
Journal of Computational Physics 421 (2020) 109744
Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

Tensor methods for the Boltzmann-BGK equation

Arnout M.P. Boelens a, Daniele Venturi b, Daniel M. Tartakovsky a,∗
a Department of Energy Resources Engineering, Stanford University, Stanford, CA 94305, United States of America
b Department of Applied Mathematics, UC Santa Cruz, Santa Cruz, CA 95064, United States of America

a r t i c l e i n f o a b s t r a c t

Article history:
Received 12 November 2019
Received in revised form 25 July 2020
Accepted 27 July 2020
Available online 5 August 2020

Keywords:
High-dimensional PDE
Tensor method
Non-equilibrium

We present a tensor-decomposition method to solve the Boltzmann transport equation
(BTE) in the Bhatnagar-Gross-Krook approximation. The method represents the six-
dimensional BTE as a set of six one-dimensional problems, which are solved with the
alternating least-squares algorithm and the discrete Fourier transform at N collocation
points. We use this method to predict the equilibrium distribution (steady-state simulation)
and a non-equilibrium distribution returning to the equilibrium (transient simulation). Our
numerical experiments demonstrate N log N scaling. Unlike many BTE-specific numerical
techniques, the numerical tensor-decomposition method we propose is a general technique
that can be applied to other high-dimensional systems.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Whenever the mean free path of molecules becomes larger than the characteristic length scale of a system, the continuity
assumption breaks down and so does the validity of the Navier-Stokes equations. This phenomenon occurs in a number of
settings, including splashing droplets [1], moving contact lines [2], super- and hyper-sonic flows [3], and flow of electrons in
metals [4] and silicon [5]. The physics in this flow regime is often described by the six-dimensional (plus time) Boltzmann
transport equation (BTE) [6].

Like many other high-dimensional partial differential equations (PDEs), the BTE suffers from the curse of dimensionality:
the computational cost of conventional numerical schemes, such as those based on tensor product representations, grows
exponentially with an increasing number of degrees of freedom. One way to mitigate such computational complexity is to
use particle-based methods [7], e.g., direct simulation Monte Carlo (DSMC) [8] or the Nambu-Babovsky method [9]. These
methods preserve the main physical properties of the system, even far from equilibrium, and are computationally efficient
away from near-fluid regimes. In particular, they have low memory requirements and their cost scales linearly with the
number of particles. However, their accuracy, efficiency and convergence rate tend to be poor for non-stationary flows, or
flows close to continuum regimes [10–12]. This is due to the non-negligible statistical fluctuations associated with finite
particle numbers, which are difficult and expensive to filter out in such flow regimes [10,13]. While several general purpose
algorithms have been proposed, the most efficient techniques are problem specific [7,14–16]. These methods exploit the
BTE’s mathematical properties to arrive at an efficient algorithm, but are not generally applicable to other high-dimensional
PDEs.

We present a new algorithm based on tensor decompositions to solve the BTE in the Bhatnagar-Gross-Krook (BGK)
approximation [17]. The algorithm relies on canonical tensor expansions [18], combined with either alternating direction

* Corresponding author.
E-mail address: tartakovsky@stanford.edu (D.M. Tartakovsky).
https://doi.org/10.1016/j.jcp.2020.109744
0021-9991/© 2020 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jcp.2020.109744
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2020.109744&domain=pdf
mailto:tartakovsky@stanford.edu
https://doi.org/10.1016/j.jcp.2020.109744

2 A.M.P. Boelens et al. / Journal of Computational Physics 421 (2020) 109744
least squares methods [19–22] or alternating direction Galerkin methods [23,24] or any other version of the method of
mean weighted residuals (MWR) [25]. Unlike the BTE-specific numerical techniques, tensor-decomposition methods are
general-purpose, i.e., they can be applied to other high-dimensional nonlinear PDEs [26,27], including but not limited to the
Hamilton-Jacobi-Bellman equation [28], the Fokker-Planck equation [29], and the Vlasov equation [30–32]. This opens the
possibility to use tensor methods in many research fields including chemical reaction networks in turbulent flows [33], neu-
roscience [34], and approximation of functional differential equations [24]. Recently, we developed the tensor-decomposition
method [18] to solve a linearized BGK equation. In this paper, we extend it to the full BTE in the BGK approximation, i.e.,
to obviate the need for the assumption of small fluctuations and to allow for variable density, velocity, temperature, and
collision frequency fields.

This paper is organized as follows. Section 2 contains a brief overview of the Boltzmann-BGK equation. In section 3, we
propose an efficient algorithm to compute its solution based canonical tensor expansions. Numerical experiments reported
in section 4 are used to demonstrate the algorithm’s ability to accurately predict the equilibrium distribution of the system
(steady-state), and the exponential relaxation to equilibrium (transient simulation) of non-equilibrium initial states. The
algorithm exhibits O(N log(N)) scaling, where N is the number of degrees of freedom in each of the phase variables. Main
conclusions drawn from the numerical experimentation and future directions of research are summarized in section 5.

2. Boltzmann equation

In the classical kinetic theory of rarefied gas dynamics, flow of gases is described in terms of a probability density
function (PDF) f (x, ξ , t), which estimates the number of gas particles with velocity ξ ∈ R3 at position x ∈ R3 at time
t ∈ R+ , such that dN = f dxdξ with N denoting the number of particles (in moles). In the absence of external forces, the
PDF f satisfies the Boltzmann equation [35],

∂ f

∂t
+ ξ · ∇x f = Q (f , f), (1)

where Q (f , f) is the collision integral describing the effects of internal forces due to particle interactions. From the math-
ematical viewpoint, the collision integral is a functional of the PDF f , whose form depends on the microscopic dynamics.
For example, in classical rarefied gas flows [36,37],

Q (f , f)(x, ξ , t) =
∫
R3

∫
S2

B(ξ , ξ1,ω)
∣∣ f (x, ξ ′, t) f (x, ξ ′

1, t) − f (x, ξ , t) f (x, ξ1, t)
∣∣dωdξ1. (2)

Here, ξ and ξ1 are the velocities of two particles before the collision; ξ ′ = (ξ + ξ1 + ∥∥ξ − ξ1

∥∥
2 ω)/2 and ξ ′

1 = (ξ + ξ1 −∥∥ξ − ξ1

∥∥
2 ω)/2 are these velocities after the collision; and ω is the unit vector to the three-dimensional unit sphere S2.

The collision kernel B(ξ , ξ1, ω) is a non-negative function of the Euclidean 2-norm
∥∥ξ − ξ1

∥∥
2 and the scattering angle θ

between the relative velocities before and after the collision,

cos θ = (ξ − ξ1) · ω∥∥ξ − ξ1

∥∥
2

. (3)

Specifically,

B(ξ , ξ1,ω) = ∥∥ξ − ξ1

∥∥
2 σ(

∥∥ξ − ξ1

∥∥
2 cos θ), (4)

where σ is the cross-section scattering function [37]. The collision operator (2) satisfies a system of three conservation
laws [7],∫

R3

Q (f , f)(x, ξ , t)ψ(ξ)dξ = 0, ψ(ξ) = 1 or ξ or ‖ξ‖2
2, (5)

for mass, momentum, and energy, respectively. It also satisfies the Boltzmann H-theorem,∫
R3

Q (f , f)(x, ξ , t) log (f (x, ξ , t)) dξ ≤ 0, (6)

that implies that any equilibrium PDF, i.e., any PDF f for which Q (f , f) = 0, is locally Maxwellian:

feq(x, ξ , t) = n(x, t)

(2πkBT (x, t)/m)3/2
exp

(
−m ‖U(x, t) − ξ‖2

2

2kBT (x, t)

)
. (7)

Here kB is the Boltzmann constant; m is the particle mass; and the number density n, mean velocity U, and temperature T
of a gas are defined as

A.M.P. Boelens et al. / Journal of Computational Physics 421 (2020) 109744 3
n(x, t) =
∫
R3

f (x, ξ , t)dξ , (8)

U(x, t) = 1

n(x, t)

∫
R3

ξ f (x, ξ , t)dξ , (9)

T (x, t) = m

3kBn(x, t)

∫
R3

‖U(x, t) − ξ‖2
2 f (x, ξ , t)dξ . (10)

The Boltzmann equation (1) is a nonlinear integro-differential equation in six dimensions plus time. By taking suitable
averages over small volumes in position space, one can show that the Boltzmann equation is consistent with both the
compressible Euler equations [38,39] and the Navier-Stokes equations [40,41].

2.1. BGK approximation of the collision operator

The simplest collision operator satisfying the conservation laws (5) and the Boltzmann H-theorem (6) is the linear
relaxation operator,

Q (f , f) = ν(x, t)
[

feq(x, ξ , t) − f (x, ξ , t)
]
, ν(x, t) > 0. (11)

It is known as the Bhatnagar-Gross-Krook (BGK) model [17]. The collision frequency ν(x, t) is usually set to be proportional
to the gas number-density and temperature [42],

ν(x, t) = nK T 1−μ. (12)

The exponent μ of the viscosity law depends on the molecular interaction potential and on the type of the gas; and
K = kBTref/(mμref) > 0, with μref denoting the gas viscosity at the reference temperature Tref .

The combination of (1) and (11) yields the Boltzmann-BGK equation,

∂ f (x, ξ , t)

∂t
+ ξ · ∇x f (x, ξ , t) = ν(x, t)

[
feq(x, ξ , t) − f (x, ξ , t)

]
. (13)

By virtue of (8)–(10), both feq(x, ξ , t) in (7) and ν(x, t) in (12) are nonlinear functionals of the PDF f (x, ξ , t). Therefore, (13)
is a nonlinear integro-differential PDE in six dimension plus time. It converges to the Euler equations of incompressible
fluid dynamics with the scaling x′ = εx and t′ = εt , in the limit ε → 0. However, it does not converge to the Navier-Stokes
equations in this limit. Specifically, it predicts an unphysical Prandtl number [43], which is larger than the one obtained
with the full collision operator (2). The Navier-Stokes equations can be recovered as ε-limits of more sophisticated BGK
models, e.g., the Gaussian-BGK model [44].

In [18], we introduced additional simplifications, i.e., assumed ν to be constant and the equilibrium density, temperature
and velocity to be spatially homogeneous. If one additionally assumes U ≡ 0, the resulting model yields an equilibrium
PDF feq in (7). The last assumption effectively decouples the BGK collision operator from the PDF f (x, ξ , t). This, in turn,
turns the BGK equation into a linear six-dimensional PDE. In this paper, we develop a numerical method to solve the fully
nonlinear Boltzmann-BGK equation.

2.2. Scaling

Let us define the Boltzmann-BGK equation (13) on a six-dimensional hypercube, such that f : 	x ×	ξ ×R+ →R+ with
	x = [−bx, bx]3 and 	ξ = [−bξ , bξ]3 representing the spatial domain and the velocity domain, respectively. Furthermore, we
impose periodic boundary conditions on all the surfaces of this hypercube. We transform the hypercube 	x × 	ξ into the
“standard” hypercube 	π = [−π, π]6, perform simulations in 	π , and then map the numerical results back onto 	x × 	ξ .
This is accomplished by introducing dimensionless independent and dependent variables

ξ̃ = ξπ

bξ

, x̃ = xπ

bx
, t̃ = tbξ

bx
, ñ = nb3

x , Ũ = Uπ

bξ

, T̃ = T

Tc
, ν̃ = νλ

bξ

,

where λ is the mean free path of a gas molecule, and Tc is a characteristic temperature. Furthermore, we define the
dimensionless Knudsen (Kn) and Boltzmann (Bo) numbers as

Kn = λ

bx
and Bo = mb2

ξ

π2kBTc
. (14)

Then, the rescaled PDF f̃ (x̃, ̃ξ , ̃t) = f (x, ξ , t)b3
xb3/π3 satisfies a dimensionless form of the Boltzmann-BGK equation (13),
ξ

4 A.M.P. Boelens et al. / Journal of Computational Physics 421 (2020) 109744
∂ f̃

∂ t̃
= L(ξ̃) f̃ + C(x̃, ξ̃ , t̃), L(ξ̃) ≡ −ξ̃ · ∇x̃, C(x̃, ξ̃ , t̃) ≡ ν̃

Kn
(f̃eq − f̃), (15)

where

f̃eq(x̃, ξ̃ , t̃) = ñ

(2π T̃ /Bo)3/2
exp

(
−Bo

‖ξ̃ − Ũ‖2

2T̃

)
, (16)

with

ñ(x̃, t̃) =
∫

[−π,π]3

f̃ (x̃, ξ̃ , t̃)dξ̃ , (17)

Ũ(x̃, t̃) = 1

ñ(x̃, t̃)

∫
[−π,π]3

ξ̃ f̃ (x̃, ξ̃ , t̃)dξ̃ , (18)

T̃ (x̃, t̃) = Bo

3ñ(x̃, t̃)

∫
[−π,π]3

‖ξ̃ − Ũ(x̃, t̃)‖2
2 f̃ (x̃, ξ̃ , t̃)dξ̃ . (19)

For notational convenience, we drop the tilde below, while continuing to use the dimensionless quantities.

3. A tensor method to solve the Boltzmann-BGK equation

Temporal discretization of the Boltzmann-BGK equation (15) is complicated by the presence of the collision term
C(x, ξ , t), whose evaluation is computationally expensive. The combination of the Crank-Nicolson time integration scheme
with alternating-direction least squares, implemented in [18], would require multiple evaluations of C(x, ξ , t) per time step,
undermining the efficiency of the resulting algorithm. To ameliorate this problem, we replace the Crank-Nicolson method
with the Crank-Nicolson Leap Frog (CNLF) scheme [45–48],

f (·, tn+1) − f (·, tn−1)

2�t
= L(ξ) f (·, tn+1) + L(ξ) f (·, tn−1)

2
+ C(·, tn) + τn+1, (20)

where τn+1 is the local truncation error at time tn+1.
The CNLF scheme has several advantages over other time-integration methods when applied to tensor discretization of

the Boltzmann-BGK equation. First, being an implicit scheme, CNLF allows one to march forward in time by solving systems
of linear equations on tensor manifolds with constant rank.1 Since such manifolds are smooth [50,51], one can compute
these solutions using, e.g., Riemannian quasi-Newton optimization [50,52,53] or alternating least squares [19,54,55]. Second,
CNLF facilitates the explicit calculation of the collision term C (x, ξ , t), and only once per time step. To demonstrate this, we
rewrite (20) as

[I − �t L(ξ)]︸ ︷︷ ︸
A(ξ)

f (·, tn+1) = [I + �t L(ξ)] f (·, tn−1) + 2�t C(·, tn)︸ ︷︷ ︸
h(x,ξ ,tn,tn−1)

+2�t τn+1, (21a)

where I is the identity operator; or

A(ξ) f (·, tn+1) = h(x, ξ , tn, tn−1) + 2�t τn+1. (21b)

Given f (x, ξ , tn) and f (x, ξ , tn−1), this equation allows us to compute f (x, ξ , tn+1) by solving a linear system. In the nu-
merical tensor setting described below, this involves only iterations in f (x, ξ , tn+1), which makes it possible to pre-calculate
the computationally expensive collision term C(x, ξ , t) once per time step.

The choice of the time step �t in (21) requires some care, since CNLF is conditionally stable [56]. We transform this
scheme into an unconditionally stable one by using, e.g., the Robert-Asselin-Williams (RAW) filter [57–59].

3.1. Canonical tensor decomposition and alternating least squares (ALS)

We expand the PDF f (x, ξ , tn) in a truncated canonical tensor series [18,22],

f (x, ξ , tn)

rl∑

l=1

f l
1(x1, tn) f l

2(x2, tn) f l
3(x3, tn) f l

4(ξ1, tn) f l
5(ξ2, tn) f l

6(ξ3, tn). (22)

1 Explicit time-integration algorithms require rank reduction [49] as application of linear operators to tensors, tensor addition, and other tensor operations
results in increased tensor ranks.

A.M.P. Boelens et al. / Journal of Computational Physics 421 (2020) 109744 5
The separation rank rl is chosen adaptively to keep the norm of the residual below a pre-selected threshold at each time tn .
To simplify the notation, we introduce the combined position-velocity vector ζ = (x, ξ) and rewrite (22) as

f (ζ , tn)

rl∑

l=1

6∏
k=1

f l
k(ζk, tn), ζ ∈ 	π = [−π,π]6. (23)

Next, we expand each function f l
k (ζk, tn) in a finite-dimensional Fourier basis φs(ζk) [60] on [−π, π],

f l
k(ζk, tn) =

Q∑
s=1

βl
k,s(tn)φs(ζk), (24)

where Q is the number of modes of the Fourier-series expansion, βl
k,s (tn) are the (unknown) Fourier coefficients, and φs(ζk)

are the orthogonal trigonometric functions. Substituting (23) into (21) yields the residual

R(ζ , tn+1, tn, tn−1) =
rl∑

l=1

A (ξ) f l
1 (ζ1, tn+1) . . . f l

6 (ζ6, tn+1) − h (ζ , tn, tn−1) . (25)

The coefficients βl
k,s(tn) are obtained by minimizing the L2 norm of this residual with respect to

β(tn+1) = [β1(tn+1), . . . ,β6(tn+1)]. (26)

The kth vector βk(tn+1) = [(β1
k,1, . . . β

1
k,Q), . . . (βr

k,1, . . . β
r
k,Q)]� , for k = 1, . . . , 6, collects the degrees of freedom representing

the PDF f in (23) corresponding to the phase variable ζk at time tn+1, in accordance with (24).
We employ the alternating least squares (ALS) algorithm [55,61] to solve the minimization problem

min
βk

‖R (ζ , tn+1, tn, tn−1)‖2
L2(π)

(27)

sequentially and iteratively for k = 1, . . . , 6. The ALS algorithm is locally equivalent to the linear block Gauss–Seidel iteration
method applied to the Hessian of the residual R . As a consequence, it converges linearly with the iteration number [54],
provided that the Hessian is positive definite (except on a trivial null space associated with the scaling non-uniqueness of
the canonical tensor decomposition). Each minimization in (27) yields an Euler-Lagrange equation,

Mk(tn+1)βk(tn+1) = γ k(tn+1), k = 1, . . . ,6. (28)

Its expanded form reads⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡
⎢⎢⎣

(Mk)
1,1
1,1 · · · (Mk)

1,1
Q ,1

...
. . .

...

(Mk)
1,1
1,Q · · · (Mk)

1,1
Q ,Q

⎤
⎥⎥⎦
⎡
⎢⎢⎣

(Mk)
2,1
1,1 · · · (Mk)

2,1
Q ,1

...
. . .

...

(Mk)
2,1
1,Q · · · (Mk)

2,1
Q ,Q

⎤
⎥⎥⎦· · ·

⎡
⎢⎢⎣

(Mk)
r,1
1,1 · · · (Mk)

r,1
Q ,1

...
. . .

...

(Mk)
r,1
1,Q · · · (Mk)

r,1
Q ,Q

⎤
⎥⎥⎦

⎡
⎢⎢⎣

(Mk)
1,2
1,1 · · · (Mk)

1,2
Q ,1

...
. . .

...

(Mk)
1,2
1,Q · · · (Mk)

1,2
Q ,Q

⎤
⎥⎥⎦
⎡
⎢⎢⎣

(Mk)
2,2
1,1 · · · (Mk)

2,2
Q ,1

...
. . .

...

(Mk)
2,2
1,Q · · · (Mk)

2,2
Q ,Q

⎤
⎥⎥⎦· · ·

⎡
⎢⎢⎣

(Mk)
r,2
1,1 · · · (Mk)

r,2
Q ,1

...
. . .

...

(Mk)
r,2
1,Q · · · (Mk)

r,2
Q ,Q

⎤
⎥⎥⎦

...
. . .

...⎡
⎢⎢⎣

(Mk)
1,r
1,1 · · · (Mk)

1,r
Q ,1

...
. . .

...

(Mk)
1,r
1,Q · · · (Mk)

1,r
Q ,Q

⎤
⎥⎥⎦
⎡
⎢⎢⎣

(Mk)
2,r
1,1 · · · (Mk)

2,r
Q ,1

...
. . .

...

(Mk)
2,r
1,Q · · · (Mk)

2,r
Q ,Q

⎤
⎥⎥⎦· · ·

⎡
⎢⎢⎣

(Mk)
r,r
1,1 · · · (Mk)

r,r
Q ,1

...
. . .

...

(Mk)
r,r
1,Q · · · (Mk)

r,r
Q ,Q

⎤
⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Mk

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡
⎢⎢⎣

β1
k,1
...

β1
k,Q

⎤
⎥⎥⎦

⎡
⎢⎢⎣

β2
k,1
...

β2
k,Q

⎤
⎥⎥⎦

...⎡
⎢⎢⎣

βr
k,1
...

βr
k,Q

⎤
⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
βk

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡
⎢⎢⎣

γ 1
k,1
...

γ 1
k,Q

⎤
⎥⎥⎦

⎡
⎢⎢⎣

γ 2
k,1
...

γ 2
k,Q

⎤
⎥⎥⎦

...⎡
⎢⎢⎣

γ r
k,1
...

γ r
k,Q

⎤
⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
γ k

where

(Mk)
l,z
s,q (tn+1) =

∫
	π

[
A(ξ)φs(ζk)

6∏
j=1

f l
j(ζ j, tn+1)

][
A(ξ)φq(ζk)

6∏
j=1

f z
j (ζ j, tn+1)

]
dζ . (29)
j �=k j �=k

6 A.M.P. Boelens et al. / Journal of Computational Physics 421 (2020) 109744
Since the linear operator, first defined in (21), is fully separable (with rank 4), the 6D integral in (29) turns into the sum of
the product of 1D integrals. The right hand side of (29) is

γ l
k,q =

∫
	π

h(ζ , tn, tn−1)A(ξ)φq(ζk)

6∏
j=1
j �=k

f l
j(ζ j, tn+1)dζ

=
rm∑

m=1

∫
	π

{
[I + �tL(ξ)]

6∏
j=1

f m
j (ζ j, tn−1)

}{
A(ξ)φq(ζk)

6∏
j=1
j �=k

f l
j(ζ j, tn+1)

}
dζ

+ 2�t

∫
	π

C(ζ , tn)A(ξ)φq(ζk)

6∏
j=1
j �=k

f l
j(ζ j, tn+1)dζ .

(30)

The 6D integrals under the sum are, as before, a sum of the products of 1D integrals, because L is separable with rank 3.

3.2. Evaluation of the BGK collision term

The BGK collision term C(ζ , tn) in (30),

C(ζ , tn) = ν(x, tn)

Kn

[
feq(x, ξ , tn) − f (x, ξ , tn)

]
, (31)

is evaluated by using a canonical tensor decomposition. The equilibrium distribution feq, defined in (16), is the product of
one 3D function and three 4D functions,

feq(x, ξ , tn) = n(x, tn)

[2π T (x, tn)/Bo]3/2

3∏
m=1

exp

(
−Bo

[ξm − Um(x, tn)]2

2T (x, tn)

)
. (32)

Each of these terms are expanded in a canonical tensor series once the number density, velocity and temperature are
computed using (17)–(19). The integrals in these expressions are reduced to the products of 1D integrals, once the canonical
tensor expansion (23) is available. To calculate the normalization by n(x, tn) in (17)–(19) and the normalization by T (x, tn)

in (32), we employ a Fourier collocation method with N points in each variable. That turns all the integrals into Riemannian
sums, and the functions f l

k(ζk, tn) into

f l
k(ζk, j, tn) = 1

4π

⎡
⎣ N/2∑

s=−N/2+1

βl
k,s (tn)eisζk, j +

N/2−1∑
s=−N/2

βl
k,s(tn)eisζk, j

⎤
⎦ (33)

with inverse

βl
k,s (tn) = h

N∑
j=1

f l
k(ζk, j, tn)e−isζk, j . (34)

Here, h = 2π/N and ζk, j = −π + jh with j = 1, . . . , N . The form of (33) with two different summation intervals is chosen
to ensure that the highest wave-number is treated symmetrically [62]. The forward and backward transform is performed
efficiently with the Fast Fourier Transform (FFT) and its inverse. The collision frequency ν(x, t) = Kn(x, t)T (x, t)1−μ is also
represented by a canonical tensor series, once n(x, t) and T (x, t) are available. To speed up the tensor decomposition algo-
rithm, the result from the previous time step is used as the initial guess for the new decomposition.

3.3. Parallel ALS algorithm

Our implementation of the parallel ALS algorithm for solving the Boltzmann transport equation is encapsulated in Algo-
rithm 1.2 The subroutine Initialization initializes all the variables needed to run the code. This includes, initialization of the
time-step size �t , the number of time steps nmax, the number of collocation points, and the initialization of the coefficients
βNew, βNow, and βOld. These coefficients store, respectively, the values of f (ζ , tn+1), f (ζ , tn), and f (ζ , tn−1) in Fourier space.
In addition, the operators A+ , A− , and ExpA+ are initialized. The operators A+ and A− represent I ± �t L(ξ), respectively.
The rank separated operator ExpA+ represents operator A+ acting on the Fourier basis function φs . The representation of
A+ as a single operator reduces the loss of accuracy that comes with multiplying different operators.

2 Details of the algorithmic implementation of our method and description of the various subroutines mentioned herein are provided in the Supplemental
Material.

A.M.P. Boelens et al. / Journal of Computational Physics 421 (2020) 109744 7
Algorithm 1 Parallel ALS algorithm.
1: procedure Main

2: Initialization Load variables and allocate matrices
3:
4: for n ← 1 : nmax do
5: C ← computeArrayC(βNow) Compute collision operator
6:
7: βNew ← randBeta(βNew) Add some random noise
8: ε|β| ← εTol + 106 Reset stop criterion
9: while ε|β| > εTol do

10: βInt ← βNew Set intermediate value of beta
11:
12: N ← computeArrayN(A+, A−, ExpA+ , βOld, βNew)

13: O ← computeArrayO(C, A+, ExpA+ , βNew)

14: γ ← N + 2 �t O
15:
16: parfor d ← 1 : 6 do Iterate over dimensions
17: M (d) ← computeArrayM(A+, ExpA+ (d) , βNew, d)

18:
19: parfor d ← 1 : 6 do
20: βNew (d) ← computeBetaNew(βNew (d) , M (d) , γ (d))

21:
22: βNew ← kreal(βNew) Keep only real part of solution
23: ε|β| ← computeNormBeta(βInt, βNew) Check for convergence
24:
25: if ε|β| > εTol then
26: βNew ← computeBetaNewDelta(βNew, βInt) Update
27: else
28: βNew, βNow ← computeRAW(βNew, βNow, βOld) Apply RAW filter

29:
30: βOld = βNow Update for next time step
31: βNow = βNew

32: end procedure

For every time step, computeArrayC evaluates the BGK collision operator C(ζ , tn) in (31), and randBeta adds a small
amount of noise to βNew to prevent the algorithm from getting stuck in a local minimum. The while loop contains the
parallel ALS algorithm. The functions computeArrayN and computeArrayO inside the loop compute the two different con-
tributions to the vector γ in (30). The function computeArrayM computes the array M inside a parallel for loop, which
completes the set of equations (28).

The least-squares routine inside the function computeBetaNew updates βNew every iteration inside a parallel for loop.
Because of the large number of degrees of freedom in the above system, there are multiple (local minimum) solutions,
which are not necessarily real and mass conserving. We ameliorate this problem by adding a constraint that, for every
iteration, only the real part of the solution for βNew is kept. This calculation is performed by the function kreal. The
function computeNormBeta then computes the convergence criterion, ε|β| , by comparing the current value of βNew to its
value at the end of the previous iteration, βInt. If convergence has not been reached, computeBetaNewDelta updates βNew
for the next iteration. If convergence has been reached, computeRAW applies the RAW filter [57–59] to make the CNLF
algorithm unconditionally stable, and the algorithm moves on to the next time step.

4. Numerical results

In this section we study the accuracy and computational efficiency of the proposed ALS-CNLF tensor method to solve the
Boltzman-BGK equation. (Unless specified otherwise, values of the simulation parameters used in our numerical experiments
are collated in Table 1.) We start by validating our solver on a prototype problem involving the Boltzmann-BGK equation in
one spatial dimension. Then we consider simulations of the full Boltzmann-BGK equation in three spatial dimensions. The
3D numerical results are split up into steady-state and transient problems. The steady-state problem is used to validate the
code against an analytical equilibrium solution to the Boltzmann transport equation. It also enables us to investigate the
error convergence as function of various parameters, and the code performance as function of the number of collocation
points and the number of processor cores. The transient problem starts with an initial distribution away from equilibrium,
including a non-zero average velocity in the x1 direction, and looks at temporal evolution of the PDF f . We compare our
code with a spectral code in 2D and present the results for the full 6D Boltzmann-BGK equation.

4.1. Transient dynamics in one spatial dimension

To validate the proposed Boltzmann-BGK tensor solver, we first compute the numerical solution of (15) in one spatial
dimension, and compare it with an accurate benchmark solution obtained with the high-order Fourier pseudo-spectral
method [60]. Specifically, we study the initial-value problem

8 A.M.P. Boelens et al. / Journal of Computational Physics 421 (2020) 109744
Table 1
Values of parameters used in the simulations of the Boltzmann-BGK equa-
tion in three spatial dimensions.

Variable Value Description

�t 0.025 Dimensionless time step
K 1.0 Collision frequency pre-factor
μ 0.5 Collision frequency temperature exponent
Kn 1 Knudsen number
Bo 3.65 Boltzmann number
εTol 5.0 · 10−5 Tolerance on ALS iterations

Fig. 1. Contour plots of the reference solution to the 1D Boltzmann-BGK initial-value problem (35)–(37), the PDF fspc(x, ξ, t), computed with the high-order
Fourier pseudo-spectral method and explicit two-steps Adams-Bashforth temporal integrator. (For interpretation of the colors in the figure(s), the reader is
referred to the web version of this article.)

∂ f (x, ξ, t)

∂t
+ ξ

∂ f (x, ξ, t)

∂x
= K T (x, t)1−μ

Kn

[
feq(x, ξ, t) − f (x, ξ, t)

]
, (35)

f (x, ξ,0) = n0√
(2π T0/Bo)

exp

(
− Bo

2T0
(U0 − ξ)2

)
, (36)

with

n0 = 1.0 + 0.3 cos (2x), U0 = 1.0 + 0.1 sin (3x), T0 = 1.0. (37)

The benchmark numerical solution is constructed by solving (35)–(37) in the periodic box (x, ξ) ∈ [−π, π]2 with a Fourier
pseudo-spectral method [60] (odd expansion on a 61 × 61 grid) and an explicit two-steps Adams-Bashforth temporal in-
tegrator with �t = 0.0005. The remaining parameters are set to the values from Table 1, except Kn = 10. Fig. 1 exhibits
contour plots of the benchmark PDF solution at three times.

We report the accuracy of our ALS-CNLF tensor algorithm3 by comparing its prediction, fALS, with the reference solution,
fspc, in terms of two metrics. The first is the L2 norm

∥∥ fALS(x, ξ, t) − fspc(x, ξ, t)
∥∥=

⎛
⎜⎝ ∫

[−π,π]2

[
fALS(x, ξ, t) − fspc(x, ξ, t)

]2 dxdξ

⎞
⎟⎠

1/2

. (38)

The second is the Kullback-Leibler divergence

DKL(FALS||Fspc) =
∫

[−π,π]2

fALS(x, ξ, t) log

[
fALS(x, ξ, t)

fspc(x, ξ, t)

]
dxdξ. (39)

In Fig. 2, we plot these two metrics as function of time t and the tensor rank r, which is kept constant throughout the
simulation. Both the L2 error and the Kullback-Leibler divergence decrease with the tensor rank r.

3 The tolerance for the ALS iterations is set to εTol = 10−12, while the other simulation parameters, such as �t and the number of grid points are the
same as in the Fourier pseudo-spectral method.

A.M.P. Boelens et al. / Journal of Computational Physics 421 (2020) 109744 9
Fig. 2. Boltzmann-BGK problem (35)–(37) in one spatial dimension: L2 error and Kullback-Leibler divergence of the ALS-CNLF tensor solution, fALS, relative
to the reference solution, fspc, versus time. Both the L2 error and the Kullback-Leibler divergence decrease with the tensor rank r.

Fig. 3. Temporal variability of relative errors in the spatial averages of density, 〈n〉, velocity components, 〈U1〉, 〈U2〉, and 〈U3〉, and collision frequency, 〈ν〉,
as well as of the spatially averaged temperature, 〈T 〉. The number of collocation points per dimension is N = 64. The results show that the code is mass
conserving, i.e., the moments of the PDF f at equilibrium are constant in time up to a small (10−5) error.

4.2. Steady-state simulations in three spatial dimensions

Since convergence of the ALS algorithm is not guaranteed, e.g., [54,63], and since the equilibrium distribution is one
of the few analytical solutions to the Boltzmann transport equation in six dimensions, we report the code’s behavior at
equilibrium. The initial condition in this experiment is the Maxwell-Boltzmann equilibrium PDF, whose moments, as defined
in (17)–(19), are set to n(x, 0) = 1, U1(x, 0) = U2(x, 0) = U3(x, 0) = 0, and T (x, 0) = 1. The simulation was ran till t = 1.
Fig. 3 shows temporal variability of the relative errors of the spatial averages, 〈n〉 and 〈T 〉, of the moments n and T and
that of the collision frequency, 〈ν〉. Since the initial values of the velocities 〈U1〉, 〈U2〉 and 〈U3〉 are zero, Fig. 3(b) shows
only their average values as function of time. For any quantity a(x, t), the spatial average is defined as

〈a(t)〉 = 1

(2π)3

∫
[−π,π]3

a(x, t)dx. (40)

As expected, all the spatially averaged moments at equilibrium remain approximately constant with time, with small (on
the order of 10−5) deviations representing the numerical error.

Another metric of the accuracy of our steady-state equilibrium solution, the root-mean-square error (RMSE) of the solu-
tion, is shown in Fig. 4 as function of time. The RMSE is defined as

RMS(f − f0) =
√√√√ 1

N6

N6∑
(f i − f0,i)

2, (41)

i=1

10 A.M.P. Boelens et al. / Journal of Computational Physics 421 (2020) 109744
Fig. 4. (a) Temporal variability of the RMSE between the computed PDF f and the initial PDF f0. Unless otherwise mentioned in the legend, �t = 0.025
and εTol = 5.0 · 10−5. The solution error is relatively independent from the number of collocation points per dimension, N . However, reducing the time step
�t and, to a larger extent, the convergence criterion εTol significantly reduces the solution error. (b) Mass conservation as function of time t . The results
show a clear improvement in mass conservation going from N = 16 to N = 32, but not from N = 32 to N = 64. Decreasing the time step to �t = 0.01 does
not reduce mass loss, while reducing the convergence criterion to εTol = 5.0 · 10−6 significantly improves mass conservation.

Fig. 5. Temporal variability of the number of iterations, nβ , and convergence, ε|β| . The number of collocation points per dimension is N = 64. Since the
same amplitude of random noise in β is injected at every time step, the number of iterations is nearly constant in time. The right axis has logarithmic
scale, and the distance between each iteration decreases as convergence is reached. This suggests that convergence follows an exponential decay.

where f0 is the initial condition. The simulation was performed from N = 16 to N = 64 collocation points per dimension.
However, the number of collocation points does not have a significant effect on the accuracy of the algorithm (Fig. 4(a)).
Decrease in the time step, from �t = 0.025 to �t = 0.01, does not have much effect either. On the other hand, reducing
the convergence criterion for β from εTol = 5.0 · 10−5 to εTol = 5.0 · 10−6 significantly lowers the error. This suggests the
presence of a bottleneck in increasing the accuracy of the simulation caused by the convergence criterion. We show in
section 4.3 that the bottleneck for higher accuracy can depend on the physical system.

Since the continuity equation is used as an additional constraint, we explore the behavior of the RMSE of the spatially
averaged density 〈n〉. Fig. 4(b) shows that our algorithm satisfies mass conservation even at the lowest number of collocation
points, N = 16. As the number of collocation points increases from N = 16 to N = 32, the error in the mass conservation
is significantly reduced. However, the further increase in the number of collocation points, from N = 32 to N = 64, hardly
has an effect. Also, decreasing the time step from �t = 0.025 to �t = 0.01 does not reduce the error. However, as was
also observed in Fig. 4(a), reducing the convergence criterion for β from εTol = 5.0 · 10−5 to εTol = 5.0 · 10−6 significantly
reduces the amount of mass loss. This again confirms that the convergence criterion serves as a bottleneck in increasing
the simulation accuracy. This finding highlights the importance of picking a convergence-criterion value that satisfies the
desired balance between available computational resources and accuracy. A smaller convergence criterion reduces the error,
but results in more iterations to reach convergence and, potentially, in a higher rank of the solution, resulting in higher
memory usage.

The number of iterations, nβ , needed to reach convergence throughout the simulation is reported in Fig. 5 (the left
vertical axis) as function of time t . Since the same amount of random noise is added to β before starting the ALS algorithm
at every time step, the number of iterations is nearly constant. Adding a smaller amount of random noise might reduce
the number of iterations, but our numerical experiments revealed that doing so causes the ALS algorithm to get stuck in a
local minimum and precludes the residual of the continuity equation, ε|β| , from being properly minimized. Fig. 5 (the right

A.M.P. Boelens et al. / Journal of Computational Physics 421 (2020) 109744 11
Fig. 6. Scaling of the wall time tWall with (a) the number of collocation points per dimension, N , and (b) the number of processors, nProc . The calculations
to determine the scaling of the wall time as function of the number of collocation points were performed on a single core.

vertical axis) shows that, as the convergence is reached, the difference in the residual between the successive iterations
gets smaller. This suggests an exponential decay towards the minimum residual that can be reached before the rank of the
solution needs to be increased.

The computational efficiency of our code is reported in Fig. 6. The left frame shows the scaling of the wall time, tWall,
with the number of collocation points per dimension, N , on one CPU core. The performance of the code is close to N log (N)

in the range of the explored collocation points. The most time is spent in the LSQR [64] subroutine, which is used to implic-
itly solve for β for each dimension during every iteration of the ALS procedure. This suggests that the code could be further
optimized by replacing the existing LSQR algorithm with its more efficient implementation, e.g., [65]. The right frame of
Fig. 6 exhibits the scaling of the wall time, tWall , with the number of processors, nProc. The curve 1/nProc represents the
ideal scaling without any communication overhead. Even though the different dimensions can all be solved for indepen-
dently, the scaling of our code with the number of processors is quite poor. This suggests that the code can be optimized
further by minimizing the communication between different CPU cores. One way to approach this would be to rewrite the
code around a specialized parallel processing MPI library and have finer control over both data communication between
processor cores and protocol selection.

4.3. Relaxation to statistical equilibrium in three spatial dimensions

In this section, we study relaxation to statistical equilibrium predicted by the dimensionless Boltzmann-BGK model
(15)–(19), subject to the initial condition

f (x, ξ ,0) = W f1(x1, ξ1,0) f2(x2, ξ2,0) f3(x3, ξ3,0) (42a)

with

f i(xi, ξi,0) =
3
√

n0√
2π T0/Bo

exp

[
− Bo

2T0
(Ui,0 − ξi)

4
]

, i = 1,2,3 (42b)

and n0 =∏3
i=1(0.5 cos xi + 1), T0 = 0.0025 cos x1, U1,0 = 1 + 0.025 sin(x2 − 1), U2,0 = 0, and U3,0 = 0.025 sin(x1 − 2). The

integral over the PDF is normalized to 1 by computing the value of W . The difference between the initial PDF and the local
equilibrium PDF causes the Boltzmann equation to evolve while the fluctuations in the initial fields are introduced to show
the code’s ability to operate away from global equilibrium. In this experiment, the Knudsen number is set to Kn = 10. Fig. 7
shows the PDF f (x, ξ , t) in the (x1-x2) and (ξ1-ξ2) hyper-planes. The PDF f evolves from its initial state far from equilibrium
to the equilibrium Maxwell-Boltzmann PDF feq. Fig. 8 further elucidates this dynamics by exhibiting temporal snapshots of
the PDF f (x, ξ , t) in hyper-planes (x; ξ) = (x1, 0, 0; 0), (0, x2, 0; 0), (0, 0, x3; 0), (0; ξ1, 0, 0), (0; 0, ξ2, 0), and (0; 0, 0, ξ3).

Finally, Fig. 9 exhibits temporal evolution of the number density n(x, t), velocity U(x, t), temperature T (x, t), and the
collision frequency ν(x, t), all evaluated at the hyper-plane x = (x1, 0, 0). As expected, the magnitude of the velocity com-
ponents U2 and U3 is about 100 times smaller than that of the U1 component (frames (a)–(c)). The effect of the flow in
the x1 direction is seen in frame (d), where the density profile shifts to the right as time progresses; in addition, the height
of the density profile decreases as the mass is redistributed by diffusion. While not discernible from these figures, the code
does suffer from a small amount of mass loss of about 2% per unit time. This is most likely due to a combination of small
truncation errors, convergence tolerances, and time step size. Frame (e) shows evolution of the temperature T (x1, ·, t) from
its initial nearly uniform state. Increasing velocity fluctuations drive the increase in temperature fluctuations. The collision
frequency (frame (f)) is computed directly from the density and temperature fields according to (12). Overall, the PDF and
its moments show the expected physical behavior and evolve towards the equilibrium Maxwell-Boltzmann distribution.

12 A.M.P. Boelens et al. / Journal of Computational Physics 421 (2020) 109744
Fig. 7. Temporal evolution of the PDF f (x, ξ , t) in hyper-planes (x; ξ) = (x1, x2, 0; 0) (top row) and (0; ξ1, ξ2, 0) (bottom row). The number of collocation
points per dimension is N = 32. The color-coding is consistent among the different frames in a row. The PDF f evolves from its initial, far-from-equilibrium
state (42) towards its equilibrium state (16).

Fig. 8. Temporal evolution of the PDF f (x, ξ , t) in hyper-planes (a) (x; ξ) = (x1, 0, 0; 0), (b) (x; ξ) = (0, x2, 0; 0), (c) (x; ξ) = (0, 0, x3; 0), (d) (x; ξ) =
(0; ξ1, 0, 0), (e) (x; ξ) = (0; 0, ξ2, 0), and (f) (x; ξ) = (0; 0, 0, ξ3). The number of collocation points per dimension is N = 32. The PDF f evolves from its
initial, far-from-equilibrium state (42) towards its equilibrium state (16).

5. Discussion and conclusions

We demonstrated the ability of canonical polyadic tensor decomposition to solve the BGK approximation of the six-
dimensional Boltzmann transport equation with variable density, velocity, temperature, and collision frequency fields. This
extends the usage of this method from only fully separable differential operators, to partially separable operators. The
dependent variables in the Boltzmann equation are computed via the pseudo-spectral method with collocation points. The
different dimensions are solved using a parallel ALS algorithm. Our numerical experiments show that the code is capable
of simulating both a system’s steady state and its temporal evolution starting from a state far away from equilibrium. The
highest simulation accuracy is achieved by identifying a correct bottleneck: in the steady-state simulations the limiting
factor is the convergence tolerance. The code’s performance scales as N log(N) with the number of collocation points per
dimension, N .

In future work, we will further optimize the code, implement different boundary conditions, and explore the feasibility
of using the code with other collision operators. Significant speedup can be achieved by rank reduction of the collision
operator. The currently used reconstruction of the collision operator via multiplication of its different components can
result in a high-rank operator, which can become degenerate. Reducing the rank of this tensor, while maintaining accuracy,

A.M.P. Boelens et al. / Journal of Computational Physics 421 (2020) 109744 13
Fig. 9. Temporal evolution of (a)–(c) the velocity components Ui x, t), (d) number density n(x, t), (e) temperature T (x, t), and (f) the collision frequency
ν(x, t), all evaluated at the hyper-plane x = (x1, 0, 0). The number of collocation points per dimension is N = 32.

is a topic that needs further study. Another aspect where the code can be improved is parallelization, especially when using
the CNLF-ALS method to solve problems of dimensionality higher than that of the Boltzmann-BGK equation. One way to
approach this would be to rewrite the code around a specialized parallel processing MPI library and have finer control over
data communication between processor cores and protocol selection.

Generalizations to other types of boundary conditions would require an in-depth investigation of the trial function be-
havior. The choice of a right trial function for a certain system is typically determined by one of the two approaches. First,
one selects a trial function that obeys the desired boundary conditions and then sums over the trial functions to reconstruct
the solution to a PDE. Second, one selects a trial function that captures the PDE solution and then adds trial functions to
reconstruct the boundary condition. Fig. 8 shows that the six-dimensional Boltzmann equation subject to periodic bound-
ary conditions can be efficiently solved by using the discrete Fourier series. The presence of, e.g., a wall would introduce
the Maxwell boundary condition [35,66]. The latter consists of two parts: one represents the reflection of particles from
the wall and the other represents absorption and emission of particles on the wall. Since there is no known trial func-
tion to either solve the Boltzmann equation in the bulk or the Maxwell boundary condition on the wall, another method
of the trial-function selection is needed. Such methods include the tau method [67], the penalty approach [68], and the
mixed method [69–71]. They have been used to implement boundary condition for the weighted residuals and spectral
methods [72,68], but have not yet been applied in the tensor decomposition setting.

While the boundary conditions are very important for engineering applications, some fundamental questions remain to
be resolved as well. The empirical evidence shows convergence of our tensor algorithms, but its theoretical proof is lacking.
That is largely due to two factors. First, it is generally assumed that increasing the rank of the solution improves its accuracy
and in, some cases, tensor decomposition was shown to be exponentially more efficient than one would expect a priori [22].
However, there is no mathematical proof which indicates how high the rank needs to be to reach a certain accuracy and how
fast the solution converges as a function of its rank. This question is very important for the speed of tensor decomposition,
because the higher the rank of the operators and the solution of the Boltzmann equation, the slower the computation
becomes. Second, from one time step to the next convergence is not guaranteed. The ALS method implemented in our code
is a variation on the Gauss-Seidel method whose convergence can be proven for some specific cases [54]. However, only
the Jacobi method can decouple the different dimensions and parallelize the algorithm. How the adoption of this method
would change convergence remains to be investigated.

CRediT authorship contribution statement

Arnout M.P. Boelens: Data curation, Formal analysis, Investigation, Methodology, Software, Validation, Visualization, Writ-
ing - original draft. Daniele Venturi: Conceptualization, Funding acquisition, Software, Writing - review & editing. Daniel
M. Tartakovsky: Conceptualization, Funding acquisition, Project administration, Supervision, Writing - review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

14 A.M.P. Boelens et al. / Journal of Computational Physics 421 (2020) 109744
Acknowledgements

This research was supported in part by the U.S. Army Research Office (ARO) grant W911NF1810309 awarded to Daniele
Venturi, and by the Air Force Office of Scientific Research (AFOSR) grant FA9550-18-1-0474 awarded to Daniel Tartakovsky.

Appendix A. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /j .jcp .2020 .109744.

References

[1] A.M.P. Boelens, A. Latka, J.J. de Pablo, Observation of the pressure effect in simulations of droplets splashing on a dry surface, Phys. Rev. Fluids 3 (2018)
063602.

[2] J.E. Sprittles, Kinetic effects in dynamic wetting, Phys. Rev. Lett. 118 (11) (2017) 114502.
[3] I.D. Boyd, G. Chen, G.V. Candler, Predicting failure of the continuum fluid equations in transitional hypersonic flows, Phys. Fluids 7 (1) (1995) 210–219.
[4] E.H. Sondheimer, The mean free path of electrons in metals, Adv. Phys. 1 (1) (1952) 1–42.
[5] S. Jin, T.-W. Tang, M.V. Fischetti, Simulation of silicon nanowire transistors using Boltzmann transport equation under relaxation time approximation,

IEEE Trans. Electron Devices 55 (3) (2008) 727–736.
[6] L. Boltzmann, Weitere Studien über das Wärmegleichgewicht unter Gasmolekülen, vorgelegt in: der Sitzung am 10. October 1872, 1872, k. und k. Hof-

und Staatsdr.
[7] G. Dimarco, L. Pareschi, Numerical methods for kinetic equations, Acta Numer. 23 (2014) 369–520.
[8] G.A. Bird, Approach to translational equilibrium in a rigid sphere gas, Phys. Fluids 6 (10) (1963) 1518–1519.
[9] H. Babovsky, On a simulation scheme for the Boltzmann equation, Math. Methods Appl. Sci. 8 (1986) 223–233.

[10] L. Pareschi, G. Russo, An Introduction to Monte Carlo Method for the Boltzmann Equation, ESAIM: Proceedings, vol. 10, EDP Sciences, 2001, pp. 35–75.
[11] J.-P.M. Peraud, C.D. Landon, N.G. Hadjiconstantinou, Monte Carlo methods for solving the Boltzmann transport equation, Annu. Rev. Heat Transf. 2 (2)

(2014) 205–265.
[12] F. Rogier, J. Schneider, A direct method for solving the Boltzmann equation, Transp. Theory Stat. Phys. 23 (1–3) (1994) 313–338.
[13] S. Rjasanow, W. Wagner, Stochastic Numerics for the Boltzmann Equation, Springer, Berlin, 2005.
[14] H. Cho, D. Venturi, G.E. Karniadakis, Numerical methods for high-dimensional probability density function equations, J. Comput. Phys. 305 (2016)

817–837.
[15] Z. Zhang, G.E. Karniadakis, Numerical Methods for Stochastic Partial Differential Equations with White Noise, Springer, Berlin, 2017.
[16] W. E, J. Han, A. Jentzen, Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic

differential equations, Commun. Math. Stat. 5 (4) (2017) 349–380.
[17] P.L. Bhatnagar, E.P. Gross, M. Krook, A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component

systems, Phys. Rev. 94 (3) (1954) 511.
[18] A.M.P. Boelens, D. Venturi, D.M. Tartakovsky, Parallel tensor methods for high-dimensional linear PDEs, J. Comput. Phys. 375 (2018) 519–539.
[19] M.J. Reynolds, A. Doostan, G. Beylkin, Randomized alternating least squares for canonical tensor decompositions: application to a PDE with random

data, SIAM J. Sci. Comput. 38 (5) (2016) A2634–A2664.
[20] C. Battaglino, G. Ballard, T.G. Kolda, A practical randomized CP tensor decomposition, SIAM J. Matrix Anal. Appl. 39 (2) (2018) 876–901.
[21] E. Acar, D.M. Dunlavy, T.G. Kolda, A scalable optimization approach for fitting canonical tensor decompositions, J. Chemom. 25 (2) (2011) 67–86.
[22] G. Beylkin, J. Garcke, M.J. Mohlenkamp, Multivariate regression and machine learning with sums of separable functions, SIAM J. Sci. Comput. 31 (2009)

1840–1857.
[23] J. Douglas Jr, T. Dupont, Alternating-direction Galerkin methods on rectangles, in: Numerical Solution of Partial Differential Equations–II, Elsevier, 1971,

pp. 133–214.
[24] D. Venturi, The numerical approximation of nonlinear functionals and functional differential equations, Phys. Rep. 732 (2018) 1–102.
[25] B.A. Finlayson, The Method of Weighted Residuals and Variational Principles, SIAM, Philadelphia, 2013.
[26] A. Dektor, D. Venturi, Dynamically orthogonal tensor methods for high-dimensional nonlinear PDEs, J. Comput. Phys. 404 (2020) 109125.
[27] A. Rodgers, D. Venturi, Stability analysis of hierarchical tensor methods for time-dependent PDEs, J. Comput. Phys. 409 (2020) 109341.
[28] M. Akian, J. Blechschmidt, N.D. Botkin, M. Jensen, A. Kröner, A. Picarelli, I. Smears, K. Urban, M.D. Chekroun, R. Herzog, et al., Hamilton-Jacobi-Bellman

Equations: Numerical Methods and Applications in Optimal Control, Vol. 21, Walter de Gruyter & Co, 2018.
[29] H. Risken, The Fokker-Planck Equation: Methods of Solution and Applications, Springer, Berlin, 1996.
[30] D.R. Hatch, D. del Castillo-Negrete, P.W. Terry, Analysis and compression of six-dimensional gyrokinetic datasets using higher order singular value

decomposition, J. Comput. Phys. 22 (2012) 4234–4256.
[31] S.V. Dolgov, A.P. Smirnov, E.E. Tyrtyshnikov, Low-rank approximation in the numerical modeling of the Farley-Buneman instability in ionospheric

plasma, J. Comput. Phys. 263 (2014) 268–282.
[32] K. Kormann, A semi-Lagrangian Vlasov solver in tensor train format, SIAM J. Sci. Comput. 37 (4) (2015) B613–B632.
[33] A.S. Monin, A.M. Yaglom, Statistical Fluid Mechanics, Volume II: Mechanics of Turbulence, Dover, New York, 2007.
[34] M. Breakspear, Dynamic models of large-scale brain activity, Nat. Neurosci. 20 (3) (2017) 340.
[35] C. Cercignani, The Boltzmann Equation and Its Applications, Springer, Berlin, 1988.
[36] C. Cercignani, U.I. Gerasimenko, D.Y. Petrina, Many Particle Dynamics and Kinetic Equations, Kluwer Academic Publishers, New York, 1997.
[37] C. Cercignani, R. Illner, M. Pulvirenti, The Mathematical Theory of Dilute Gasses, Springer, Berlin, 1994.
[38] T. Nishida, Fluid dynamical limit of the nonlinear Boltzmann equation to the level of the compressible Euler equation, Commun. Math. Phys. 61 (2)

(1978) 119–148.
[39] R.E. Caflisch, The fluid dynamic limit of the nonlinear Boltzmann equation, Commun. Pure Appl. Math. 33 (5) (1980) 651–666.
[40] H. Struchtrup, Macroscopic Transport Equations for Rarefied Gas Flows, Springer, Berlin, 2005.
[41] C.D. Levermore, Moment closure hierarchies for kinetic theories, J. Stat. Phys. 83 (5–6) (1996) 1021–1065.
[42] L. Mieussens, Discrete-velocity models and numerical schemes for the Boltzmann-BGK equation in plane and axisymmetric geometries, J. Comput.

Phys. 162 (2) (2000) 429–466.
[43] J. Nassios, J.E. Sader, High frequency oscillatory flows in a slightly rarefied gas according to the Boltzmann–BGK equation, J. Fluid Mech. 729 (2013)

1–46.
[44] P. Andries, P.L. Tallec, J.-P. Perlat, B. Perthame, The Gaussian-BGK model of Boltzmann equation with small Prandtl number, Eur. J. Mech. B 19 (6) (2000)

813–830.

https://doi.org/10.1016/j.jcp.2020.109744
http://refhub.elsevier.com/S0021-9991(20)30518-0/bib284076717B54CC87899CFDF8168D36AFs1
http://refhub.elsevier.com/S0021-9991(20)30518-0/bib284076717B54CC87899CFDF8168D36AFs1
http://refhub.elsevier.com/S0021-9991(20)30518-0/bib23F3CC67B023115131B78E8CD7296728s1
http://refhub.elsevier.com/S0021-9991(20)30518-0/bib469D299E29D9F65E5B7178C2E59E12EAs1
http://refhub.elsevier.com/S0021-9991(20)30518-0/bibE9D3692A9C64B70411C539CAC4CF1912s1
http://refhub.elsevier.com/S0021-9991(20)30518-0/bibED3A1B32E5EBA53D2AFC56781B9D862Es1
http://refhub.elsevier.com/S0021-9991(20)30518-0/bibED3A1B32E5EBA53D2AFC56781B9D862Es1
http://refhub.elsevier.com/S0021-9991(20)30518-0/bib5B31554C4E59C1F4F9CF80F1D2EADD05s1
http://refhub.elsevier.com/S0021-9991(20)30518-0/bib5B31554C4E59C1F4F9CF80F1D2EADD05s1
http://refhub.elsevier.com/S0021-9991(20)30518-0/bib62CC96F8F56BF2E51B5795C4CB179474s1
http://refhub.elsevier.com/S0021-9991(20)30518-0/bib022738067BA7B0446322E91B2242B5E0s1
http://refhub.elsevier.com/S0021-9991(20)30518-0/bibABA864057F9E8831B0518C6B81FB523Ds1
http://refhub.elsevier.com/S0021-9991(20)30518-0/bibBDD3AF696B25A69BD21F93F62BEDB7EDs1
http://refhub.elsevier.com/S0021-9991(20)30518-0/bib34E33164A65CCC5EC1AD12E574E80117s1
http://refhub.elsevier.com/S0021-9991(20)30518-0/bib34E33164A65CCC5EC1AD12E574E80117s1
http://refhub.elsevier.com/S0021-9991(20)30518-0/bib47711E8B415E187E44F24B4A88589CB1s1
http://refhub.elsevier.com/S0021-9991(20)30518-0/bib8138A818CBA1EC0C1729F8DD6BDA0F5As1
http://refhub.elsevier.com/S0021-9991(20)30518-0/bib18D6571C34483129095C174A590BCDFFs1
http://refhub.elsevier.com/S0021-9991(20)30518-0/bib18D6571C34483129095C174A590BCDFFs1
http://refhub.elsevier.com/S0021-9991(20)30518-0/bibD216DD0353FA6E8802F77210695B2890s1
http://refhub.elsevier.com/S0021-9991(20)30518-0/bib2DD1F04A27B89A8B959D198C10DC27BFs1
http://refhub.elsevier.com/S0021-9991(20)30518-0/bib2DD1F04A27B89A8B959D198C10DC27BFs1
http://refhub.elsevier.com/S0021-9991(20)30518-0/bib2413F2ED5608B15F5835681F12D969D2s1
http://refhub.elsevier.com/S0021-9991(20)30518-0/bib2413F2ED5608B15F5835681F12D969D2s1
http://refhub.elsevier.com/S0021-9991(20)30518-0/bib182508BB9B0C2477BF872B27BE804B87s1
http://refhub.elsevier.com/S0021-9991(20)30518-0/bibB944175843FE487213C66E30C3BDF880s1
http://refhub.elsevier.com/S0021-9991(20)30518-0/bibB944175843FE487213C66E30C3BDF880s1
http://refhub.elsevier.com/S0021-9991(20)30518-0/bibFE3A1990E482870C17B045684A61F48Bs1
http://refhub.elsevier.com/S0021-9991(20)30518-0/bib58B294F3D4F9E985FCFB821B3516A98Es1
http://refhub.elsevier.com/S0021-9991(20)30518-0/bib6393F35196BB7656F5DEF611E3CE0EE3s1
http://refhub.elsevier.com/S0021-9991(20)30518-0/bib6393F35196BB7656F5DEF611E3CE0EE3s1
http://refhub.elsevier.com/S0021-9991(20)30518-0/bibEBCA7CB5DE88EBB7EC38D94808B89796s1
http://refhub.elsevier.com/S0021-9991(20)30518-0/bibEBCA7CB5DE88EBB7EC38D94808B89796s1
http://refhub.elsevier.com/S0021-9991(20)30518-0/bib33F25963DB7BBE092ABC928723C5833As1
http://refhub.elsevier.com/S0021-9991(20)30518-0/bib2FEEAF7F5B595F81B0EBE2E4A453719Bs1
http://refhub.elsevier.com/S0021-9991(20)30518-0/bibE38573A713D5EE2C43594F678B4D7B42s1
http://refhub.elsevier.com/S0021-9991(20)30518-0/bib0DD84EF4EE3DD858E186344718BE94F4s1
http://refhub.elsevier.com/S0021-9991(20)30518-0/bibE5F61B694EB9FAC33EB9CE9AF0822DCFs1
http://refhub.elsevier.com/S0021-9991(20)30518-0/bibE5F61B694EB9FAC33EB9CE9AF0822DCFs1
http://refhub.elsevier.com/S0021-9991(20)30518-0/bib80BB183F36731928E26D593B45E749FBs1
http://refhub.elsevier.com/S0021-9991(20)30518-0/bibE3D0D58A5985B01F24DFDF7A007A5735s1
http://refhub.elsevier.com/S0021-9991(20)30518-0/bibE3D0D58A5985B01F24DFDF7A007A5735s1
http://refhub.elsevier.com/S0021-9991(20)30518-0/bib6F8334151D2274381BC034CFB60F23EFs1
http://refhub.elsevier.com/S0021-9991(20)30518-0/bib6F8334151D2274381BC034CFB60F23EFs1
http://refhub.elsevier.com/S0021-9991(20)30518-0/bib46C2115D0EAD983D8520E86913BD8C20s1
http://refhub.elsevier.com/S0021-9991(20)30518-0/bib305F3A5A357E0184A681EF94051463D1s1
http://refhub.elsevier.com/S0021-9991(20)30518-0/bibD81FA970D2D878B5CE1CE9B6CAB864B5s1
http://refhub.elsevier.com/S0021-9991(20)30518-0/bibEA76E0890909C30EF35AA16C2A77B634s1
http://refhub.elsevier.com/S0021-9991(20)30518-0/bibB107FBFB4A7FC0AE56CCCB37A095245Es1
http://refhub.elsevier.com/S0021-9991(20)30518-0/bib8FF25D1635078712F186F0AA0EB978D4s1
http://refhub.elsevier.com/S0021-9991(20)30518-0/bibA30FB94C0B2432432155D92FDDAD641Es1
http://refhub.elsevier.com/S0021-9991(20)30518-0/bibA30FB94C0B2432432155D92FDDAD641Es1
http://refhub.elsevier.com/S0021-9991(20)30518-0/bib225E1F370A4112F9EDEF3BDF84356483s1
http://refhub.elsevier.com/S0021-9991(20)30518-0/bib5D85ECD3F2F8148E79015CEA8BAADBC4s1
http://refhub.elsevier.com/S0021-9991(20)30518-0/bib69EDC827E70518C2F905891EB76CA6ADs1
http://refhub.elsevier.com/S0021-9991(20)30518-0/bib0A139C72D74B1FA3633D36ED6E84FAD3s1
http://refhub.elsevier.com/S0021-9991(20)30518-0/bib0A139C72D74B1FA3633D36ED6E84FAD3s1
http://refhub.elsevier.com/S0021-9991(20)30518-0/bib66A98457F9191D84860753CACDE8C4E7s1
http://refhub.elsevier.com/S0021-9991(20)30518-0/bib66A98457F9191D84860753CACDE8C4E7s1
http://refhub.elsevier.com/S0021-9991(20)30518-0/bibB6E8BA8FE244AFCEC18B1D774E871D2Fs1
http://refhub.elsevier.com/S0021-9991(20)30518-0/bibB6E8BA8FE244AFCEC18B1D774E871D2Fs1

A.M.P. Boelens et al. / Journal of Computational Physics 421 (2020) 109744 15
[45] O. Johansson, H.-O. Kreiss, Über das Verfahren der zentralen Differenzen zur Lösung des Cauchyproblems für partielle Differentialgleichungen, BIT
Numer. Math. 3 (2) (1963) 97–107.

[46] W. Layton, C. Trenchea, Stability of two IMEX methods, CNLF and BDF2-AB2, for uncoupling systems of evolution equations, Appl. Numer. Math. 62 (2)
(2012) 112–120.

[47] M. Kubacki, Uncoupling evolutionary groundwater-surface water flows using the Crank–Nicolson Leapfrog method, Numer. Methods Partial Differ. Equ.
29 (4) (2013) 1192–1216.

[48] N. Jiang, M. Kubacki, W. Layton, M. Moraiti, H. Tran, A Crank–Nicolson Leapfrog stabilization: unconditional stability and two applications, J. Comput.
Appl. Math. 281 (2015) 263–276.

[49] L. Grasedyck, Hierarchical singular value decomposition of tensors, SIAM J. Matrix Anal. Appl. 31 (4) (2010) 2029–2054.
[50] P. Breiding, N. Vannieuwenhoven, A Riemannian trust region method for the canonical tensor rank approximation problem, SIAM J. Optim. 28 (3)

(2018) 2435–2465.
[51] A. Uschmajew, B. Vandereycken, The geometry of algorithms using hierarchical tensors, Linear Algebra Appl. 439 (1) (2013) 133–166.
[52] S.T. Smith, Optimization techniques on Riemannian manifolds, Fields Inst. Commun. 3 (3) (1994) 113–135.
[53] Y. Yang, Globally convergent optimization algorithms on Riemannian manifolds: uniform framework for unconstrained and constrained optimization, J.

Optim. Theory Appl. 132 (2) (2007) 245–265.
[54] A. Uschmajew, Local convergence of the alternating least squares algorithm for canonical tensor approximation, SIAM J. Matrix Anal. Appl. 33 (2)

(2012) 639–652.
[55] J.C. Bezdek, R.J. Hathaway, Convergence of alternating optimization, Neural Parallel Sci. Comput. 11 (2003) 351–368.
[56] N. Hurl, W. Layton, Y. Li, C. Trenchea, Stability analysis of the Crank–Nicolson-Leapfrog method with the Robert–Asselin–Williams time filter, BIT

Numer. Math. 54 (4) (2014) 1009–1021.
[57] M. Kwizak, A.J. Robert, A semi-implicit scheme for grid point atmospheric models of the primitive equations, Mon. Weather Rev. 99 (1) (1971) 32–36.
[58] P.D. Williams, A proposed modification to the Robert–Asselin time filter, Mon. Weather Rev. 137 (8) (2009) 2538–2546.
[59] P.D. Williams, The RAW filter: an improvement to the Robert–Asselin filter in semi-implicit integrations, Mon. Weather Rev. 139 (6) (2011) 1996–2007.
[60] J.S. Hesthaven, S. Gottlieb, D. Gottlieb, Spectral Methods for Time-Dependent Problems, Vol. 21, Cambridge University Press, London, 2007.
[61] J.M. Ortega, W.C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New York, 1970.
[62] L.N. Trefethen, Spectral Methods in MATLAB, Vol. 10, SIAM, Philadelphia, 2000.
[63] P. Comon, X. Luciani, A.L.F. de Almeida, Tensor decompositions, alternating least squares and other tales, J. Chemom. 23 (2009) 393–405.
[64] C.C. Paige, M.A. Saunders, LSQR: an algorithm for sparse linear equations and sparse least squares, ACM Trans. Math. Softw. 8 (1) (1982) 43–71.
[65] H. Huang, J.M. Dennis, L. Wang, P. Chen, A scalable parallel LSQR algorithm for solving large-scale linear system for tomographic problems: a case

study in seismic tomography, Proc. Comput. Sci. 18 (2013) 581–590.
[66] J.C. Maxwell, On stresses in rarefied gases arising from inequalities of temperature, Proc. R. Soc. Lond. 27 (185-189) (1878) 304–308.
[67] C. Lanczos, Applied Analysis, Prentice-Hall, 1956.
[68] J.S. Hesthaven, Spectral penalty methods, Appl. Numer. Math. 33 (1–4) (2000) 23–41.
[69] P. Shuleshko, A new method of solving boundary-value problems of mathematical physics, Aust. J. Appl. Sci. 10 (1959) 1–7.
[70] L.J. Snyder, T.W. Spriggs, W.E. Stewart, Solution of the equations of change by Galerkin’s method, AIChE J. 10 (4) (1964) 535–540.
[71] B. Zinn, E. Powell, Application of the Galerkin method in the solution of combustion-instability problems, in: XlXth International Astronautical Congress,

vol. 3, 1968, pp. 59–73.
[72] D. Gottlieb, S.A. Orszag, Numerical Analysis of Spectral Methods: Theory and Applications, Vol. 26, SIAM, Philadelphia, 1977.

http://refhub.elsevier.com/S0021-9991(20)30518-0/bibE6CB9E8F68F699F029F68C3DF36840E6s1
http://refhub.elsevier.com/S0021-9991(20)30518-0/bibE6CB9E8F68F699F029F68C3DF36840E6s1
http://refhub.elsevier.com/S0021-9991(20)30518-0/bib5F73715B6A615E4AD761FBCA06DCC4FFs1
http://refhub.elsevier.com/S0021-9991(20)30518-0/bib5F73715B6A615E4AD761FBCA06DCC4FFs1
http://refhub.elsevier.com/S0021-9991(20)30518-0/bib894E37F1285B952C91F780FD59F9DD82s1
http://refhub.elsevier.com/S0021-9991(20)30518-0/bib894E37F1285B952C91F780FD59F9DD82s1
http://refhub.elsevier.com/S0021-9991(20)30518-0/bib950559D4B6F254AB78F27952FAF2774Fs1
http://refhub.elsevier.com/S0021-9991(20)30518-0/bib950559D4B6F254AB78F27952FAF2774Fs1
http://refhub.elsevier.com/S0021-9991(20)30518-0/bibD0D97CDAE2E721476AA2194C90FBF7AEs1
http://refhub.elsevier.com/S0021-9991(20)30518-0/bib0EF78EFF2E183BE2CA4BA480A5BD1DA9s1
http://refhub.elsevier.com/S0021-9991(20)30518-0/bib0EF78EFF2E183BE2CA4BA480A5BD1DA9s1
http://refhub.elsevier.com/S0021-9991(20)30518-0/bib3BF1085B623658B99FC1DE09BB35F5FBs1
http://refhub.elsevier.com/S0021-9991(20)30518-0/bib592C0BC89CDE5DFB5D92500075729B93s1
http://refhub.elsevier.com/S0021-9991(20)30518-0/bibC74C10AE6ACD3012D9C45466F52C605Bs1
http://refhub.elsevier.com/S0021-9991(20)30518-0/bibC74C10AE6ACD3012D9C45466F52C605Bs1
http://refhub.elsevier.com/S0021-9991(20)30518-0/bib9EA4CF2474D424266C7F4FB808D2ED00s1
http://refhub.elsevier.com/S0021-9991(20)30518-0/bib9EA4CF2474D424266C7F4FB808D2ED00s1
http://refhub.elsevier.com/S0021-9991(20)30518-0/bibF15468D0E7C6D8C1BA738F97CB9D8D19s1
http://refhub.elsevier.com/S0021-9991(20)30518-0/bib86B65D95EFDD4BFAB4AC1217C4955002s1
http://refhub.elsevier.com/S0021-9991(20)30518-0/bib86B65D95EFDD4BFAB4AC1217C4955002s1
http://refhub.elsevier.com/S0021-9991(20)30518-0/bib6210C31319F9E01634EA186289FE5D2Es1
http://refhub.elsevier.com/S0021-9991(20)30518-0/bib5E40C530B50A0FAF453499981A748908s1
http://refhub.elsevier.com/S0021-9991(20)30518-0/bib577E8955BFDF85F9B4350DE89E40D853s1
http://refhub.elsevier.com/S0021-9991(20)30518-0/bibBE23A7EE51FAB9107DEF9EE58223ACCEs1
http://refhub.elsevier.com/S0021-9991(20)30518-0/bib64C493B1ECC1AEB51AAB6F5C08C8F129s1
http://refhub.elsevier.com/S0021-9991(20)30518-0/bibC35FA32A8712008A9CB480A826AA2DAEs1
http://refhub.elsevier.com/S0021-9991(20)30518-0/bib6B74435E70845BA006D9F9165A8E99F3s1
http://refhub.elsevier.com/S0021-9991(20)30518-0/bibD3A369CBD1342BC497CF810B5F1F7783s1
http://refhub.elsevier.com/S0021-9991(20)30518-0/bib0D9D986B9EDC0215B1EE36994FF52B96s1
http://refhub.elsevier.com/S0021-9991(20)30518-0/bib0D9D986B9EDC0215B1EE36994FF52B96s1
http://refhub.elsevier.com/S0021-9991(20)30518-0/bibB188E94145C32A4F4F963410516A7EEEs1
http://refhub.elsevier.com/S0021-9991(20)30518-0/bibF027308AF9EE8D78892A8DE279AFF23Es1
http://refhub.elsevier.com/S0021-9991(20)30518-0/bib7A3FC9D0471CB13827A0FC39824D36B3s1
http://refhub.elsevier.com/S0021-9991(20)30518-0/bib521B75901FEF5E6BD5E9B161C07077D7s1
http://refhub.elsevier.com/S0021-9991(20)30518-0/bibA76314E9B1D6243F665332E4A77283AAs1
http://refhub.elsevier.com/S0021-9991(20)30518-0/bib1B92D04F1AB65414375EF1C6DCB90B25s1
http://refhub.elsevier.com/S0021-9991(20)30518-0/bib1B92D04F1AB65414375EF1C6DCB90B25s1
http://refhub.elsevier.com/S0021-9991(20)30518-0/bibBB4454D939C919FF1B41BB7415E0A4F0s1

	Tensor methods for the Boltzmann-BGK equation
	1 Introduction
	2 Boltzmann equation
	2.1 BGK approximation of the collision operator
	2.2 Scaling

	3 A tensor method to solve the Boltzmann-BGK equation
	3.1 Canonical tensor decomposition and alternating least squares (ALS)
	3.2 Evaluation of the BGK collision term
	3.3 Parallel ALS algorithm

	4 Numerical results
	4.1 Transient dynamics in one spatial dimension
	4.2 Steady-state simulations in three spatial dimensions
	4.3 Relaxation to statistical equilibrium in three spatial dimensions

	5 Discussion and conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Appendix A Supplementary material
	References

