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a b s t r a c t

Darcy-scale models of flow and transport in porous media often fail to describe experimentally observed
phenomena, while their pore-scale counterparts are accurate but can be computationally prohibitive.
Most numerical multiscale models, which seek to combine these two descriptions, require empirical clo-
sures and/or assumptions about the behavior of pore-scale quantities at the continuum (Darcy) scale. We
present a general formulation of an iterative hybrid numerical method that links the pore and continuum
scales without resorting to such approximations. The algorithm treats the fluxes exchanged at the inter-
nal boundaries between pore- and continuum-scale domains as unknown, and allows for iteratively
determined boundary conditions to be applied at the pore-scale in order to guarantee flux continuity.
While the algorithm proposed is general, we use it to model transport in a fracture with chemically reac-
tive walls. Results demonstrate significant improvement upon standard continuum-scale formulations.

! 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Standard continuum (Darcy-scale) models of flow and transport
in porous media (e.g., Darcy’s law for single- and multi-phase
flows, and an advection–dispersion equation or ADE for transport)
often fail to describe experimentally observed phenomena, includ-
ing the extent of reactions in mixing-controlled chemical transfor-
mations [12,24], asymmetrical long tails of breakthrough curves
[17], and the onset of instability in variable density flows [21].
Such failures occur when approximations and closure assumptions
underpinning these models break down [4–6]. These approxima-
tions and assumptions are needed to transition from ‘‘first-princi-
ple’’ models that are valid at the pore scale (e.g., the Stokes
equations for flow and advection–diffusion equations for trans-
port) to their largely phenomenological counterparts defined at a
continuum scale (e.g., Darcy’s law and ADE).

While pore-scale simulations — employing alternatively lattice
Boltzmann methods [20], the smoothed particle hydrodynamics
(SPH) method [15], or direct numerical simulations [18], among
other computational techniques [15] — can obviate the need for
these approximations, they are impractical as a predictive tool
due to both high computational costs and the lack of detailed infor-
mation about pore geometry of natural porous media larger than a
small core. The search for ways to combine the physical rigor of
pore-scale modeling with the computational efficiency of its
continuum-scale counterpart has motivated the development of
hybrid pore-scale/continuum-scale algorithms, e.g., [14,22].

Hybrid simulations, also known as a multi-algorithm approach
or algorithm refinement, provide significant computational speed-
up when a sub-domain Xp wherein pore-scale simulations are re-
quired (i.e., wherein continuum models become invalid) is much
smaller than a total computational domain X. The inequality [1,2],

kXpck
kXk! kXpk

Cpc

Cp
" 1

provides a more precise formulation of this statement. Here kXk,
kXpk, and kXpck are the respective volumes of X, Xp, and a ‘‘hand-
shake’’ region Xpc wherein both continuum and pore-scale simula-
tions are coupled; and Cp and Cpc are the computational costs per
unit volume for pore-scale and coupling simulations, respectively.
This condition takes advantage of the fact that the computational
cost of continuum-scale simulations is much smaller than that of
pore-scale simulations (Cp). As pointed out in [1], a hybrid algo-
rithm is beneficial ‘‘even if the algorithmic interface is computation-
ally more expensive than either algorithm, as long as the interface
region and the region using the more expensive method are each
small fractions of the total volume.’’ The latter condition is satisfied
in highly localized flow and transport phenomena, such as flow and
transport to/from point sources and propagation of reactive fronts.
Tools for identifying the regions Xp, wherein continuum models
break down, were developed in [5,6].

It is important to distinguish hybrid algorithms from multiscale
numerical approaches that are based on empirical closures [9],
upscaling methods [13] and/or assumed macroscopic behavior of
microscopic variables [7]. Multiscale algorithms employ ‘‘effective’’
representations of pore-scale processes, which share many approx-
imations and assumptions with continuum models. For example,
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the multiscale methods based on upscaling techniques [9,13] im-
pose periodic boundary conditions on a pore-scale problem, rely
on truncated Taylor expansions of pore-scale variables, and/or em-
ploy empirical closures.

We present a hybrid algorithm that couples pore-scale simula-
tions in a small domain Xp with continuum simulations elsewhere
in the computational domain, X/Xp. The coupling is accomplished
via an iterative procedure in a handshake region Xpc, where both
the pore-scale and continuum-scale descriptions are solved itera-
tively to ensure the continuity of state variables and their fluxes
across the interface between Xp and the rest of the computational
domain.

The manuscript is organized as follows. Section 2 contains a
general formulation of flow and transport equations at the pore
(Section 2.1) and continuum (Section 2.2) scales, as well as an out-
line of the proposed hybrid algorithm (Section 2.3). Both the hybrid
formulation and its numerical implementation are made concrete
in Section 3 by applying them to model Taylor dispersion in a pla-
nar fracture with chemically reactive walls. In Section 4, we use
this well-studied problem to validate our hybrid algorithm via
comparison with analytical solutions and two-dimensional pore-
scale numerical simulations.

2. Hybrid formulation of flow and transport in porous media

2.1. Governing equations at the pore scale

Consider reactive transport in a fully-saturated porous medium
XT. Within the pore space XT

p contained in XT, single-phase flow of
an incompressible fluid is described by the Stokes and continuity
equations,

lr2v !rp ¼ 0; r $ v ¼ 0; ð1Þ

where v(x), p(x) and l are the fluid’s velocity, dynamic pressure,
and dynamic viscosity, respectively. Flow equations (1) are subject
to the no-slip boundary condition on the solid–liquid interface CT

s‘,
which is taken to be impermeable to flow, i.e., v = 0 for x 2 CT

s‘. The
flow is driven by boundary conditions imposed on @XT, the external
boundary of XT.

The fluid contains a dissolved species with molar concentration
c(x, t) [M L!3] that undergoes advection, molecular diffusion and a
linear heterogeneous reaction at the solid–liquid interface CT

s‘.
The evolution of c(x, t) is described by an advection–diffusion
equation,

@c
@t
þr $ ðvcÞ ¼ Dr2c; ð2aÞ

subject to the boundary condition on the solid–fluid interface CT
s‘,

!n $Drc ¼Kc; ð2bÞ

and boundary conditions on @XT. Here D [L2T!1] is the molecular
diffusion coefficient, KðxÞ [L T!1] is the reaction rate constant for
a surface reaction (e.g., linear microbial degradation), and n(x) is
the outward unit normal vector of CT

s‘.

2.2. Governing equations at the continuum scale

Let Aðx; tÞ denote the volumetric average of a pore-scale quan-
tity A(x, t) defined as

Aðx; tÞ ( 1
/kVk

Z

VðxÞ
Aðy; tÞdy; ð3Þ

where /(x) is the porosity of a porous medium, and the averaging
volume V might or might not constitute a representative elemen-

tary volume (REV). Averaging (1), i.e., upscaling the flow equations
from the pore scale to the continuum scale, leads to Darcy’s law [4],

V ¼ ! k
lr

!p; ð4Þ

where k(x) is the permeability of the porous medium, and
VðxÞ ¼ /!v is Darcy’s flux. The validity of (4) requires that the Rey-
nolds number Rec satisfy the inequality [8, p.74, and the references
therein]

Rec (
jVjd
m < 10; ð5Þ

where d is a typical length associated with grain geometry, and m is
the fluid’s kinematic viscosity.

A continuum-scale formulation of the pore-scale transport
problem (2) typically used in practice is

/
@!c
@t
þ /r $ ðV!cÞ ¼ r $ ðDr!cÞ ! K!c; ð6Þ

where D(x) is the dispersion tensor, and K(x) is the effective reac-
tion rate. Eq. (6) can be derived by standard upscaling methodolo-
gies, such as multiple-scale expansions or volumetric averaging
[5, and references therein]. Regardless of the choice of an upscaling
technique, a number of simplifying approximations are required for
(6) to be valid [5,6]. These can be summarized by the phase diagram
developed in [5] and reproduced in Section 3 for completeness.

2.3. General hybrid formulation

We are concerned with transport regimes in which Rec < 10, i.e.,
the Darcy law (4) is valid over the whole computational domain XT

but one or more of the sufficient conditions [5,6] for the validity of
the continuum-scale transport Eq. (6) break down in a sub-domain
Xp of the computational domain XT, (Fig. 1). In Xp, the averaging of
(2) results in an integro-differential equation

/
@!c
@t
þr $ ðvcÞ ¼ Dr2c; ð7Þ

where the averaging (3) is now defined over V ( XpðxHÞ and xw is
the centroid of Xp, i.e., the sub-domain Xp shrinks to a point
xw 2XT. Violation of some of the sufficient conditions [5,6] prevents
the averaging integrals in (7) from being converted into the corre-
sponding terms for the macroscopic (average) concentration !c in
(6).

According to Gauss’ theorem, (7) can be rewritten as

/
@!c
@t
¼ 1

/kXpk

Z

Cp

n $ ðDrc ! vcÞds; ð8Þ

where Cp is the bounding surface of Xp, and ds is an infinitesimal ele-
ment of Cp. Since the surface Cp ¼ Cp

‘‘ [ Cp
s‘ consists of liquid–liquid

ðCp
‘‘Þ and solid–liquid ðCp

s‘Þ segments, boundary condition (2b) and
the no-slip condition yield

Fig. 1. A schematic representation of the pore- and continuum-scale domains.
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/
@!c
@t
¼ ! 1

/kXpk

Z

Cp
‘‘

qnds! 1
/kXpk

Z

Cp
s‘

Kcds; ð9Þ

where qnðx; tÞ ¼ n $ ðvc !DrcÞ is the pore-scale mass flux (or flux
density) through the liquid–liquid portion of the boundary, Cp.
The right-hand-side of (9) depends on the pore-scale quantities.
It represents the fluxes exchanged at the boundary Cp between
the pore- and continuum-scale descriptions. Multiscale ap-
proaches [7,9,13, among others] decouple the two descriptions
by employing closure assumptions to express the unresolved
pore-scale flux qn(x, t) in terms of its continuum-scale counter-
part. A typical strategy is to represent the pore-scale concentra-
tion c ¼ !c þ c0 as the sum of its average !c and corresponding
fluctuations c0, to linearize f ðcÞ ¼ f ð!cÞ þ c0ðdf=dcÞjc¼!c

þ $ $ $, to postu-

late a numerical or analytical closure for c0, and to impose bound-
ary conditions on Cp (the most common being a periodic
condition).

In contrast, our goal is to compute the unresolved pore-scale
flux qn without any assumption on the pore-scale behavior and
without resorting to linearization of the general reactive term f(c)
when the latter is present. To this end, we obtain the pore-scale
concentration c(x, t) in (9) by solving the transport problem (2)
defined on Xp. The boundary condition (2b) is now defined on
the union of all solid–liquid surfaces Cs‘ contained in Xp. On
the fluid–fluid segments Cp

‘‘, mass conservation requires that
n $ ðDrc ! vcÞ ¼ qn. The pore-scale flux qn(x, t), which represents
a boundary condition for the pore-scale problem (2) and a source
term for the continuum-scale Eq. (9), is unknown.

Fig. 2. Phase diagram indicating the range of applicability of macroscopic advection–reaction–diffusion equations in terms of the Péclet (Pe) and Damköhler (Da) numbers.
The grey region identifies the sufficient conditions under which the macroscopic equations hold. In the white region, macro- and micro-scale problems are coupled and have
to be solved simultaneously. Also identified are different transport regimes depending on the order of magnitude of Pe and Da. Diffusion, advection, and reaction are of the
same order of magnitude at the point (a,b) = (1,0). Reproduced from [5].
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In summary, the hybrid pore-scale/continuum-scale algorithm
contains the three unknowns ðc; !c; qnÞ that satisfy a system of cou-
pled partial-differential equations,

/
@!c
@t
þ /r $ ðV!cÞ ¼ r $ ðDr!cÞ ! K!c; x 2 XT ; t > 0; ð10Þ

/
@!c
@t
¼ 1

/kXpk

Z

C‘‘

qndx! 1
/kXpk

Z

Cs‘

Kcdx; x ¼ xH; t > 0; ð11Þ

@c
@t
þr $ ðvcÞ ¼ Dr2c; x 2 Xp; t > 0; ð12Þ

n $ Drc ! vcð Þ ¼ qn; x 2 C‘‘; t > 0; ð13Þ
! n $Drc ¼Kc; x 2 Cs‘; t > 0; ð14Þ

supplemented by initial conditions and boundary conditions on the
external domain oXT.

In the following section we apply this hybrid algorithm to
model transport in a fracture with chemically reactive walls.

3. Transport in a fracture with reactive walls

Consider transport of a reactive solute by advection and diffu-
sion in a fracture of width 2H. The solute undergoes a first-order
heterogeneous reaction at the walls of the channel. The flow
domain X ¼ ðx; yÞ : x 2 ð0;1Þ; jyj < Hf g has the boundary
C ¼ ðx; yÞ : x 2 ð0;1Þ; jyj ¼ Hf g.

Assuming laminar, fully developed flow inside the fracture, the
‘‘pore-scale’’ velocity in (1) is given by Poiseuille’s law, V = (u,0)T,
where

uðyÞ ¼ um 1! y
H

! "2
# $

ð15Þ

and um is the maximum velocity at the center of the fracture (y = 0).
The general pore-scale transport problem (2) reduces to

@c
@t
þ uðyÞ @c

@x
!D

@2c
@x2 þ

@2c
@y2

 !
¼ 0; ðx; yÞ 2 X; t > 0; ð16aÞ

!D
@c
@y
¼Kc; ðx; yÞ 2 C; t > 0: ð16bÞ

The average concentration !cðx; tÞ in (3) is now defined as

!cðx; tÞ ( 1
2H

Z H

!H
cðx; y; tÞdy: ð17Þ

It satisfies a version of the continuum (Darcy-scale) transport Eq. (6)
that has the form [16]

@!c
@t
þ U

@!c
@x
þ K!c ¼ D

@2!c
@x2 ; x 2 ð0;1Þ; t > 0; ð18aÞ

where

U ¼ um
2
3
þ 4Day

45

% &
; K ¼K

H
1! Day

3

% &
; D ¼ D 1þ

8Pe2
y

945

 !

ð18bÞ

and

Pey ¼
umH
D

; Day ¼
KH
D

: ð18cÞ

The validity of (18) requires that L, a macroscopic characteristic
length scale in the x direction, be much larger than H, i.e.,
! = H/L" 1; and places a number of constraints on the order of
magnitude of the Péclet (Pey) and Damköhler (Day) numbers (Fig. 2).

Our focus is on transport regimes wherein one or more of these
constraints are violated in a small portion of the computational do-
main, Xp = {(x,y): x 2 (a,b), jyj < H}. Eq. (18) is valid in the rest of
the computational domain. To simplify the presentation, we

assume that Xp corresponds to a single macroscale grid block. Then
the domain of pore-scale simulations Xp and the handshake do-
main Xpc coincide. Domains Xp that are larger than a single grid
block can be easily handled by following a procedure similar to
that described below. Possible effects on numerical robustness
are discussed in [9, p. 511].

Since (18) is no longer valid in Xp, we employ its nonlocal coun-
terpart (9), which for the problem under consideration takes the
form

@!c
@t
¼ D

@2!c
@x2 !

KJc

2H
! uðyÞ @c

@x
; ðx; yÞ 2 Xp ð19Þ

where Jc = c(x,H) + c(x, ! H) and the pore-scale concentration
c(x,y, t) satisfies (16). Eq. (19) is supplemented by the boundary con-
ditions at the internal boundary Cp ¼ ðx; yÞ : x ¼ a; b; y 2 ð!H;HÞf g,

n $ ðVc !DrcÞ ¼ qn: ð20Þ

The following sections contain a finite-volume discretization of the
averaged equations (18) and (19). A finite-volume discretization of
the pore-scale equations (16) is standard [23] and not reproduced
here explicitly.

3.1. Finite-volume formulation

We discretize the macroscopic space–time domain into NX and
NT intervals of width DXI and DT, respectively (Fig. 3). Spatial nodes
of the macroscopic domain, X/Xp, are defined as

XIþ1 ¼ XI þ ðDXI þ DXIþ1Þ=2; I ¼ 1; . . . ;NX ð21Þ

and their temporal counterparts are defined as

TN ¼ NDT; N ¼ 0;1; . . . ;NT : ð22Þ

The western and eastern boundaries of the control volume (CV)
centered at XI are given by XI!1/2 = XI ! DXI/2 and XI+1/2 = XI +
DXI/2, respectively. The distance between two adjacent nodes is
DXI+1/2 = XI+1 ! XI. The western and eastern boundaries of the com-
putational domain coincide with the western and eastern bound-
aries of the first and last CVs, X1/2 and XNXþ1=2, respectively.

Let Iw denote the index of the CV in which the standard macro-
scopic Eq. (18) breaks down. In this formulation, the single Iw-th CV
represents both the domain of pore-scale simulations Xp and the
handshake region Xpc. Instead of (18), both its nonlocal counter-
part (19) and the pore-scale transport equation (16) have to be
solved in the Iw-th CV. In the rest of the computational domain,
(18) is valid. The Iw-th CV is discretized into nx and ny intervals
of width Dxi and Dyj in the x and y directions, respectively. Spatial
nodes (xi,yi) of the microscopic domain Xp (the Iw-th CV) are de-
fined as

xiþ1 ¼ xi þ ðDxi þ Dxiþ1Þ=2; i ¼ 1; . . . ;nx; ð23aÞ
yjþ1 ¼ yj þ ðDyj þ Dyjþ1Þ=2; j ¼ 1; . . . ;ny: ð23bÞ

The four surfaces bounding a CV centered at (xi,yj) are at locations
xi!1/2 = xi ! Dxi/2 (west), xi+1/2 = xi + Dxi/2 (east), yj!1/2 = yj ! Dyj/2
(south), and yj+1/2 = yj + Dyj/2 (north). The distances between two
adjacent nodes in the x and y directions are Dxi+1/2 = xi+1 ! xi and
Dyj+1/2 = yj+1 ! yj, respectively. The western and eastern boundaries
of Xp coincide with the western and eastern boundaries of the Iw-th

Fig. 3. A finite-volume discretization of the computational domain for a hybrid 1D/
2D formulation.

I. Battiato et al. / Advances in Water Resources 34 (2011) 1140–1150 1143



macroscopic CV, XIH!1=2 and XIHþ1=2, respectively (Fig. 3). Time t in
the pore-scale simulations is discretized into nt intervals of width
Dt, such that DT = ntDt and tn = nDt with n = 0, 1, . . ..

Let us define !cN
I ¼ !cðXI; TNÞ and cn

i;j ¼ cðxi; yj; tnÞ. In Appendix A.1
we derive a finite-volume fully-implicit approximation of the mac-
roscopic Eqs. (18) and (19),

AI!1!cNþ1
I!1 þ AI!cNþ1

I þ AIþ1!cNþ1
Iþ1 ¼ RHSN

I ; ð24Þ

where, for nodes I = {1, . . . , Iw ! 1} [ {Iw + 1, . . . ,NX},

AI!1 ¼ !aI!1; AI ¼
DXI

DT
þ !aI; AIþ1 ¼ !aIþ1; a0 ¼ 0; ð25aÞ

aIþ1 ¼max !U;DIþ1=2 !
U
2
; 0

% &
; DIþ1=2 ¼

D
DXIþ1=2

; ð25bÞ

aI!1 ¼max !U;DI!1=2 þ
U
2
; 0

% &
; DI!1=2 ¼

D
DXI!1=2

; ð25cÞ

aNX ¼ 0; !aI ¼ aI!1 þ aIþ1 þ KDXI ! SI; ð25dÞ

RHSN
I ¼

DXI

DT
!cN

I þ eSI; ð25eÞ

and eSI and SI represent a numerical discretization of external
boundary conditions at the macroscale.

At node Iw, the coefficients in (24) take the form (Appendix A.2)

AIH!1 ¼ !dIH!1=2; AH
I ¼

DXIH

DT
þ dIH!1=2 þ dIHþ1=2; AIHþ1 ¼ !dIHþ1=2;

ð26aÞ

RHSN
IH ¼

DXIH

DT
!cN

IH þ
1

2HNT

Xnt

k¼1

Gkþ1; ð26bÞ

with

Gk ¼ !K
Xnx

i¼1

Dxiðck
i;H þ ck

i;!HÞ !
R H
!H gk

1dy if Pe 2 ð!2;2Þ;
R H
!H gk

2dy if Pe R ð!2;2Þ;

(

ð26cÞ

gk
1ðyÞ¼

Xnx!1

i¼2

uy

2
ck

iþ1;y! ck
i!1;y

! "
þuy

2
ck

2;yþ
ð!u1=2þuy=2Þck

1;yþqk
W

u1=2þuy=2

" #

þuy

2

qk
E! unxþ1=2þuy=2
! "

ck
nx ;y

!unxþ1=2þuy=2
! ck

nx!1;y

2

4

3

5; ð26dÞ

gk
2ðyÞ ¼

Xnx!1

i¼2

ny ck
i;y ! ck

iþ1;y

! "
þ gy ck

i;y ! ck
i!1;y

! "h i

þ ny ck
1;y ! ck

2;y

! "
þ gy ck

nx ;y ! ck
nx!1;y

! "

!
uyck

1;y þ qk
W

u1=2 þ gy
!

qk
E ! uyck

nx ;y

unxþ1=2 þ gy
; ð26eÞ

where ck
i;y ¼ cðxi; y; tkÞ is the pore-scale concentration continuous in

y, to be discretized by an appropriate quadrature rule in (26c);
Pe ¼ u=d; uy ¼ uðyÞ; ny ¼ maxð!uy;0Þ; gy ¼ maxðuy;0Þ; us ¼ ds=As

(s = 1/2 and s ¼ nx þ 1=2Þ; diþ1=2 ¼ DAiþ1=2=Dxiþ1=2; di!1=2 ¼ DAi!1=2

=Dxi!1=2 and Aiþ1=2 and Ai!1=2 are the respective lengths of the
eastern and western boundaries of the CV centered at xi; and qW

and qE are the unknown continuum-scale mass fluxes at the
western and eastern internal boundaries separating the pore- and
continuum-scale representations. They serve as boundary condi-
tions for the pore-scale simulations in the Iw-th CV. We stress that
RHSIH is a function of pore-scale concentration and that the latter
depends on qW and qE. An iterative algorithm to solve (24)–(26) is
described below.

3.2. Hybrid algorithm

The solution of the coupled system (16)–(20) or its discretized
form (24)–(26) reduces to finding zeros (qE,qW) of an algebraic sys-
tem of equations in the form

FðqE; qW Þ ¼ 0; HðqE; qW Þ ¼ 0; ð27Þ

where qE ¼ qIHþ1=2 and qW ¼ qIH!1=2 are the unknown continuum-
scale mass fluxes at the western and eastern edges of the Iw-th cell.
The hybrid pore-scale/continuum-scale algorithm can be formu-
lated as follows.

(1) Initialization. At timestep TN, cN and !cN are known.
(2) Guess for fluxes. Make a guess for qW and qE, i.e., pick two

constants. This imposes the Robin (or third type) conditions
at the eastern and western boundaries of the pore-scale sim-
ulations domain:

D
@c
@x
! uc ¼ qW ; x ¼ XIH!1=2; y 2 ½!H;H*; ð28aÞ

!D
@c
@x
þ uc ¼ qE; x ¼ XIHþ1=2; y 2 ½!H;H*: ð28bÞ

The boundary conditions at the north and south boundaries
(solid walls of the fracture) are defined by (16b).

(3) Pore-scale evolution and source-term evaluation. The pore-
scale problem (16), supplemented with the boundary condi-
tions (28) is evolved from TN to TN+1. The source term G at
node Iw is evaluated from (26c)–(26e).

(4) Continuum-scale evolution. The continuum-scale concentra-
tion !c is evolved from TN to TN+1 by using the Thomas
algorithm to solve the tri-diagonal system (24).

(5) Continuum-scale fluxes computation. Continuum-scale fluxes
~qW and ~qE at locations XIH!1=2 and XIHþ1=2 are computed by
means of (A.2) and compared with the qW and qE from step 2.

Table 1
Parameter values used in the simulations of reactive transport in a fracture. The
dimensionless parameters are defined as Pe ¼ UL=D;Pey ¼ umH=D;Da ¼
KL=D;Day ¼KH=D;Daout ¼ KoutL=D;Day;out ¼KoutH=D.

Parameters Continuum-scale Pore-scale

Domain length in x L = 20 [L] DX = 0.25 [L]
Domain length in y – 2H = 0.25 [L]
Nodes in x-direction NX = 80 nx = 30
Nodes in y-direction – ny = 20
Hybrid node IH ¼ 15 –
Time step DT = 0.0005 [T] Dt = 0.00001 [T]
Diffusion coefficient D = 20.0015 [L2/T] D ¼ 20 [L2/T]
Kinematic viscosity – m = 0.01 [L2/T]

Case 1: Advection–diffusion
Time domain [0,0.4] [T] [0,0.4] [T]
Maximum velocity U = 3.33 [L/T] um = 5 [L/T]
Reaction coefficient K = 0 [1/T] K ¼ 0 [L/T]
Péclet number Pe + 3.33 Pey + 0.03
Damköhler number Da = 0 Day = 0

Case 2: Advection–reaction–diffusion (homogeneous K)
Time domain [0,0.2] [T] [0,0.2] [T]
Maximum velocity U = 10.0417 [L/T] um = 15 [L/T]
Reaction coefficient K = 39.55 [1/T] K ¼ 5 [L/T]
Péclet number Pe + 10 Pey + 0.1
Damköhler number Da + 40 Day + 0.03

Case 3: Advection–reaction–diffusion (heterogeneous K)
Time domain [0,0.25] [T] [0,0.25] [T]
Maximum velocity U = 10.0417 [L/T] um = 15 [L/T]
Reaction coefficient Kout = 39.55 [1/T] Kout ¼ 5 [L/T]

Kin = 225 [1/T] Kin ¼ 450 [L/T]
Péclet number Pe + 10 Pey + 0.1
Damköhler number Daout + 40 Day,out = 0.03

Da + 225 Day = 2.8
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(6) Convergence check and iteration. Select an acceptable toler-
ance !. If j~qW ! qW j > ! or j~qE ! qEj > !, use, e.g., the Broyden
method, to refine the guess of qW and qE and go to step 2. If
both j~qW ! qW j 6 ! and j~qE ! qEj 6 !, then the convergence is
reached. March forward in time (N :¼ N + 1) and go to step 1.

4. Numerical results

In Section 4.1, we use advective–diffusive transport (Taylor dis-
persion) in a fracture with uniform reaction rates. This setting ad-
mits an analytical solution and, hence, is used to analyze the
accuracy of the hybrid algorithm relative to that of its continuum
(upscaled) counterpart. In Section 4.2, the reaction coefficient is ta-
ken to be highly heterogeneous. For this situation, we compare the
hybrid solution with both a solution of the upscaled equation (18)
and an averaged solution of the fully two-dimensional problem
(‘‘pore-scale simulations’’).

4.1. Hybrid validation

We consider the macroscopic problem (18) subject to the initial
and boundary conditions

!cðx;0Þ ¼ 1; !cð0; tÞ ¼ 0;
@!c
@x
ð1; tÞ ¼ 0: ð29Þ

Its unique solution is

!cðx; tÞ ¼ e!Kt 1! 1ffiffiffiffi
p
p eUx=D

Z þ1

xþUt
2
ffiffiffi
Dt
p

e!g2
dgþ 1ffiffiffiffi

p
p

Z þ1

x!Ut
2
ffiffiffi
Dt
p

e!g2
dg

 !

: ð30Þ

This exact solution is used to verify the accuracy of both the hybrid
algorithm and the numerical solutions of the continuum problem
(18) for advective–diffusive transport (Case 1 in Table 1) and advec-
tive–diffusive-reactive transport with uniform reaction rates (Case
2 in Table 1). The set of parameters used in these simulations are
summarized in Table 1. These values are typical for flow and trans-

Fig. 4. Case 1 in Table 1: temporal snapshots of the average concentration !cðx; tÞ computed with the analytical solution (30) (solid line) and hybrid simulations (,) at times
t = 0.005, t = 0.05, t = 0.15, t = 0.25, and t = 0.395 (from left to right). Symbol h indicates the location of node IH , where the pore- and continuum-scales are coupled.

Fig. 5. Case 2 in Table 1: temporal snapshots of the average concentration !cðx; tÞ computed with the analytical solution (30) (solid line) and hybrid simulations (,) at times
t = 0.001, t = 0.005, t = 0.015, t = 0.025, t = 0.05, t = 0.1, and t = 0.195 (from top to bottom). Symbol h indicates the location of node IH , where the pore- and continuum-scales
are coupled.
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port processes through fractured media: experiments of transport
in fractured media [10,11] with fracture aperture in the order of mi-
crons (0.6 ! 120 lm) and weighted average velocity of 0.75 m/day
have Péclet number in the range of 2.6 , 10!3 ! 0.52.

Figs. 4–6 show a perfect agreement between the analytical and
hybrid solutions. This is to be expected since all the necessary con-
ditions for the validity of the macroscopic (averaged) transport
Eq. (18) hold for the flow and transport regimes considered in
Cases 1 and 2. The comparison between the numerical and analyt-
ical solutions of (18) also demonstrates that the choice of space–
time discretization is adequate to ensure the required accuracy.

Hence, the discrepancy between the hybrid (and pore-scale) and
continuum simulations observed in Section 4.2 is due to the break-
down of the latter rather than numerical errors.

Fig. 7 depicts the pore-scale concentration at the macro-scale
node Iw at four temporal snapshots. The mass accumulation and
mass depletion areas close to the boundaries arise from imposition
of continuity of pore- and continuum-scale mass fluxes on the west
and east edges of a continuum-scale element Iw. Specifically, the
continuum-scale mass fluxes qE and qW, which are constant along
the respective edges of the Iw-th CV, serve as uniform boundary
conditions for the pore-scale simulations. However, the local

Fig. 6. Case 2 in Table 1: breakthrough curves at three locations, upstream and downstream of the hybrid node (figures on the left and on the right, respectively) and at the
hybrid node IH (center), computed with the analytical solution (30) (solid line), hybrid simulations (,), and the numerical solution of the continuum model (18) (dashed line).

Fig. 7. Case 2 in Table 1: pore-sale concentration c(x,y, t) in the hybrid node IH at times t = 0.0005 (a), t = 0.007 (b), t = 0.04 (c), and t = 0.1 (d).
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distortions of the concentration distribution have a relatively little
effect on the average (continuum-scale) concentration (see Figs. 5
and 6).

4.2. Hybrid simulations for highly localized heterogeneous reactions

In the last example we investigate the effects of heterogeneity
in reaction rates. Specifically, we assume K at the Iw-th node to
be two orders of magnitude bigger than in the rest of the channel,
with the Damköhler number Day changing from 0.03 to 2.8.
Eq. (18) fails for Day P 3 as the effective reaction coefficient K
changes sign for increasing positive values of K (i.e., increasing
mass loss at the solid–liquid interface): this leads to the unphysical
behavior of K < 0 (i.e., source) while mass is absorbed (degraded,
etc.) at the micro-scale (i.e., sink).

While one can expect quantitative and qualitative differences
between the upscaled model (18) and a fully 2D pore-scale solu-
tion for Day P 3, we show here that significant deviations from

the ‘‘exact’’ pore-scale solution occur even for Day < 3. This is done
by comparing the results of our hybrid simulations with those ob-
tained alternatively by solving the 1D continuum-scale Eq. (18) or
by averaging the fully 2D pore-scale solution. Figs. 8 and 9 show
respectively the continuum-scale concentration and breakthrough
curves obtained from the upscaled 1D continuum-scale, hybrid and
fully 2D pore-scale equations. At the location of high heterogeneity
(see Fig. 8), the continuum-scale equation significantly overesti-
mates the concentration, while the hybrid simulations improves

Fig. 8. Case 3 in Table 1: temporal snapshots of the average concentration !cðx; tÞ computed with the 1D continuum model (18) (solid line), hybrid algorithm (,) and fully-
resolved 2D pore-scale simulations (dashed line) at times t = 0.0005 (top), t = 0.015 (center) and t = 0.06 (bottom). Symbol h indicates the location of node IH , where the pore-
and continuum-scales are coupled.

Fig. 9. Case 3 in Table 1: breakthrough curves at the hybrid node IH computed with the 1D continuum model (18) (solid line), hybrid simulations (,), and fully-resolved 2D
pore-scale simulations (dashed line).

Table 2
Relative errors, E ¼ 100%jcex ! capj=cex , between the ‘‘exact’’ fully-resolved pore-scale
simulations (cex) and its approximate counterpart (cap) computed with either the
continuum model or the hybrid simulations at the hybrid node IH .

t = 0.0005 t = 0.015 t = 0.06

Continuum model 200.8% 602.2% 890.7%
Hybrid algorithm 0.85% 110% 105%
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the prediction’s accuracy (Table 2) at a fraction of computational
cost. In our simulations conducted on a single-processor computer,
the computational costs of the hybrid and fully-resolved 2D pore-
scale simulations were 1.02 , 103 and 1.65 , 104 times larger than
those of the 1D continuum-scale model (CPU time = 1.25).

The accuracy of the hybrid algorithm can be improved by
enlarging Xp, the portion of the computational domain where the
pore-scale simulations are carried out. When Xp becomes large en-
ough to absorb the effects of the spike in the reaction rate constant,
the hybrid algorithm’s performance becomes similar to that shown
in Figs. 5 and 6. Any improvement in accuracy comes at the ex-
pense of increased computational burden, since the pore-scale
simulations have to be conducted in a larger region.

Fig. 8 reveals that pore-scale effects propagate from the domain
of pore-scale simulations (CV Iw) into the adjacent regions of con-
tinuum-scale simulations (e.g., CVs Iw ! 1 and Iw + 1). This phe-
nomenon is due to both a two-way coupling between the scales
and the nonlinearity of reactive transport equations. The propaga-
tion of noise (unresolved fluctuations) from a fine-algorithm region
into a coarse-algorithm region is a salient feature of hybrid simu-
lations, occurring even in linear systems [1–3].

Fig. 10 depicts the concentration profile at the pore-scale at four
different times and shows how the highly reacting walls produce
strong concentration gradients between areas where mass is more
quickly depleted because of fast reactions (close to the walls) rela-
tive to others where the major transport mechanism is diffusion (in
the center of the channel).

5. Summary and conclusions

We developed a general algorithm to incorporate pore-scale
(subgrid) effects into continuum models of reactive transport in
porous and fractured media. Unlike multiscale methods that are
based on empirical closures and/or approximations, our approach
does not require prior knowledge about the macroscopic behavior
of pore-scale variables. This is attained by treating the normal

fluxes through the internal boundaries separating the two formu-
lations as unknown quantities. Given the intrinsic nonlinearity of
such a formulation, the solution is found through an iterative
procedure.

We applied our algorithm to model transport in a fracture with
chemically reactive walls. A finite-volume implementation of the
hybrid formulation was compared with corresponding analytical
solutions, when available, and/or with ‘‘pore-scale’’ simulations
of two-dimensional transport inside the fracture.

Our study leads to the following major conclusions:

- The proposed hybrid algorithm enables one to determine pore-
and continuum-scale concentrations and fluxes in regions of a
computational domain where advection–reaction–diffusion
equations break down.
- The proposed method is capable of handling highly localized

heterogeneities, provides a considerable improvement in accu-
racy, and enables one to properly capture the pore-scale
physics.
- The hybrid formulation does not require additional parameters

besides continuum properties of the porous media, physical and
(bio)geochemical properties of a solute and fluid, and pore-scale
geometry.
- The hybrid model formulation reduces to a zero-finding algo-

rithm for a vector function. Such a formulation suggests its high
adaptability to a wide variety of problems and different numer-
ical schemes.
- Although not pursued here, the general hybrid formulation pre-

sented in Section 2.3 is suitable for implementation in commer-
cial numerical codes.

A root-finding method used to couple the pore- and continuum-
scale simulations determines the convergence and computational
burden of the hybrid algorithm. While flexible, the Broyden meth-
od used in the present implementation of the hybrid algorithm
might not be optimal in terms of either convergence or computa-
tional efficiency. Further research is needed in order to improve

Fig. 10. Case 3 in Table 1: pore-sale concentration c(x,y, t) in the hybrid node IH at times t = 0.0005 (a), t = 0.0025 (b), t = 0.06 (c), and t = 0.15 (d).
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the hybrid’s computational efficiency and to relate the size of pore-
scale simulation domain to the hybrid’s accuracy.

Further generalizations to transport in porous media with com-
plex pore-scale geometries will be addressed in future research to-
gether with full resolution of flow equation at the pore scale, the
removal of the overlap between the two regions, and the possibil-
ity of incorporating uncertain pore geometry.
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Appendix A

A.1. Discrete form of (18) for nodes other than IH

Integration of (18) over a CV centered at XI gives

@!cI

@T
DXI þ ðU!cÞIþ1=2 ! ðU!cÞI!1=2 ¼ DIþ1=2ð!cIþ1 ! !cIÞ

!DI!1=2ð!cI ! !cI!1Þ ! K!cIDXI; ðA:1Þ

where Ds ¼ D=DXs with s = I ! 1/2 and I + 1/2.
The total fluxes through the western and eastern faces of the CV

centered at XI are [23]

qI!1=2 ¼ ðU!cÞI!1=2 !DI!1=2 !cI ! !cI!1ð Þ; ðA:2aÞ
qIþ1=2 ¼ ðU!cÞIþ1=2 !DIþ1=2 !cIþ1 ! !cIð Þ; ðA:2bÞ

respectively. Concentrations !cIþ1=2 and !cI!1=2 have to be determined
in function of !cI; !cI!1 and !cIþ1. Combining (A.1) and (A.2) and inte-
grating over the macroscopic time step [TN,TN+1], we obtain

!cNþ1
I ! !cN

I

( )DXI

DT
¼ hðqNþ1

I!1=2 ! qNþ1
Iþ1=2 ! K!cNþ1

I DXIÞ

þ ð1! hÞðqN
I!1=2 ! qN

Iþ1=2 ! K!cN
I DXIÞ; ðA:3Þ

where h 2 [0,1]. Setting h = 0, h = 1/2, or h = 1 results in an explicit,
Cranck–Nicolson, or fully implicit scheme, respectively. The fluxes
are evaluated by means of the hybrid differencing scheme [19],
based on a combination of a central (second order accurate) and
an upwind (first order accurate) differencing scheme. Accordingly,

qI!1=2 ¼
UI!1=2

2
1þ 2

P̂eI!1=2

 !
!cI!1 þ 1! 2

P̂eI!1=2

 !
!cI

" #

; ðA:4aÞ

qIþ1=2 ¼
UIþ1=2

2
1! 2

P̂eIþ1=2

 !
!cIþ1 þ 1þ 2

P̂eIþ1=2

 !
!cI

" #
; ðA:4bÞ

where P̂ei ¼
Pei; Pei 2 ð!2;2Þ;
2; Pei P 2;
!2; Pei 6 !2;

8
><

>:
ðA:5Þ

i = I ! 1/2 and I + 1/2, and Pei ¼ Ui=Di. Combination of (A.3) and
(A.4) with the fully implicit time integration scheme (h = 1) leads
to (24), where

AI!1 ¼ !aI!1; AI ¼
DXI

DT
þ !aI; AIþ1 ¼ !aIþ1; a0 ¼ 0; ðA:6aÞ

aIþ1 ¼max !UIþ1=2;DIþ1=2 !
UIþ1=2

2
; 0

% &
; DIþ1=2 ¼

D
DXIþ1=2

;

ðA:6bÞ

aI!1 ¼max !UI!1=2;DI!1=2 þ
UI!1=2

2
; 0

% &
; DI!1=2 ¼

D
DXI!1=2

;

ðA:6cÞ

aNX ¼ 0; !aI ¼ aI!1 þ aIþ1 þ ðUIþ1=2 ! UI!1=2Þ þ KDXI ! SI; ðA:6dÞ

RHSN
I ¼

DXI

DT
!cN

I þ eSI ðA:6eÞ

and eSI and SI are determined by numerical discretization of bound-
ary conditions at the macroscale. For uniform velocity U, we obtain
(25).

A.2. Discrete form of (19) in node IH

Integrating (19) over the macroscopic CV centered at node IH

and over a macroscale time step, and using the implicit time inte-
gration scheme (h = 1), gives

DXIH

DT
!cNþ1

IH
! !cN

IH

! "
¼ dIHþ1=2 !cNþ1

IHþ1
! !cNþ1

IH

! "
! dIH!1=2 !cNþ1

IH
! !cNþ1

IH!1

! "

Dt
DT

Xnt

k¼1

Xnx

i¼1

Z xiþ1=2

xi!1=2

gðxÞdx

" #kþ1

; ðA:7Þ

where

gðxÞ ¼ !K

2H
cðx; y ¼ HÞ þ cðx; y ¼ !HÞ½ * ! 1

2H

Z H

!H
uðyÞ @c

@x
dy:

ðA:8Þ

Using a numerical quadrature for the spatial integral in (A.7) yields

Dt
DT

Xnt

k¼1

Xnx

i¼1

Dxi½gðxiÞ*kþ1 ¼ 1
2HNT

Xnt

k¼1

Xnx

i¼1

Dxi !K ci;H þ ci;!H
( )*

!
Z H

!H
uðyÞ

ciþ1=2;y ! ci!1=2;y

Dxi
dy
$kþ1

: ðA:9Þ

If Pe 2 (!2,2), then ci+1/2 and ci!1/2 (i = 2, . . . ,nx ! 1) can be approx-
imated by

ci!1=2 ¼
ci!1 þ ci

2
; ciþ1=2 ¼

ci þ ciþ1

2
: ðA:10Þ

At the internal boundaries separating the continuum- and pore-
scale domains, c1/2 (i.e., i = 1) and cnxþ1=2 (i.e., i = nx) must satisfy
boundary conditions (28a) and (28b), respectively. This leads to

c1=2 ¼
A1=2qW þ !d1=2 þA1=2U=2

( )
c1

!A1=2U=2! d1=2
; ðA:11aÞ

cnxþ1=2 ¼
Anxþ1=2qE ! dnxþ1=2 þA1=2U=2

( )
cnx

A1=2U=2! dnxþ1=2
: ðA:11bÞ

Combining (A.7) with (A.9)–(A.11) yields (26d).
If Pe 6!2 or Pe P 2, then ci+1/2 and ci!1/2 (i = 2, . . . ,nx ! 1) can be

approximated by

ci!1=2 ¼ gi!1=2ci!1 ! ni!1=2ci; ciþ1=2 ¼ giþ1=2ci ! niþ1=2ciþ1; ðA:12Þ

where n = max{!u,0} and g = max{u, 0}. For i = 1 and i = nx, the fol-
lowing formulae hold

c1=2 ¼
A1=2qW ! c1ðd1=2 þA1=2n1=2Þ

!d1=2 !A1=2g1=2
; ðA:13aÞ

cnxþ1=2 ¼
Anxþ1=2qE ! cnx ðdnxþ1=2 þAnxþ1=2gnxþ1=2Þ

!dnxþ1=2 !A1=2nnxþ1=2
: ðA:13bÞ

Combining (A.7) with A.9, A.12, and (A.13) leads to (26e).

References

[1] Alexander FJ, Garcia AL, Tartakovsky DM. Algorithm refinement for stochastic
partial differential equations: 1. Linear diffusion. J Comput Phys
2002;182:47–66.

[2] Alexander FJ, Garcia AL, Tartakovsky DM. Algorithm refinement for stochastic
partial differential equations: II. Correlated systems. J Comput Phys
2005;207(2):769–87.

[3] Alexander FJ, Garcia AL, Tartakovsky DM. Noise in algorithm refinement
methods. Comput Sci Eng 2005;7(3):32–8.

I. Battiato et al. / Advances in Water Resources 34 (2011) 1140–1150 1149



[4] Auriault J, Adler PM. Taylor dispersion in porous media: analysis by multiple
scale expansions. Adv Water Resour 1995;4(18):217–26.

[5] Battiato I, Tartakovsky DM. Applicability regimes for macroscopic models of
reactive transport in porous media. J Contam Hydrol 2011;120-121:18–26.
doi:10.1016/j.jconhyd.2010.05.005.

[6] Battiato I, Tartakovsky DM, Tartakovsky AM, Scheibe T. On breakdown of
macroscopic models of mixing-controlled heterogeneous reactions in porous
media. Adv Water Resour 2009;32:1664–73. doi:10.1016/j.advwatres.2009.08.
008.

[7] Christie MA. Upscaling for reservoir simulation. J Petrol Technol
1996;48:1004–10.

[8] de Marsily G. Quantitative hydrogeology. San Diego, California: Academic
Press; 1986.

[9] Efendief Y, Durlofsky LJ. A generalized convection–diffusion model for subgrid
transport in porous media. Multiscale Model Simulat 2003;1(3):504–26.

[10] Grisak GE, Pickens JF. Solute transport through fractured media, 1. The effect of
matrix diffusion. Water Resour Res 1980;16(4):719–30.

[11] Grisak GE, Pickens JF, Cherry JA. Solute transport through fractured media, 2.
Column study of fractured till. Water Resour Res 1980;16(4):731–9.

[12] Hesse F, Radu FA, Thullner M, Attinger S. Upscaling of the advection–diffusion–
reaction equation with Monod reaction. Adv Water Resour 2009;32:1336–51.
doi:10.1016/j.advwatres.2009.05.009.

[13] Langlo P, Espedal MS. Macrodispersion for two-phase, immiscible flow in
porous media. Adv Water Resour 1994;17:297–316.

[14] Leemput P, Vandekerckhove C, Vanroose W, Roose D. Accuracy of hybrid
lattice Boltzmann/finite difference schemes for reaction diffusion systems.
Multiscale Model Simulat 2007;6(3):838–57.

[15] Meakin P, Tartakovsky AM. Modeling and simulation of pore-scale multiphase
fluid flow and reactive transport in fractured and porous media. Rev Geophys
2009;47:RG3002. doi:10.1029/2008RG000263.

[16] Mikelic A, Devigne V, Van Duijn CJ. Rigorous upscaling of the reactive flow
through a pore, under dominant Péclet and Damköhler numbers. SIAM J Math
Anal 2006;38(4):1262–87.

[17] Neuman SP, Tartakovsky DM. Perspective on theories of anomalous transport
in heterogeneous media. Adv Water Resour 2009;32(5):670–80.

[18] Smolarkiewicz PK, Winter CL. Pores resolving simulation of Darcy flows. J
Comput Phys 2010;229(9):3121–33.

[19] Spalding DB. A novel finite-difference formulation for differential expressions
involving both first and second derivatives. Int J Numer Methods Eng
1972;4:551–9.

[20] Sukop MC, Thorne DT. Lattice Boltzmann modeling: an introduction for
geoscientists and engineers. New York: Springer; 2005.

[21] Tartakovsky AM, Tartakovsky DM, Meakin P. Stochastic Langevin
model for flow and transport in porous media. Phys Rev Lett 2008;101:
044502.

[22] Tartakovsky AM, Tartakovsky DM, Scheibe TD, Meakin P. Hybrid simulations of
reaction-diffusion systems in porous media. SIAM J Sci Comput
2008;30(6):2799–816.

[23] Versteeg HK, Malalasekera M. An introduction to computational fluid
dynamics: the finite volume method. Harlow, England: Pearson Education
Ltd. 2007.

[24] Wood BD, Radakovich K, Golfier F. Effective reaction at a fluid–solid interface:
applications to biotransformation in porous media. Adv Water Resour
2007;30(6–7):1630–47.

1150 I. Battiato et al. / Advances in Water Resources 34 (2011) 1140–1150


