Q

⎤
⎥⎥⎦· · ·

⎡
⎢⎢⎣

(Mk)
r,1
1,1 · · · (Mk)

r,1
Q ,1

...
. . .

...

(Mk)
r,1
1,Q · · · (Mk)

r,1
Q ,Q

⎤
⎥⎥⎦

⎡
⎢⎢⎣

(Mk)
1,2
1,1 · · · (Mk)

1,2
Q ,1

...
. . .

...

(Mk)
1,2
1,Q · · · (Mk)

1,2
Q ,Q

⎤
⎥⎥⎦
⎡
⎢⎢⎣

(Mk)
2,2
1,1 · · · (Mk)

2,2
Q ,1

...
. . .

...

(Mk)
2,2
1,Q · · · (Mk)

2,2
Q ,Q

⎤
⎥⎥⎦· · ·

⎡
⎢⎢⎣

(Mk)
r,2
1,1 · · · (Mk)

r,2
Q ,1

...
. . .

...

(Mk)
r,2
1,Q · · · (Mk)

r,2
Q ,Q

⎤
⎥⎥⎦

...
. . .

...⎡
⎢⎢⎣

(Mk)
1,r
1,1 · · · (Mk)

1,r
Q ,1

...
. . .

...

(Mk)
1,r
1,Q · · · (Mk)

1,r
Q ,Q

⎤
⎥⎥⎦
⎡
⎢⎢⎣

(Mk)
2,r
1,1 · · · (Mk)

2,r
Q ,1

...
. . .

...

(Mk)
2,r
1,Q · · · (Mk)

2,r
Q ,Q

⎤
⎥⎥⎦· · ·

⎡
⎢⎢⎣

(Mk)
r,r
1,1 · · · (Mk)

r,r
Q ,1

...
. . .

...

(Mk)
r,r
1,Q · · · (Mk)

r,r
Q ,Q

⎤
⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Mk

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡
⎢⎢⎣

β1
k,1
...

β1
k,Q

⎤
⎥⎥⎦

⎡
⎢⎢⎣

β2
k,1
...

β2
k,Q

⎤
⎥⎥⎦

...⎡
⎢⎢⎣

βr
k,1
...

βr
k,Q

⎤
⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
βk

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡
⎢⎢⎣

γ 1
k,1
...

γ 1
k,Q

⎤
⎥⎥⎦

⎡
⎢⎢⎣

γ 2
k,1
...

γ 2
k,Q

⎤
⎥⎥⎦

...⎡
⎢⎢⎣

γ r
k,1
...

γ r
k,Q

⎤
⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
γ k

where

(Mk)
l,z
s,q (tn+1) =

∫
	π

[
A(ξ)φs(ζk)

6∏
j=1

f l
j(ζ j, tn+1)

][
A(ξ)φq(ζk)

6∏
j=1

f z
j (ζ j, tn+1)

]
dζ . (29)
j �=k j �=k
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Since the linear operator, first defined in (21), is fully separable (with rank 4), the 6D integral in (29) turns into the sum of 
the product of 1D integrals. The right hand side of (29) is

γ l
k,q =

∫
	π

h(ζ , tn, tn−1)A(ξ)φq(ζk)

6∏
j=1
j �=k

f l
j(ζ j, tn+1)dζ

=
rm∑

m=1

∫
	π

{
[I + �tL(ξ )]

6∏
j=1

f m
j (ζ j, tn−1)

}{
A(ξ)φq(ζk)

6∏
j=1
j �=k

f l
j(ζ j, tn+1)

}
dζ

+ 2�t

∫
	π

C(ζ , tn)A(ξ)φq(ζk)

6∏
j=1
j �=k

f l
j(ζ j, tn+1)dζ .

(30)

The 6D integrals under the sum are, as before, a sum of the products of 1D integrals, because L is separable with rank 3.

3.2. Evaluation of the BGK collision term

The BGK collision term C(ζ , tn) in (30),

C(ζ , tn) = ν(x, tn)

Kn

[
feq(x, ξ , tn) − f (x, ξ , tn)

]
, (31)

is evaluated by using a canonical tensor decomposition. The equilibrium distribution feq, defined in (16), is the product of 
one 3D function and three 4D functions,

feq(x, ξ , tn) = n(x, tn)

[2π T (x, tn)/Bo]3/2

3∏
m=1

exp

(
−Bo

[ξm − Um(x, tn)]2

2T (x, tn)

)
. (32)

Each of these terms are expanded in a canonical tensor series once the number density, velocity and temperature are 
computed using (17)–(19). The integrals in these expressions are reduced to the products of 1D integrals, once the canonical 
tensor expansion (23) is available. To calculate the normalization by n(x, tn) in (17)–(19) and the normalization by T (x, tn)

in (32), we employ a Fourier collocation method with N points in each variable. That turns all the integrals into Riemannian 
sums, and the functions f l

k(ζk, tn) into

f l
k(ζk, j, tn) = 1

4π

⎡
⎣ N/2∑

s=−N/2+1

βl
k,s (tn)eisζk, j +

N/2−1∑
s=−N/2

βl
k,s(tn)eisζk, j

⎤
⎦ (33)

with inverse

βl
k,s (tn) = h

N∑
j=1

f l
k(ζk, j, tn)e−isζk, j . (34)

Here, h = 2π/N and ζk, j = −π + jh with j = 1, . . . , N . The form of (33) with two different summation intervals is chosen 
to ensure that the highest wave-number is treated symmetrically [62]. The forward and backward transform is performed 
efficiently with the Fast Fourier Transform (FFT) and its inverse. The collision frequency ν(x, t) = Kn(x, t)T (x, t)1−μ is also 
represented by a canonical tensor series, once n(x, t) and T (x, t) are available. To speed up the tensor decomposition algo-
rithm, the result from the previous time step is used as the initial guess for the new decomposition.

3.3. Parallel ALS algorithm

Our implementation of the parallel ALS algorithm for solving the Boltzmann transport equation is encapsulated in Algo-
rithm 1.2 The subroutine Initialization initializes all the variables needed to run the code. This includes, initialization of the 
time-step size �t , the number of time steps nmax, the number of collocation points, and the initialization of the coefficients 
βNew, βNow, and βOld. These coefficients store, respectively, the values of f (ζ , tn+1), f (ζ , tn), and f (ζ , tn−1) in Fourier space. 
In addition, the operators A+ , A− , and ExpA+ are initialized. The operators A+ and A− represent I ± �t L(ξ), respectively. 
The rank separated operator ExpA+ represents operator A+ acting on the Fourier basis function φs . The representation of 
A+ as a single operator reduces the loss of accuracy that comes with multiplying different operators.

2 Details of the algorithmic implementation of our method and description of the various subroutines mentioned herein are provided in the Supplemental 
Material.
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Algorithm 1 Parallel ALS algorithm.
1: procedure Main

2: Initialization  Load variables and allocate matrices
3:
4: for n ← 1 : nmax do
5: C ← computeArrayC(βNow)  Compute collision operator
6:
7: βNew ← randBeta(βNew)  Add some random noise
8: ε|β| ← εTol + 106  Reset stop criterion
9: while ε|β| > εTol do

10: βInt ← βNew  Set intermediate value of beta
11:
12: N ← computeArrayN(A+, A−, ExpA+ , βOld, βNew)

13: O  ← computeArrayO(C, A+, ExpA+ , βNew)

14: γ ← N + 2 �t O
15:
16: parfor d ← 1 : 6 do  Iterate over dimensions
17: M (d) ← computeArrayM(A+, ExpA+ (d) , βNew, d)

18:
19: parfor d ← 1 : 6 do
20: βNew (d) ← computeBetaNew(βNew (d) , M (d) , γ (d))

21:
22: βNew ← kreal(βNew)  Keep only real part of solution
23: ε|β| ← computeNormBeta(βInt, βNew)  Check for convergence
24:
25: if ε|β| > εTol then
26: βNew ← computeBetaNewDelta(βNew, βInt)  Update
27: else
28: βNew, βNow ← computeRAW(βNew, βNow, βOld)  Apply RAW filter

29:
30: βOld = βNow  Update for next time step
31: βNow = βNew

32: end procedure

For every time step, computeArrayC evaluates the BGK collision operator C(ζ , tn) in (31), and randBeta adds a small 
amount of noise to βNew to prevent the algorithm from getting stuck in a local minimum. The while loop contains the 
parallel ALS algorithm. The functions computeArrayN and computeArrayO inside the loop compute the two different con-
tributions to the vector γ in (30). The function computeArrayM computes the array M inside a parallel for loop, which 
completes the set of equations (28).

The least-squares routine inside the function computeBetaNew updates βNew every iteration inside a parallel for loop. 
Because of the large number of degrees of freedom in the above system, there are multiple (local minimum) solutions, 
which are not necessarily real and mass conserving. We ameliorate this problem by adding a constraint that, for every 
iteration, only the real part of the solution for βNew is kept. This calculation is performed by the function kreal. The 
function computeNormBeta then computes the convergence criterion, ε|β| , by comparing the current value of βNew to its 
value at the end of the previous iteration, βInt. If convergence has not been reached, computeBetaNewDelta updates βNew
for the next iteration. If convergence has been reached, computeRAW applies the RAW filter [57–59] to make the CNLF 
algorithm unconditionally stable, and the algorithm moves on to the next time step.

4. Numerical results

In this section we study the accuracy and computational efficiency of the proposed ALS-CNLF tensor method to solve the 
Boltzman-BGK equation. (Unless specified otherwise, values of the simulation parameters used in our numerical experiments 
are collated in Table 1.) We start by validating our solver on a prototype problem involving the Boltzmann-BGK equation in 
one spatial dimension. Then we consider simulations of the full Boltzmann-BGK equation in three spatial dimensions. The 
3D numerical results are split up into steady-state and transient problems. The steady-state problem is used to validate the 
code against an analytical equilibrium solution to the Boltzmann transport equation. It also enables us to investigate the 
error convergence as function of various parameters, and the code performance as function of the number of collocation 
points and the number of processor cores. The transient problem starts with an initial distribution away from equilibrium, 
including a non-zero average velocity in the x1 direction, and looks at temporal evolution of the PDF f . We compare our 
code with a spectral code in 2D and present the results for the full 6D Boltzmann-BGK equation.

4.1. Transient dynamics in one spatial dimension

To validate the proposed Boltzmann-BGK tensor solver, we first compute the numerical solution of (15) in one spatial 
dimension, and compare it with an accurate benchmark solution obtained with the high-order Fourier pseudo-spectral 
method [60]. Specifically, we study the initial-value problem
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Table 1
Values of parameters used in the simulations of the Boltzmann-BGK equa-
tion in three spatial dimensions.

Variable Value Description

�t 0.025 Dimensionless time step
K 1.0 Collision frequency pre-factor
μ 0.5 Collision frequency temperature exponent
Kn 1 Knudsen number
Bo 3.65 Boltzmann number
εTol 5.0 · 10−5 Tolerance on ALS iterations

Fig. 1. Contour plots of the reference solution to the 1D Boltzmann-BGK initial-value problem (35)–(37), the PDF fspc(x, ξ, t), computed with the high-order 
Fourier pseudo-spectral method and explicit two-steps Adams-Bashforth temporal integrator. (For interpretation of the colors in the figure(s), the reader is 
referred to the web version of this article.)

∂ f (x, ξ, t)

∂t
+ ξ

∂ f (x, ξ, t)

∂x
= K T (x, t)1−μ

Kn

[
feq(x, ξ, t) − f (x, ξ, t)

]
, (35)

f (x, ξ,0) = n0√
(2π T0/Bo)

exp

(
− Bo

2T0
(U0 − ξ)2

)
, (36)

with

n0 = 1.0 + 0.3 cos (2x), U0 = 1.0 + 0.1 sin (3x), T0 = 1.0. (37)

The benchmark numerical solution is constructed by solving (35)–(37) in the periodic box (x, ξ) ∈ [−π, π ]2 with a Fourier 
pseudo-spectral method [60] (odd expansion on a 61 × 61 grid) and an explicit two-steps Adams-Bashforth temporal in-
tegrator with �t = 0.0005. The remaining parameters are set to the values from Table 1, except Kn = 10. Fig. 1 exhibits 
contour plots of the benchmark PDF solution at three times.

We report the accuracy of our ALS-CNLF tensor algorithm3 by comparing its prediction, fALS, with the reference solution, 
fspc, in terms of two metrics. The first is the L2 norm

∥∥ fALS(x, ξ, t) − fspc(x, ξ, t)
∥∥=

⎛
⎜⎝ ∫

[−π,π ]2

[
fALS(x, ξ, t) − fspc(x, ξ, t)

]2 dxdξ

⎞
⎟⎠

1/2

. (38)

The second is the Kullback-Leibler divergence

DKL(FALS||Fspc) =
∫

[−π,π ]2

fALS(x, ξ, t) log

[
fALS(x, ξ, t)

fspc(x, ξ, t)

]
dxdξ. (39)

In Fig. 2, we plot these two metrics as function of time t and the tensor rank r, which is kept constant throughout the 
simulation. Both the L2 error and the Kullback-Leibler divergence decrease with the tensor rank r.

3 The tolerance for the ALS iterations is set to εTol = 10−12, while the other simulation parameters, such as �t and the number of grid points are the 
same as in the Fourier pseudo-spectral method.
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Fig. 2. Boltzmann-BGK problem (35)–(37) in one spatial dimension: L2 error and Kullback-Leibler divergence of the ALS-CNLF tensor solution, fALS, relative 
to the reference solution, fspc, versus time. Both the L2 error and the Kullback-Leibler divergence decrease with the tensor rank r.

Fig. 3. Temporal variability of relative errors in the spatial averages of density, 〈n〉, velocity components, 〈U1〉, 〈U2〉, and 〈U3〉, and collision frequency, 〈ν〉, 
as well as of the spatially averaged temperature, 〈T 〉. The number of collocation points per dimension is N = 64. The results show that the code is mass 
conserving, i.e., the moments of the PDF f at equilibrium are constant in time up to a small (10−5) error.

4.2. Steady-state simulations in three spatial dimensions

Since convergence of the ALS algorithm is not guaranteed, e.g., [54,63], and since the equilibrium distribution is one 
of the few analytical solutions to the Boltzmann transport equation in six dimensions, we report the code’s behavior at 
equilibrium. The initial condition in this experiment is the Maxwell-Boltzmann equilibrium PDF, whose moments, as defined 
in (17)–(19), are set to n(x, 0) = 1, U1(x, 0) = U2(x, 0) = U3(x, 0) = 0, and T (x, 0) = 1. The simulation was ran till t = 1. 
Fig. 3 shows temporal variability of the relative errors of the spatial averages, 〈n〉 and 〈T 〉, of the moments n and T and 
that of the collision frequency, 〈ν〉. Since the initial values of the velocities 〈U1〉, 〈U2〉 and 〈U3〉 are zero, Fig. 3(b) shows 
only their average values as function of time. For any quantity a(x, t), the spatial average is defined as

〈a(t)〉 = 1

(2π)3

∫
[−π,π ]3

a(x, t)dx. (40)

As expected, all the spatially averaged moments at equilibrium remain approximately constant with time, with small (on 
the order of 10−5) deviations representing the numerical error.

Another metric of the accuracy of our steady-state equilibrium solution, the root-mean-square error (RMSE) of the solu-
tion, is shown in Fig. 4 as function of time. The RMSE is defined as

RMS( f − f0) =
√√√√ 1

N6

N6∑
( f i − f0,i)

2, (41)

i=1
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Fig. 4. (a) Temporal variability of the RMSE between the computed PDF f and the initial PDF f0. Unless otherwise mentioned in the legend, �t = 0.025
and εTol = 5.0 · 10−5. The solution error is relatively independent from the number of collocation points per dimension, N . However, reducing the time step 
�t and, to a larger extent, the convergence criterion εTol significantly reduces the solution error. (b) Mass conservation as function of time t . The results 
show a clear improvement in mass conservation going from N = 16 to N = 32, but not from N = 32 to N = 64. Decreasing the time step to �t = 0.01 does 
not reduce mass loss, while reducing the convergence criterion to εTol = 5.0 · 10−6 significantly improves mass conservation.

Fig. 5. Temporal variability of the number of iterations, nβ , and convergence, ε|β| . The number of collocation points per dimension is N = 64. Since the 
same amplitude of random noise in β is injected at every time step, the number of iterations is nearly constant in time. The right axis has logarithmic 
scale, and the distance between each iteration decreases as convergence is reached. This suggests that convergence follows an exponential decay.

where f0 is the initial condition. The simulation was performed from N = 16 to N = 64 collocation points per dimension. 
However, the number of collocation points does not have a significant effect on the accuracy of the algorithm (Fig. 4(a)). 
Decrease in the time step, from �t = 0.025 to �t = 0.01, does not have much effect either. On the other hand, reducing 
the convergence criterion for β from εTol = 5.0 · 10−5 to εTol = 5.0 · 10−6 significantly lowers the error. This suggests the 
presence of a bottleneck in increasing the accuracy of the simulation caused by the convergence criterion. We show in 
section 4.3 that the bottleneck for higher accuracy can depend on the physical system.

Since the continuity equation is used as an additional constraint, we explore the behavior of the RMSE of the spatially 
averaged density 〈n〉. Fig. 4(b) shows that our algorithm satisfies mass conservation even at the lowest number of collocation 
points, N = 16. As the number of collocation points increases from N = 16 to N = 32, the error in the mass conservation 
is significantly reduced. However, the further increase in the number of collocation points, from N = 32 to N = 64, hardly 
has an effect. Also, decreasing the time step from �t = 0.025 to �t = 0.01 does not reduce the error. However, as was 
also observed in Fig. 4(a), reducing the convergence criterion for β from εTol = 5.0 · 10−5 to εTol = 5.0 · 10−6 significantly 
reduces the amount of mass loss. This again confirms that the convergence criterion serves as a bottleneck in increasing 
the simulation accuracy. This finding highlights the importance of picking a convergence-criterion value that satisfies the 
desired balance between available computational resources and accuracy. A smaller convergence criterion reduces the error, 
but results in more iterations to reach convergence and, potentially, in a higher rank of the solution, resulting in higher 
memory usage.

The number of iterations, nβ , needed to reach convergence throughout the simulation is reported in Fig. 5 (the left 
vertical axis) as function of time t . Since the same amount of random noise is added to β before starting the ALS algorithm 
at every time step, the number of iterations is nearly constant. Adding a smaller amount of random noise might reduce 
the number of iterations, but our numerical experiments revealed that doing so causes the ALS algorithm to get stuck in a 
local minimum and precludes the residual of the continuity equation, ε|β| , from being properly minimized. Fig. 5 (the right 
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Fig. 6. Scaling of the wall time tWall with (a) the number of collocation points per dimension, N , and (b) the number of processors, nProc . The calculations 
to determine the scaling of the wall time as function of the number of collocation points were performed on a single core.

vertical axis) shows that, as the convergence is reached, the difference in the residual between the successive iterations 
gets smaller. This suggests an exponential decay towards the minimum residual that can be reached before the rank of the 
solution needs to be increased.

The computational efficiency of our code is reported in Fig. 6. The left frame shows the scaling of the wall time, tWall, 
with the number of collocation points per dimension, N , on one CPU core. The performance of the code is close to N log (N)

in the range of the explored collocation points. The most time is spent in the LSQR [64] subroutine, which is used to implic-
itly solve for β for each dimension during every iteration of the ALS procedure. This suggests that the code could be further 
optimized by replacing the existing LSQR algorithm with its more efficient implementation, e.g., [65]. The right frame of 
Fig. 6 exhibits the scaling of the wall time, tWall , with the number of processors, nProc. The curve 1/nProc represents the 
ideal scaling without any communication overhead. Even though the different dimensions can all be solved for indepen-
dently, the scaling of our code with the number of processors is quite poor. This suggests that the code can be optimized 
further by minimizing the communication between different CPU cores. One way to approach this would be to rewrite the 
code around a specialized parallel processing MPI library and have finer control over both data communication between 
processor cores and protocol selection.

4.3. Relaxation to statistical equilibrium in three spatial dimensions

In this section, we study relaxation to statistical equilibrium predicted by the dimensionless Boltzmann-BGK model 
(15)–(19), subject to the initial condition

f (x, ξ ,0) = W f1(x1, ξ1,0) f2(x2, ξ2,0) f3(x3, ξ3,0) (42a)

with

f i(xi, ξi,0) =
3
√

n0√
2π T0/Bo

exp

[
− Bo

2T0
(Ui,0 − ξi)

4
]

, i = 1,2,3 (42b)

and n0 =∏3
i=1(0.5 cos xi + 1), T0 = 0.0025 cos x1, U1,0 = 1 + 0.025 sin(x2 − 1), U2,0 = 0, and U3,0 = 0.025 sin(x1 − 2). The 

integral over the PDF is normalized to 1 by computing the value of W . The difference between the initial PDF and the local 
equilibrium PDF causes the Boltzmann equation to evolve while the fluctuations in the initial fields are introduced to show 
the code’s ability to operate away from global equilibrium. In this experiment, the Knudsen number is set to Kn = 10. Fig. 7
shows the PDF f (x, ξ , t) in the (x1-x2) and (ξ1-ξ2) hyper-planes. The PDF f evolves from its initial state far from equilibrium 
to the equilibrium Maxwell-Boltzmann PDF feq. Fig. 8 further elucidates this dynamics by exhibiting temporal snapshots of 
the PDF f (x, ξ , t) in hyper-planes (x; ξ ) = (x1, 0, 0; 0), (0, x2, 0; 0), (0, 0, x3; 0), (0; ξ1, 0, 0), (0; 0, ξ2, 0), and (0; 0, 0, ξ3).

Finally, Fig. 9 exhibits temporal evolution of the number density n(x, t), velocity U(x, t), temperature T (x, t), and the 
collision frequency ν(x, t), all evaluated at the hyper-plane x = (x1, 0, 0). As expected, the magnitude of the velocity com-
ponents U2 and U3 is about 100 times smaller than that of the U1 component (frames (a)–(c)). The effect of the flow in 
the x1 direction is seen in frame (d), where the density profile shifts to the right as time progresses; in addition, the height 
of the density profile decreases as the mass is redistributed by diffusion. While not discernible from these figures, the code 
does suffer from a small amount of mass loss of about 2% per unit time. This is most likely due to a combination of small 
truncation errors, convergence tolerances, and time step size. Frame (e) shows evolution of the temperature T (x1, ·, t) from 
its initial nearly uniform state. Increasing velocity fluctuations drive the increase in temperature fluctuations. The collision 
frequency (frame (f)) is computed directly from the density and temperature fields according to (12). Overall, the PDF and 
its moments show the expected physical behavior and evolve towards the equilibrium Maxwell-Boltzmann distribution.
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Fig. 7. Temporal evolution of the PDF f (x, ξ , t) in hyper-planes (x; ξ) = (x1, x2, 0; 0) (top row) and (0; ξ1, ξ2, 0) (bottom row). The number of collocation 
points per dimension is N = 32. The color-coding is consistent among the different frames in a row. The PDF f evolves from its initial, far-from-equilibrium 
state (42) towards its equilibrium state (16).

Fig. 8. Temporal evolution of the PDF f (x, ξ , t) in hyper-planes (a) (x; ξ) = (x1, 0, 0; 0), (b) (x; ξ) = (0, x2, 0; 0), (c) (x; ξ) = (0, 0, x3; 0), (d) (x; ξ) =
(0; ξ1, 0, 0), (e) (x; ξ) = (0; 0, ξ2, 0), and (f) (x; ξ) = (0; 0, 0, ξ3). The number of collocation points per dimension is N = 32. The PDF f evolves from its 
initial, far-from-equilibrium state (42) towards its equilibrium state (16).

5. Discussion and conclusions

We demonstrated the ability of canonical polyadic tensor decomposition to solve the BGK approximation of the six-
dimensional Boltzmann transport equation with variable density, velocity, temperature, and collision frequency fields. This 
extends the usage of this method from only fully separable differential operators, to partially separable operators. The 
dependent variables in the Boltzmann equation are computed via the pseudo-spectral method with collocation points. The 
different dimensions are solved using a parallel ALS algorithm. Our numerical experiments show that the code is capable 
of simulating both a system’s steady state and its temporal evolution starting from a state far away from equilibrium. The 
highest simulation accuracy is achieved by identifying a correct bottleneck: in the steady-state simulations the limiting 
factor is the convergence tolerance. The code’s performance scales as N log(N) with the number of collocation points per 
dimension, N .

In future work, we will further optimize the code, implement different boundary conditions, and explore the feasibility 
of using the code with other collision operators. Significant speedup can be achieved by rank reduction of the collision 
operator. The currently used reconstruction of the collision operator via multiplication of its different components can 
result in a high-rank operator, which can become degenerate. Reducing the rank of this tensor, while maintaining accuracy, 
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Fig. 9. Temporal evolution of (a)–(c) the velocity components Ui x, t), (d) number density n(x, t), (e) temperature T (x, t), and (f) the collision frequency 
ν(x, t), all evaluated at the hyper-plane x = (x1, 0, 0). The number of collocation points per dimension is N = 32.

is a topic that needs further study. Another aspect where the code can be improved is parallelization, especially when using 
the CNLF-ALS method to solve problems of dimensionality higher than that of the Boltzmann-BGK equation. One way to 
approach this would be to rewrite the code around a specialized parallel processing MPI library and have finer control over 
data communication between processor cores and protocol selection.

Generalizations to other types of boundary conditions would require an in-depth investigation of the trial function be-
havior. The choice of a right trial function for a certain system is typically determined by one of the two approaches. First, 
one selects a trial function that obeys the desired boundary conditions and then sums over the trial functions to reconstruct 
the solution to a PDE. Second, one selects a trial function that captures the PDE solution and then adds trial functions to 
reconstruct the boundary condition. Fig. 8 shows that the six-dimensional Boltzmann equation subject to periodic bound-
ary conditions can be efficiently solved by using the discrete Fourier series. The presence of, e.g., a wall would introduce 
the Maxwell boundary condition [35,66]. The latter consists of two parts: one represents the reflection of particles from 
the wall and the other represents absorption and emission of particles on the wall. Since there is no known trial func-
tion to either solve the Boltzmann equation in the bulk or the Maxwell boundary condition on the wall, another method 
of the trial-function selection is needed. Such methods include the tau method [67], the penalty approach [68], and the 
mixed method [69–71]. They have been used to implement boundary condition for the weighted residuals and spectral 
methods [72,68], but have not yet been applied in the tensor decomposition setting.

While the boundary conditions are very important for engineering applications, some fundamental questions remain to 
be resolved as well. The empirical evidence shows convergence of our tensor algorithms, but its theoretical proof is lacking. 
That is largely due to two factors. First, it is generally assumed that increasing the rank of the solution improves its accuracy 
and in, some cases, tensor decomposition was shown to be exponentially more efficient than one would expect a priori [22]. 
However, there is no mathematical proof which indicates how high the rank needs to be to reach a certain accuracy and how 
fast the solution converges as a function of its rank. This question is very important for the speed of tensor decomposition, 
because the higher the rank of the operators and the solution of the Boltzmann equation, the slower the computation 
becomes. Second, from one time step to the next convergence is not guaranteed. The ALS method implemented in our code 
is a variation on the Gauss-Seidel method whose convergence can be proven for some specific cases [54]. However, only 
the Jacobi method can decouple the different dimensions and parallelize the algorithm. How the adoption of this method 
would change convergence remains to be investigated.
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