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Abstract. We evaluate the performance of global stochastic collocation methods for solving nonlinear parabolic
and elliptic problems (e.g., transient and steady nonlinear di↵usion) with random coe�cients. The
robustness of these and other strategies based on a spectral decomposition of stochastic state variables
depends on the regularity of the system’s response in outcome space. The latter is a↵ected by
statistical properties of the input random fields. These include variances of the input parameters,
whose e↵ect on the computational e�ciency of this class of uncertainty quantification techniques has
remained unexplored. Our analysis shows that if random coe�cients have low variances and large
correlation lengths, stochastic collocation strategies outperform Monte Carlo simulations (MCS).
As variance increases, the regularity of the stochastic response decreases, which requires higher-
order quadrature rules to accurately approximate the moments of interest and increases the overall
computational cost above that of MCS.
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1. Introduction. Nonlinear parabolic partial di↵erential equations (PDEs), and their el-
liptic (steady-state) counterparts, describe a wide range of physical phenomena that range
from heat conduction in solids to multiphase flow in porous media to electrodynamics (see
[30] and the references therein). The ability of these equations to predict the underlying
phenomena is often, if not always, compromised by uncertainty in their parameterizations.
This uncertainty arises from ubiquitous heterogeneity of ambient environments in which such
phenomena occur, scarcity of parametric data, and imprecise knowledge of forcings (sources
and initial and boundary conditions). Quantification of the impact of parametric uncertainty
on the veracity of model predictions is an integral part of modern scientific computing.

Probabilistic frameworks provide a standard approach to quantification of parametric
uncertainty. They treat uncertain, spatially distributed system parameters and forcings as
random fields. Solutions of the corresponding PDEs with random coe�cients are given in
terms of probability density functions or statistical moments of state variables or other quan-
tities of interest (QoIs). E�cient computation of these statistics is the focus of uncertainty
quantification (UQ).
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Monte Carlo simulations (MCS)—a method that consists of (i) sampling multiple real-
izations of input parameters from their distribution, (ii) solving deterministic PDEs for each
realization, and (iii) evaluating ensemble statistics of these solutions—provide the most ro-
bust and straightforward way to solve PDEs with random coe�cients. Since MCS impose
no limitations on the number or statistical properties of input parameters, they usually serve
as a yardstick against which the performance of other approaches is compared. MCS entails
no modifications of existing deterministic solvers and therefore is often referred to as a non-
intrusive technique. Yet the convergence rate of MCS is low and, thus, a large number of
realizations are required to reach a target error for the MCS estimators. This renders MCS
computationally expensive (often prohibitively so). Research in the field of UQ is driven by
the goal of designing numerical techniques that are computationally more e�cient than MCS.
In other words, the simple MCS provides a baseline, which any UQ tool must outperform. Ac-
celerated Monte Carlo (MC) techniques, such as quasi-MC and multilevel MC, are examples
of such tools.

One alternative to MCS is to derive deterministic PDEs that govern the evolution of either
statistical moments [16, 36] or probability density functions [21, 29] of dependent variables.
The reliance on new governing equations implies that these approaches are intrusive, even
though their underlying structure often remains the same and existing solvers can be used.
In most implementations, these methods do not rely on finite-term approximations of random
parameter fields, e.g., on truncated Karhunen–Loève (K-L) expansions, and thus do not su↵er
from “the curse of dimensionality.” When random parameters enter PDEs as multiplicative
noise, these approaches require a closure approximation. A systematic approach to obtain-
ing such closures is based on perturbation expansions of relevant quantities into series in the
powers of variances of the input parameters (see e.g., [30] and the references therein). This
formally limits the applicability of such techniques to PDEs whose random coe�cients ex-
hibit low noise-to-signal ratios (coe�cients of variation), even though in linear di↵usion-type
problems they might remain accurate for variances of log-transformed input fields as high as
4 [38].

Various flavors of stochastic finite element methods (FEMs) provide another alternative to
MCS. Stochastic FEMs start by characterizing (e.g., by means of truncated K-L expansions)
random parameter fields in terms of a finite set of random variables. This approximation in-
troduces a bias of the estimators of statistics of QoIs with respect to their exact counterparts
(i.e., without relying on finite-term approximate representations). The finite set of random
variables defines a finite-dimensional outcome space on which a stochastic PDE(SPDE) solu-
tion is defined. The Galerkin FEM [11, 3], often equipped with h-type and p-type adaptivity,
approximates such solutions in the resulting composite outcome-physical space. Stochastic
Galerkin and collocation methods [37] employ orthogonal basis expansions of an SPDE solu-
tion in the chosen finite-dimensional outcome space.

These methods are often referred to as nonperturbative, even though their applications to
systems whose parameters exhibit large coe�cients of variation are scarce. They outperform
MCS when random fields exhibit long correlations and, therefore, can be accurately repre-
sented by a few terms in their K-L expansions. As correlation length of an input parameter
decreases, its K-L expansion requires more terms to maintain the same accuracy, thus increas-
ing the dimension of the outcome space on which the solution is defined. Once the number of
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random variables exceeds a certain threshold, stochastic FEMs become computationally less
e�cient than MCS.

Nonlinear problems of the kind considered in the present analysis pose additional chal-
lenges to the stochastic Galerkin and collocation methods and other spectral representations.
In particular, the convergence rate of the quadrature rules employed to approximate integrals
over the outcome space depends on the smoothness of the state variable with respect to all the
random variables used to represent the input parameters. A problem’s nonlinearity degrades
its solution’s regularity in the outcome space, undermining the performance of the stochastic
Galerkin and collocation methods.

Another issue a↵ecting the performance of these methods is their scalability with the
dimension of the chosen outcome space, which must be taken into account to control the com-
putational cost while maintaining the accuracy. Strategies for dealing with the occurrence of
discontinuities and/or the loss of regularity include direction-adaptive quadrature rules [10, 8],
multielement generalized polynomial chaos (gPC) [34, 32], multielement probabilistic colloca-
tion [6], locally adaptive stochastic collocation (SC) [1, 23], and wavelet expansions [19, 20].
These methods have been shown to be e�cient for problems with a low-dimensional outcome
space. Their applicability is curtailed by the exponential increase in the computational cost
associated with adaptivity in high-dimensional spaces [23].

We investigate the relative performance of collocation techniques for solving nonlinear
advection-di↵usion equations with random coe�cients, a class of problems that includes the
Richards and viscous Burgers equations. Section 2 contains a problem formulation and its
statistical parameterization. SC approaches for solving this problem are discussed in section 3.
In section 4 we test these strategies on the steady (elliptic) and transient (parabolic) versions
of the nonlinear Richards equations. The results are reported in terms of estimates of both
the error due to truncation of K-L expansions of the random parameter fields and the error of
the SC method. We also compare the rates of decay, as a function of the number of samples
or realizations, of the bound on the total error of the SC method and MCS. Section 5 presents
recommendations on the appropriateness of the stochastic Galerkin and collocation methods
for this type of problem.

2. Problem formulation. We consider a nonlinear parabolic equation,

@✓(u)

@t
= r · [K(u)(ru� g)], x = (x

1

, . . . , xd)
> 2 D, t 2 (0, T ],(2.1)

defined on a d-dimensional spatial domain D ⇢ Rd (1  d  3) during time interval (0, T ].
Here ✓(u) and K(u) are continuous functions of the state variable u(x, t) : D ⇥ [0, T ] ! R,
both of which are parameterized with elements of a set of P spatially heterogeneous model
parameters ⇤(x) = {⇤

1

(x), . . . ,⇤P (x)}. In the context of two-phase fluid flow in porous
media, (2.1) is referred to as the Richards equation, wherein the state variable u(x, t) is
fluid pressure, ✓(u;⇤) is the fluid content (saturation) of a porous medium, K(u;⇤(x)) is the
saturation-dependent hydraulic conductivity of the medium, and g is the unit vector collinear
with the gravitational force. A plethora of constitutive relations for ✓(u;⇤) and K(u;⇤)
share at least three parameters (see, e.g., [30] and the references therein): saturated hydraulic
conductivity K

s

(⌘ ⇤
1

), a shape parameter ↵ (⌘ ⇤
2

), and fluid content at full saturation
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(porosity) ✓
s

(⌘ ⇤
3

). Specifically, the saturation-dependent hydraulic conductivity K(u;⇤)
and fluid retention curve ✓(u;⇤) can be written in a generic form,

(2.2) K(u;⇤) = K
s

(
K

r

(u;↵, . . .), u < 0,

1, u � 0,
✓(u;⇤) =

(
✓(u;↵, . . .), u < 0,

✓
s

, u � 0,

where the dots denote the remaining set of parameters specific to a particular constitutive
law, and the monotonically increasing function K

r

(u;↵, . . . ) : R� ! [0, 1] is called relative
hydraulic conductivity and reaches its maximum value of K

r

= 1 at fluid pressure u = 0.
A problem formulation is completed by specifying initial conditions

(2.3) u(x, 0) = u
in

(x), x 2 D,

and boundary conditions

(2.4) B(u,x, t) = b(x, t), x 2 @D, t 2 (0, T ].

Here u
in

(x) is the initial distribution of fluid pressure in the flow domain D, B is the boundary
operator representing (Dirichlet and/or Neumann) boundary conditions on various segments
of the domain’s boundary @D, and b(x, t) denotes the corresponding boundary functions.

The constitutive laws (2.2), model parameters ⇤(x), forcing terms u
in

(x) and b(x, t), and
the domain of definition D⇥ [0, T ] are such that the BVP (2.1)–(2.4) admits a unique solution
u(x, t) (e.g., [24]).

2.1. Probabilistic model formulation. Heterogeneity of the coe�cients ⇤(x), practical
impossibility of measuring their values at every point x 2 D, and ubiquitous measurement
errors at points where data are available render the spatio-temporal distribution of these input
parameters uncertain. As a consequence, the task of obtaining a deterministic, unique solution
of (2.1)–(2.4) is in general impossible. We therefore adopt a probabilistic framework, which
treats the uncertain coe�cients ⇤(x) as random fields whose sample statistics are inferred from
spatially distributed measurements by invoking ergodicity (see, e.g., [30] and the references
therein). This renders a solution u(x, t) random as well.

Let (⌦, F , P) be a complete probability triple, where ⌦ is the sample space, F ✓ 2⌦ is the
�-algebra of events, and P : F ! [0, 1] is the probability measure. The domain of definition of
the measurable parameters ⇤(x) is extended to the sample space ⌦, i.e., ⇤ ⌘ ⇤(x,!) : D⇥⌦ !
R. As a consequence, (2.1)–(2.4) gives rise to the following stochastic boundary-value problem
(sBVP): find a stochastic measurable function u ⌘ u(x, t,!) : D⇥ [0, T ]⇥⌦ ! R that satisfies
almost surely

@✓(u,x,!)

@t
= r · [K(u,x,!)(ru� g)], x 2 D, t 2 (0, T ],(2.5)

B(u,x, t) = b(x, t), x 2 @D, t 2 (0, T ],(2.6)

and deterministic initial condition (2.3).
We assume that for each random parameter ⇤i(x,!) there exists a transformation fi =

fi(⇤i), where each fi(x,!) (i = 1, . . . , P ) is a zero-mean, square-integrable Gaussian random
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field. These fields are allowed to be cross-correlated, with a known cross-covariance kernel
Cij(x,y) = hfi(x,!)fj(y,!)i. Here and below, the symbol h·i denotes the ensemble average.
Knowledge of the cross-covariance stems from statistical analysis of available measurements
of the fields fi (e.g., via a variogram analysis and co-Kriging, which has become standard in
studies of flow and transport in heterogeneous porous media).

2.2. Approximate model parameterization. Let the random fields fi(x,!) (i = 1, . . . , P )
be defined over a probability space (⌦,F ,P) and indexed over a closed and bounded domain
D, with continuous autocovariance functions Ci(x,y) = hfi(x,!)fi(y,!)i. Then each fi(x,!)
can be represented using a K-L expansion [5]

(2.7) fi(x,!) =
1X

k=1

q
�ik�

i
k(x)⇠

i
k(!), i 2 1, . . . P,

where �ik and �i
k(x) (k = 1, 2, . . .) are, respectively, the eigenvalues and the eigenfunction of the

autocovariance function Ci(x,y), and {⇠ik}1k=1

is a set of independent, identically distributed
standard Gaussian random variables. The covariance between random variables from the two
sets, e.g., ⇠ik and ⇠jm, obey the relation

(2.8) h⇠ik⇠jmi = (�ik�
j
m)�1/2

Z

D

Z

D
Cij(x,y)�

i
k(x)�

j
m(y) dxdy.

If the underlying Gaussian fields fi(x,!) and fj(x,!) are mutually independent, then Cij(x,y)

= �ijCi(x,y) and h⇠ik⇠jmi = �ij�km, where �ij is the Kronecker delta function.
To render the ith K-L expansion (2.7) computable, one has to truncate it by retaining the

Si leading terms, i.e., to approximate fi(x) with

f̂i(x,!) =
SiX

k=1

q
�ik�

i
k(x)⇠

i
k(!), i = 1, . . . , P.(2.9)

Without loss of generality, we set S
1

= S
2

= · · · = SP ⌘ S. For a given variance of fi(x,!),
the value of S necessary to approximate (2.7) with a given accuracy depends on the rate of
decay of the eigenvalues �ik. The decay rate is given by the regularity, in the sense of Defini-
tion 2.2 in [7], of the autocovariance kernel Ci(x,y). Analyticity gives rise to an exponential
or superexponential decay, while piecewise regularity yields algebraic decay. Regardless of the
regularity type, for a given accuracy, the value of S increases as the autocorrelation length of
fi(x,!) decreases.

If the input fields fi(x,!) (i = 1, . . . , P ) are mutually independent,1 then the random
variables {⇠ik}Sk=1

in their K-L expansions form an N -dimensional vector

(2.10) ⇠N (!) = ({⇠1k}Sk=1

, {⇠2k}Sk=1

, . . . , {⇠Pk }Sk=1

)>, N = PS.

This vector is characterized by a standard joint multi-Gaussian probability density function

(2.11) ⇢(s) = (2⇡)�N/2 exp

✓
�1

2
s

>
s

◆

1The assumption of mutually independent fields can be relaxed by a proper construction of K-L expansions
for multicorrelated fields (e.g., [5]).
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with support � = RN . The number N is often referred to as a stochastic dimension stemming
from the finite-dimensional noise approximation (2.9).

2.3. Formulation of approximate sBVP. Approximation of the parameter fields fi(x,!)
in (2.7) with their truncated counterparts f̂i(x, ⇠N ) in (2.9) transforms (2.5) into

(2.12)
@✓(uN ,x, ⇠N )

@t
= r · [K(uN ,x, ⇠N )(ruN � g)]. x 2 D, ⇠N 2 �, t 2 (0, T ].

This equation is subject to the deterministic initial (2.3) and boundary (2.4) conditions.
According to the Doob–Dynkin lemma [27], a solution uN of this sBVP is a function of ⇠N (!),
i.e., uN (x, t,!) = uN (x, t, ⇠N (!)) : D⇥ [0, T ]⇥� ! R. The probability triple (⌦,F ,P) is thus
replaced with the triple (�, B, ⇢(⇠N )d⇠N ), where B is the Borel �-algebra formed by all open
subsets of �. When viewed as a function of ⇠N (!), uN (x, t, ⇠N ) is referred to as a stochastic

response surface or simply response.
This problem formulation introduces two sources of error into estimators of the statistics of

u(x, t,!). First, transition from (2.5) to (2.12), i.e., from u to uN , introduces a bias error ✏
KL

,
which can only be reduced by increasing the number S of K-L terms of the expansion of each
random field. Bounds for ✏

KL

have been derived in [4] for the steady-state linear counterpart of
(2.1), i.e., for K(u,x,!) = K(x,!). To the best of our knowledge, no similar results exist for
nonlinear elliptic or parabolic problems, for which this error must be investigated numerically.
Second, numerical solution of (2.12) introduces an estimation or sampling error ✏

est

, which
depends on the UQ method employed (e.g., MCS or SC). The third source of error is due to a
numerical discretization of each deterministic solve; it can be reduced by employing a higher-
order numerical scheme or a finer mesh, and it is assumed to be negligibly small relative to
both ✏

KL

and ✏
est

.
Let hui and huN i denote the ensemble means of u(x, t,!) in (2.5) and uN (x, t, ⇠N ) in (2.12),

respectively. Furthermore, let ûN be a computable (e.g., by a finite number of MC realiza-
tions) estimate of huN i. Then, the error introduced by approximating the true hui with its
computable estimate ûN is bounded by |hui � ûN |  |hui � huN i|+ |huN i � ûN | = ✏

KL

+ ✏
est

.
We use numerical experiments to investigate the errors ✏

KL

and ✏
est

when a SC method is
used to obtain ûN from (2.12).

3. Stochastic collocation. Given the PDF (2.11), central moments of the stochastic state
variable uN (x, t, ⇠N ) are defined as weighted integrals over the support of ⇠N . For example,
the mean and variance of uN (x, t, ⇠N ) are

huN (x, t)i =
Z

�

uN (x, t, s)⇢(s)ds(3.1)

and

�2

uN
(x, t) =

Z

�

u2N (x, t, s)⇢(s)ds� huN (x, t)i2,(3.2)

respectively. SC methods approximate such N -dimensional integrals using quadrature rules
with a properly chosen set of collocation points (or “nodes”) in � and a corresponding set of



STOCHASTIC COLLOCATION FOR NONLINEAR EQUATIONS 481

collocation weights. Specifically, an N -dimensional weighted integral of an integrable function
f(s),

(3.3) IN [f ] =

Z

�

f(s)⇢(s) ds,

is approximated via a quadrature formula

IN [f ] ⇡ QN [f ] =
QX

i=1

wif(si),(3.4)

where si and !i are the nodes and weights of the quadrature rule, respectively; and Q is the
number of collocation nodes. Employing (3.4) to approximate (3.1) and (3.2), we obtain SC
estimates of the mean and variance,

ûSCN (x, t) =
QX

i=1

wi u(x, t, si),(3.5)

�̂2,SC
uN

(x, t) =
QX

i=1

wi [u(x, t, si)]
2 � [ûSCN (x, t)]2,(3.6)

where u(x, t, si) is a solution of (2.12), subject to (2.3) and (2.4), with the random vector ⇠N
taking a deterministic value or “collocation node” si.

This approach is a sampling technique whose raison d’être is the claim that, by a judicious
selection of quadrature rules, it requires a smaller number of terms, Q, than MCS to achieve
the same accuracy. It is worth recalling that an MCS estimator of huN i is given by

ûMC

N (x, t) =
1

Q

QX

i=1

uN (x, t,⌘i),(3.7)

where {⌘i}Qi=1

is a set of Q realizations of ⇠N , sampled from the multivariate Gaussian dis-
tribution (2.11). The MCS estimation error decays as ✏MC

est

= �uN /
p
Q, where �uN is the

standard deviation of uN . It is independent of the stochastic dimension N , which is an ad-
vantage for high-dimensional problems. On the downside, MCS have a slow convergence rate,
1/
p
Q. The goal of SC methods is to improve on this convergence rate.

3.1. Selection of quadrature rules. Construction of an appropriate interpolation quadra-
ture rule is a key part of the SC approach. In what follows, we summarize both requirements
for the selection of rules and properties of several families of quadrature rules. We focus on
two types of quadrature rules based on (unidimensional) polynomial interpolation: product
rules and sparse grid rules. Let A(q,N) denote a family of rules for N -dimensional integrals,
where q is a construction parameter that defines the family. If H(q,N) is the associated set
of quadrature nodes, then Q ⌘ dimH(q,N).

Let P(l, N) be the space of all N -dimensional polynomials of total degree at most l. A
quadrature rule A(q,N) is said to have a degree of exactness l if [26]

(3.8) IN [f ] = A(q,N)[f ] 8f 2 P(l, N).
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The value of l depends on the number of stochastic dimensions, N , and the construction
parameter, q, i.e., l = l(q,N), such that l increases with q for a fixed N . A general stochastic
response cannot be represented exactly by polynomials of any order. Therefore, the use of
quadrature rules introduces an approximation error that depends on the accuracy with which
a polynomial with l(q,N) can interpolate uN (x, t, ⇠N ) for given x and t. The degree of
exactness required to achieve a certain accuracy depends on the smoothness of the response:
the smoother the integrand, the lower the polynomial’s total degree.

Estimates of the convergence rate of quadrature rules are available for certain classes of
smoothness (e.g., [25, 35]), such as the space of functions with bounded mixed derivatives
defined over the hyper-cube [0, 1]N , i.e., F r

N = {f : [0, 1]N ! R | D(↵)f continuous if ↵i  r
for all i}, where D(↵) denotes a partial derivative and ↵ 2 NN

0

. Unfortunately, to the best of
our knowledge, no estimates of the convergence rate are available for quadrature rules based
on polynomial interpolation for function spaces defined over RN .

Ideal quadrature rules for the sBVP for (2.12) would satisfy the following conditions:
1. Scalability : The number of nodes Q must grow as slowly as possible with both the

stochastic dimension N and the construction parameter q (or, equivalently, with the
degree of exactness, l). Scalability with respect to N and l allows one to control for the
bias introduced by the finite-dimensional noise approximation and for the estimation
error, respectively. For odd degrees of exactness, l = 2k + 1, a lower bound on Q
is Nk/k! for fixed k and large N , and kN for fixed N and large k [26]. We look for
constructions with scalability properties as close to optimal as possible.

2. Stability : In general, quadrature weights can be negative, and their absolute values
can be arbitrarily large. A sequence of large positive and negative weights would lead
to cancellation errors in computation of the weighted averages (3.5) and (3.6). As a
result, we look for quadrature rules with R ⌘ PM

i=1

|wi| � 1 as close to 1 as possible.
3. Not required but desirable is to use rules with embedded sets of nodes, i.e., nested

rules for which H(q,N) ⇢ H(q + 1, N). This allows one to increase the construction
parameter q while preserving previous sets of nodes, so that the work invested in
computing uN (x, t, si) is not lost.

Product quadrature rules are obtained by the tensor product of N univariate rules (e.g.,
Gauss rules), one for each stochastic dimension. The total number of nodes for product
Gaussian rules with the degree of exactness l = 2k+1 and the same number of nodes in each
of the N dimensions is Q = (k+1)N [26]. In other words, the total number of nodes increases
exponentially with N , as opposed to the polynomial lower bound Nk. This exponential growth
is sometimes called the “curse of dimensionality” because reduction of the finite-dimensional
bias defined in section 2.1 exponentially increases the computational cost. On the other
hand, these rules behave optimally for a fixed N and increasing k. Their convergence rate
improves with higher smoothness of the integrand and deteriorates with an increasing number
of stochastic dimensions. Their stability is optimal, i.e., R = 1, as they result from the tensor
product of (optimally stable) one-dimensional rules. For functions f 2 F r

N , the estimation
error is ✏

est

= O(Q�r/N ), provided q is su�ciently large.
Sparse grid rules are constructed via the Smolyak algorithm [28] from one-dimensional

quadrature rules for each stochastic dimension. The total number of nodes for sparse grid
rules with the degree of polynomial exactness l = 2k + 1 is Q ⇡ 2kNk/k!. This polynomial
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increase of Q with N is a significant improvement over the exponential scalability of product
rules [26]. For fixed N and increasing k, Q ⇡ kN (log k)N�1, which is close to optimal. For
functions f 2 F r

N , the estimation error is ✏
est

= O(Q�r(lnQ)(N�1)(r+1)). The convergence
rate of sparse grid rules depends weakly on N and strongly on the integrand’s smoothness.
Since the Smolyak algorithm generally introduces negative weights, R for sparse grids is larger
than 1 and typically increases with both l and N .

Sparse grid quadrature rules can be either global, with fixed quadrature nodes, or locally
adaptive. Global constructions are defined chiefly by the quadrature weight for which they
are designed and allow for a limited level of adaptivity. For example, if the smoothness of the
stochastic response exhibits a directional dependence in the sample space, one can introduce
nonisotropic quadrature rules that locate quadrature nodes preferentially along more critical
directions [10]. Locally adaptive rules allocate nodes throughout the sample space attending
to the local features of the response, such as sharp gradients or discontinuities [1, 2, 15, 23].

3.2. Quadrature rules for multivariate-Gaussian weights. The probability density func-
tion ⇢(s) of the stochastic vector ⇠N determines the type of one-dimensional rules used to
construct a multidimensional sparse grid. Selection of rules for multivariate-Gaussian ⇢(s) is
more limited than that for the uniform ⇢(s) on the hyper-cube. Furthermore, as noted earlier,
no good error bounds exist for rules defined on unbounded domains.

For multivariate-Gaussian ⇢(s), the natural choice is to employ one-dimensional Gauss-
Hermite (GH) quadratures in each stochastic direction. While in some cases one can construct
embedded Kronrod extensions of the GH rules, embedded rules of an arbitrary degree of
exactness do not exist [17]. As a consequence, the resulting sparse grid GH rules are not
embedded.

Alternative constructions have been developed by restricting the degree of exactness l.
For example, the Genz–Keister (GK) rules [9] exist for l  51. They are embedded and result
in better stability and lower node count than their GH counterparts. More e�cient rules have
been developed for l = 5 and l = 7 for both general ⇢(s) [22, 14] and ⇢(s) > 0 [33, 18]. The
GK rules for l > 13 are most e�cient, in the sense that they require the fewest nodes for a
given degree of accuracy.

3.3. Quadrature rules for polynomial chaos expansions. The procedure described above
enables one to compute ensemble moments of QoI in a nonintrusive way, i.e., by utilizing an
existing deterministic solver for the PDE under consideration. gPC expansions [37] provide an
intrusive alternative (requiring modifications of the deterministic PDE solver), which allows
computing a full PDF of QoI. To regain nonintrusiveness, one can approximate the coe�cients
in a gPC expansion with the weighted quadrature rules described above by employing the
projection integral definition of these coe�cients [37]. The error of the resulting gPC approach
is that of the truncated gPC expansion and that of the quadrature rule.

4. Numerical experiments. In the absence of theoretical error estimators for numeri-
cal solutions of nonlinear elliptic (steady-state) and parabolic (time-dependent) advection-
di↵usion equations, we perform a series of numerical experiments to investigate the accuracy
and robustness of SC methods as well as their e�ciency vis-à-vis MCS. Our focus is on the ef-
fect of statistical characteristics, especially variance, of random coe�cients on the performance
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of SC methods. The impact of the stability of quadrature rules is also considered.
Grounding our investigation in applications to two-phase fluid flow in heterogeneous

porous media, we focus on uncertainty in the values of saturated hydraulic conductivity K
s

(x)
and shape parameter ↵(x), while disregarding uncertainty in the other hydraulic parameters
which typically exhibit smaller spatial variability. Theoretical considerations and experimen-
tal evidence (see, e.g., [31] and the references therein) suggest that the random fields K

s

(x,!)
and ↵(x,!) have log-normal distributions. Consequently, we model Y (x,!) = lnK

s

(x,!) and
�(x,!) = ln↵(x,!) as stationary, square-integrable Gaussian fields. Let K

g

= exp(hY i) and
↵
g

= exp(h�i) denote the geometric means of K
s

and ↵, respectively. Then, K
s

= K
g

exp(Y 0)
and ↵ = ↵

g

exp(�0), where Y 0(x,!) and �0(x,!) are zero-mean Gaussian fluctuations with
variances �2

Y and �2

� , and correlation lengths �Y and �� . Following the standard practice
in the field (see [31] and the references therein) we assume the random fields Y 0(x,!) and
�0(x,!) to have exponential autocovariances

CY (x,y) ⌘ hY 0(x,!)Y (y,!)i = �2

Y e
�|x�y|/�Y and C�(x,y) = �2

�e
�|x�y|/�� ,(4.1)

These autocovariances are only piecewise regular in the sense of [7], and therefore their
K-L eigenvalues exhibit algebraic (power of �2) decay. Finally, we assume the random fields
Y 0(x,!) and �0(x,!) to be mutually uncorrelated.

4.1. Elliptic problems. We start with an elliptic problem that represents a steady one-
dimensional version of (2.1),

(4.2)
d

dz


K(z, u,!)

d(u� z)

dz

�
= 0, 0 < z < 1.

It is supplemented with Gardner’s (exponential) constitutive relation (see [31] and the refer-
ences therein)

K(z, u,!) = K
s

(z,!)

(
e↵(z,!)u(z,!), u  0,

1, u > 0.
(4.3)

and is subject to boundary conditions

(4.4) K
du

dz
(z = 0,!) = �r, u(z = 1,!) = 0,

where r is a prescribed (deterministic) boundary flux. This sBVP was solved for various
combinations of the statistical properties of the Gaussian fields Y = lnK and � ln↵, which
are summarized in Table 1.

Our QoI is hu(0)i, mean fluid pressure hu(z)i at the porous tube’s inlet z = 0. The goal
of the subsequent numerical experiments is to estimate both the finite-dimensional noise bias,
✏
KL

, and the estimation error, ✏
est

, introduced by the SC computation of this QoI. The SC
estimate, ûSCN (0), is evaluated by using the truncated S-term K-L representations (2.9) of the
random fluctuations Y 0(z,!) and �0(z,!) and by employing the GK quadrature introduced
in section 3.2. Recall that the stochastic dimension of this formulation, or the total number
of the random input variables ⇠N (!), is N = 2S.
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Table 1
Model parameters for elliptic problem (4.2)–(4.4).

Test �2

Y �2

� �Y �� K
g

↵
g

r

(a) 0.1 0.1 1.0 1.0 1.0 5.0 0.1
(b) 0.5 0.5 1.0 1.0 1.0 5.0 0.1
(c) 0.1 0.1 0.3 0.3 1.0 5.0 0.1
(d) 0.5 0.5 0.3 0.3 1.0 5.0 0.1

For a given realization (node) si of the random input vector ⇠N (!), the corresponding
uN (z, si) is computed by using a cell-centered finite-volume discretization of (4.2)–(4.4); the
resulting system of nonlinear algebraic equations is solved by using the KINSOL library [13]
implementation of the modified Newton’s method with line search. The computational domain
D = [0, 1] is discretized into M uniform cells of length �z = 1/M = 0.01. Fluxes across the
finite volume cells are approximated by using a two-point flux-approximation formula. The
pressure u(z, si) at z = 0 is then linearly interpolated given the flux r and u(�z/2, si).

In lieu of the exact solution hu(0)i, we employ its MC estimator as a surrogate. A surrogate

of the exact expectation huN (0)i, denoted by û
MC(n)
N (0), represents an MC estimate of huN (0)i

accurate to n significant digits with a confidence of 95%. These MC estimators, accurate to
n = 3 and 4 significant digits, are reported in Table 2 for N = 10, 20, 30, and 40. To render
the K-L truncation error ✏

KL

negligible, we conducted MC simulations for N = 1600. The

resulting MC estimators, ûMC(n)
ref

(0), serve as surrogates for hu(0)i. It took on the order of
107 � 108 MC realizations to obtain the MC estimators accurate to n = 3 and 4 significant
digits.

Table 2
MC estimators of hu(0)i accurate to n significant digits with 95% confidence. Tests (a)–(d) use the corre-

sponding parameter values listed in Table 1.

ûMC(n)

N (0)

S N = 2S Test (a), n = 4 Test (b), n = 4 Test (c), n = 3 Test (d), n = 3

5 10 �0.4458 �0.4306 �0.438 �0.408
10 20 �0.4443 �0.4252 �0.434 �0.392
15 30 �0.4438 �0.4234 �0.432 �0.387
20 40 �0.4437 �0.4224 �0.431 �0.384
800 ref �0.4430 �0.4198 �0.429 �0.375

The absolute di↵erence |ûMC(n)
N (0)� û

MC(n)
ref

(0)| serves as a surrogate for the bias error ✏
KL

.
Figure 1 reveals that it exhibits a power law behavior of the form ✏

KL

= C(�Y ,�� ,�Y ,��)N�� ,
where the decay rate � is independent of the variance and correlation length of the random
fields Y and �, while the prefactor C depends on these statistical properties. Specifically, C
increases with the variances �2

Y and �2

� and decreases with the correlation lengths �Y and �� .
This experimentally observed bound on the bias error due to truncation of the K-L expan-

sions of the random coe�cients is consistent with the theoretical result, ✏
KL

 C(�Y ,�Y )N�� ,
derived in [4] for the linear sBVP corresponding to (4.3) with ↵(x) ⌘ 0. The latter power law
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Figure 1. Dependence of the bias error, ✏
KL

= |ûMC(n)

N (0) � ûMC(n)

ref

(0)|, on the number of terms in the
K-L expansions of Y and � for the test cases whose parameter values are reported in Table 1. The dashed line
indicates the power law with the exponent � = 1.

behavior was proved to stem from the algebraic decay of the eigenvalues of the K-L expansion
for the exponential covariance functions (4.1).

Figure 1 establishes that the power � ⇡ 1, i.e., the bias error ✏
KL

, decays slowly with
the number of terms in the K-L expansions, ✏

KL

⇠ 1/N . This corresponds to the polynomial
decay of the eigenvalues of the C1-discontinuous exponential kernel reported in [4]. Such a
slow decay of the bias error impairs one’s ability to compute estimators with prescribed total
error (see section 2.1). Indeed, it implies that the reduction of ✏

KL

by a factor ofm necessitates
the increase of the number of terms in the K-L expansions, N , by the factor of m and the
number of collocation nodes, Q, by the factor of m⇤ > m. As discussed in section 2.1, the
ratio m⇤/m increases with the polynomial degree of exactness of the sparse grid quadrature
rule employed.

The absolute di↵erence |ûSCN (0)� û
MC(n)
N (0)| serves as a surrogate for the estimation error

✏
est

. Figure 2 exhibits ✏
est

for the four test cases (see Table 1) and for several values of N and
the polynomial degree of exactness (i.e., the resulting number of collocation nodes, Q). Also
shown is the estimation error of MCS, ✏MC

est

, defined as the root-mean-square error (RMSE).
Both ✏

est

and the rate of its decay with the number of deterministic solves (collocation points
Q) compare favorably with their MCS counterparts when variances of the input parameters
are small (�2

Y = �2

� = 0.1 in Figures 2(a) and 2(c)). In other words, the SC method is

computationally more e�cient than the MCS. When the variances increase to �2

Y = �2

� = 0.5
(Figures 2(b) and 2(d)), the SC method outperforms the MCS only for large correlation
lengths (Figure 2(b), in which �Y = �� = 1.0 coincides with the length of the computational
domain). For smaller correlation lengths (e.g., �Y = �� = 0.3 in Figure 2(d), the convergence
rate of the SC estimation error is less than 1/2 for S � 15; therefore, the MCS require fewer
realizations than the SC method does to achieve a given estimation error.

These findings undermine the notion that the performance of stochastic FEMs vis-à-vis
MCS is insensitive to the degree of uncertainty in model coe�cients, i.e., to their variances or
coe�cients of variation.
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Figure 2. Dependence of the estimation error, ✏
est

= |ûSC

N (0)� ûMC(n)

N (0)|, on the number of SC nodes, Q
(or the number of MC realizations). Subfigures (a) through (d) correspond to the test cases in Table 1. The
dashed black lines indicate half-width corresponding to the number of accurate significant digits, n. The dashed
blue line indicates the decay of the RMSE of the simple MC simulations (SMC), ✏MC

est

.

Figure 3 elaborates this point further by presenting the total error, ✏ = ✏
KL

+ ✏
est

, as a
function of the number of collocation nodes, Q. This error is compared with the total error of
the MCS for N = 40 (the RMS estimation error, plus the corresponding bias error). For small
variances and large correlation lengths (the test cases in Figures 3(a)–3(c), the SC method
requires fewer deterministic solves to reach an achievable total error target (ATET) than the
MCS does. (We define an ATET as an error target that is larger than the smallest bias error
considered, which in these experiments corresponds to N = 40.) The situation is reversed
for the more typical case (correlation lengths that are a fraction of a computational domain’s
size, Figure 3(d), in which for any achievable error target the MCS are more e�cient than the
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SC method.
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Figure 3. Dependence of the total error, ✏(n) = ✏(n)

KL

+ ✏(n)

est

, on the number of SC nodes, Q. Here ✏(n)

KL

=

|ûMC(n)

N (0)� ûMC(n)

ref

(0)| and ✏(n)

est

= |ûSC

N (0)� ûMC(n)

N (0)|. Subfigures (a) through (d) correspond to the test cases

in Table 1. The dashed black lines indicate the bias error ✏(n)

KL

for N = 40. The dashed blue line indicates the
total error (RMSE + bias) of the simple MC simulations (SMC) for N = 40.

The lack of rigorous estimates of the convergence rate of quadrature rules with Gaus-
sian weights makes it di�cult to determine a reason for the observed deterioration of the
performance of the SC method vis-à-vis MCS as variances of the input parameters increase.
Nevertheless, the following observations appear to be valid. First, asymptotic estimates, such
as those described in section 3.1, obscure the e↵ect of the input parameters’ variance on the
convergence of high-dimensional sparse grid quadratures. For such quadrature techniques, ✏

est

is a↵ected by the magnitude of the derivatives of the response surface. Second, the use of K-L
expansions implies that if the variance of a random field increases by a factor of a, then the
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magnitude of an rth partial derivative of the response surface increases by a factor of ar/2.
Therefore, ✏

est

increases with variance.
It is worth emphasizing that these observations apply for any interpolatory UQ technique

that employs a finite-dimensional noise approximation such as truncated K-L expansions.
Therefore, we expect a similar behavior to occur for other versions of the SC method and for
the stochastic Galerkin method.

4.2. Parabolic problems. Consider a parabolic problem, which is given by a one-dimensional
version of (2.1),

(4.5)
@✓

@t
=

@

@z


K

@

@z
(u� z)

�
, 0 < z < 1.

It is supplemented with the van Genuchten–Mualem constitutive relations (see [31] and the
references therein),

K =K
s

(z,!)

(
S
1/2
e

[1� (1� S
1/m
e

)m]2, u  0,

1, u > 0,
(4.6)

S
e

⌘ ✓ � ✓
r

✓s � ✓
r

=

(
(1 + |↵(z,!)u|n)�m, u  0,

1, u > 0,
(4.7)

and is subject to initial and boundary conditions

(4.8) u(z, 0) = u
b

, u(0, t) = u
t

, u(1, t) = u
b

.

Values of the deterministic model parameters m, n, ✓
r

, ✓
s

and the statistical properties of the
Gaussian coe�cients Y = lnK

s

(z,!) and � = ln↵(z,!) are summarized in Table 3.

Table 3
Model parameters for parabolic problem (4.5)–(4.8).

Test �2

Y �2

� �Y �� K
g

↵
g

✓
s

✓
r

n m u
t

u
b

(a) 0.001 0.001 1.0 1.0 0.5532 2.01 0.368 0.102 2.0 0.5 �1.25 �16.67
(b) 0.01 0.01 1.0 1.0 0.5532 2.01 0.368 0.102 2.0 0.5 �1.25 �16.67

In each deterministic solve, the pressure profile u(x, t) is approximated by using a cell-
centered finite volume scheme with M degrees of freedom to discretize (4.5) in space. The
discrete state vector is u(t) = [u(z

1

, t), . . . u(zM , t)]>. The finite volume centroids are located
along the z direction at locations zi = (i � 1/2)�z with i 2 [1,M ] and �z = 1/M = 0.01.
The time-stepping of the state vector u(t) is performed using the three-stage RADAU IIA
implicit Runge–Kutta scheme [12]. For the following discussion, statistics of the state vector
u(t) are understood to be computed elementwise.

Figure 4 exhibits temporal snapshots of the reference MC estimator û
MC(3)

ref

(z, t), and
its corresponding sample variance �̂2

u(z, t), at times t = 6.0, 12.0, and 18.0. The reference
estimator is computed using S = 800 terms in the K-L expansion of each random field and
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is accurate to n = 3 significant digits with 95% confidence. Each realization (deterministic
solve) of (4.5)–(4.8) develops a sharp gradient (a moving front) in the physical coordinate z,
across which the state variable u drops from u

t

to the background value u
b

. As the dynamics
of the sharp front is influenced by values of the random coe�cients K

s

(z,!) and ↵(z,!), it is
reasonable to surmise that this behavior in the physical space z translates into steep gradients
of the stochastic response surface in the outcome space ⇠N . Indeed, even small fluctuations of
the model parameters K

s

and ↵ (e.g., �2

Y = �2

� = 0.01 in Test (b)) result in large uncertainty
about the spatial position of the moving front (see, e.g., the corresponding sample variance of
u(z, t) in the second row of Figure 4).
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Figure 4. Temporal snapshots of the reference MC estimator ûMC(3)

ref

(z, t) and the corresponding sample
variance �̂2,MC

u,ref (z, t), at times t = 6.0, 12.0, and 18.0. The first and second rows correspond to the test cases
(a) and (b) in Table 3, respectively.

We use element-wise di↵erences |ûMC(3)

N (zi, t)� û
MC(3)

ref

(zi, t)| and |ûMC(3)

N (zi, t)� ûSCN (zi, t)|
as surrogates the element-wise bias, ✏

KL

(zi, t), and estimation, ✏
est

(zi, t), errors, respectively.
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The maximum norms of these errors, ✏max

KL

(t) = k✏
KL

(zi, t)k1 and ✏max

est

(t) = k✏
est

(zi, t)k1 at
time t = 18.0 are shown in Table 4 and Figure 5, respectively, for N = 2, 4, 10, and 20.
Comparison of these results suggests that the estimation error, rather than the bias error, is
the limiting factor in achieving a given global accuracy. In other words, construction of an
adequate quadrature of the stochastic response surface, which exhibits large gradients in the
outcome space, is the central challenge for this nonlinear hyperbolic sBVP. Figure 5 shows
that quadrature rules of a large degree of polynomial exactness are required to accurately
approximate the expectation hu(z, t)i.

Table 4
Maximum norm of the bias error ✏max

KL

(t = 18.0). The error estimators are computed for n = 3 significant
digits with 95% confidence.

✏max

KL

(t = 18.0)

S N = 2S Test (a) Test (b)

1 2 0.51 0.65
2 4 0.09 0.16
5 10 0.06 0.09
10 20 0.02 0.04
15 30 0.03 0.04

Similar to the conclusion drawn from the elliptic case (Figure 2), construction of an ac-
curate quadrature becomes more challenging as variance of the random model parameters
increases. Again, this is because the absolute value of the mixed derivatives of the stochastic
response surface increases with this variance. If the error requirements are such that S > 2
K-L expansion terms are required, the use of an accurate quadrature in the SC method renders
the latter less e�cient than MCS.

A possible approach to overcoming this challenge is to use adaptive rules for high-dimen-
sional quadratures of response surfaces with large gradients [1, 2, 15, 23]. Such constructions
might become problematic when one is interested in multiple QoI, e.g., the pressure at various
locations in physical space studied in this section. That is because the region of outcome space
where large gradients occur, that is, the region over which adaptivity is required, also varies in
space and time. For the application studied in this section, each component of the stochastic
response vector u(t, ⇠N ) exhibits large gradients over di↵erent regions of the outcome space,
and these regions also vary with time t.

5. Conclusions. We evaluated the performance of global SC methods for solving nonlinear
parabolic and elliptic problems (e.g., transient and steady nonlinear di↵usion) with random
coe�cients. The robustness of these and other strategies based on a spectral decomposition
of stochastic state variables depends on the regularity of the system’s response in outcome
space. The latter is a↵ected by statistical properties of the input random fields. These include
variances of the input parameters, whose e↵ect on the computational e�ciency of this class
of uncertainty quantification techniques has remained unexplored. Our analysis shows that if
random coe�cients have low variances and large correlation lengths, SC strategies outperform
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Figure 5. Dependence of the estimation error, ✏max

est

(t) = kûMC(3)

N (zi, t)� ûSC

N (zi, t)k1 on the number of SC
nodes, for the cases of Table 3, and t = 18.0. Dashed black lines indicate half-width corresponding to number
of accurate significant digits n. Dashed blue line indicates the decay of the maximum norm of the RMSE of
simple MC simulations (SMC).

MCS. As variance increases, the regularity of the stochastic response decreases, which requires
higher-order quadrature rules to accurately approximate the moments of interest and increases
the overall computational cost above that of MCS.

The lack of rigorous estimates of the convergence rate of quadrature rules with Gaus-
sian weights makes it di�cult to determine a reason for the observed deterioration of the
performance of the SC method vis-à-vis MCS as variances of the input parameters increase.
Nevertheless, the following observations appear to be valid. First, asymptotic estimates of an
estimation error ✏

est

obscure the e↵ect of the input parameters’ variance on the convergence of
high-dimensional sparse grid quadratures. For such quadrature techniques, ✏

est

is a↵ected by
the magnitude of the derivatives of the response surface. Second, the use of K-L expansions
implies that if variance of a random field increases by a factor of a, then the magnitude of
an rth partial derivative of the response surface increases by a factor of ar/2. Therefore, ✏

est

increases with variance.
A possible approach to overcoming this challenge is to use adaptive rules for high-dimen-

sional quadratures of response surfaces with large gradients. Such constructions might become
problematic when a QoI exhibits spatio-temporal variability. That is because a stochastic
response surface might possess large gradients in di↵erent regions of the outcome space, and
these regions might vary in space and time.

It is worth emphasizing that these observations apply for any interpolatory UQ technique
that employs a finite-dimensional noise approximation such as truncated K-L expansions.
Therefore, we expect similar behavior to occur for other versions of the SC method and for
the stochastic Galerkin method.
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