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Statistical (machine learning) tools for equation discovery require large amounts of data 
that are typically computer generated rather than experimentally observed. Multiscale 
modeling and stochastic simulations are two areas where learning on simulated data can 
lead to such discovery. In both, the data are generated with a reliable but impractical 
model, e.g., molecular dynamics simulations, while a model on the scale of interest is 
uncertain, requiring phenomenological constitutive relations and ad-hoc approximations. 
We replace the human discovery of such models, which typically involves spatial/stochastic 
averaging or coarse-graining, with a machine-learning strategy based on sparse regression 
that can be executed in two modes. The first, direct equation-learning, discovers a 
differential operator from the whole dictionary. The second, constrained equation-learning, 
discovers only those terms in the differential operator that need to be discovered, i.e., 
learns closure approximations. We illustrate our approach by learning a deterministic 
equation that governs the spatiotemporal evolution of the probability density function of a 
system state whose dynamics are described by a nonlinear partial differential equation 
with random inputs. A series of examples demonstrates the accuracy, robustness, and 
limitations of our approach to equation discovery.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Empiricism, or the use of data to discern fundamental laws of nature, lies at the heart of the scientific method. With the 
advent of “machine learning”, this ancient facet of pursuit of knowledge takes the form of inference, from observational or 
simulated data, of either analytical relations between inputs and outputs [24] or governing equations for system states [11,
16,18,19,27,37]. The advantage of learning a governing equation, rather than an input-output map for a quantity of interest 
(QoI), is the possibility to “generalize” (extrapolate) over space and time and over different external inputs such as initial and 
boundary conditions. In this sense, learning a differential equation is akin to learning an iterative algorithm that generates 
a solution, rather than learning the solution itself. Of direct relevance to the present study is the use of sparse regression 
on noisy data to estimate the constant coefficients in nonlinear ordinary [8] and partial [22,23] differential equations (ODEs 
and PDEs, respectively). This strategy has been generalized to recover variable coefficients [21] or nonlinear constitutive 
relations between several state variables [28].

In physical sciences, observational data are seldom, if ever, sufficient to accomplish this goal; instead, the data must be 
generated by solving a governing equation. This strategy provides a partial explanation for why machine learning methods 
are yet to discover new physical laws: to generate the data one needs to know the underlying equation, which is subse-
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quently learned from these data. Multiscale modeling and stochastic simulations are two areas where learning on simulated 
data can lead to real discovery. In multiscale simulations, one is reasonably sure of an appropriate model at one scale (e.g., 
basic laws of molecular dynamics) and aims to learn a model at another scale (e.g., a continuum-scale PDE) from the data 
generated at the first scale. Examples of machine learning techniques for upscaling, i.e., discovery of coarse-grained dynam-
ics from fine-grained simulations, and downscaling, i.e., discovery of fine-grained dynamics from coarse-grained simulations, 
can be found in [4,9,10,25].

In stochastic simulations, one deals with governing equations that either contain uncertain (random) parameters or 
are driven by randomly fluctuating forcings that represent sub-grid variability and processes (e.g., Langevin equations and 
fluctuating Navier-Stokes equations). Solutions of such problems, or QoIs derived from them, are given in terms of their 
probability density functions (PDFs). The goal here is to learn the deterministic dynamics of either the PDF of a system 
state (e.g., the Fokker-Planck equation for a given Langevin equation [20]) or its statistical moments (e.g., a PDE describing 
the spatiotemporal evolution of the ensemble mean of the system state [36]). Human (as opposed to machine) learning 
of such deterministic PDEs or their nonlocal (integro-differential) counterparts relies, e.g., on stochastic homogenization of 
the underlying stochastic models or on the method of distributions [29]. The latter provides a systematic way to derive 
deterministic PDF or CDF (cumulative distribution function) equations, regardless of whether the noise is white or col-
ored [34]. Stochastic computation via the method of distributions can be orders of magnitude faster than high-resolution 
Monte Carlo [1,38].

While under certain conditions PDF equations can be exact, in general (e.g., when the noise is multiplicative and/or 
correlated) their derivation requires a closure approximation [1,33,38]. Such closures are usually derived either through 
perturbation expansions in the (small) variances of the input parameters or by employing heuristic arguments. Both ap-
proaches require considerable field-specific knowledge and can introduce uncontrollable errors. We propose to replace the 
human learning of PDF/CDF equations with a machine learning method to infer closure terms from data. It is based on 
sparse regression for discovering relevant terms in a differential equation [8,23,24], although its goals are different. The 
data come from a relatively few Monte Carlo runs of the underlying differential equation with random inputs, rather than 
from elusive observational data. Our approach amounts to coarse-graining in probability space and is equally applicable to 
deterministic coarse-graining as well.

We posit that sparse regression for PDE learning is better suited for PDF/CDF equations than for general PDEs. First, 
random errors in data and/or random fluctuations in an underlying physical process undermine the method’s ability to learn 
a governing equation [21]; yet, their distributions might be easier to handle because of the smoothness of corresponding 
PDFs/CDFs [5,6]. Second, the known properties of distributions and PDF/CDF equations significantly constrain the dictionary 
of possible terms, rendering the equation learning more tractable and truly physics-informed. For example, a PDF equation 
has to be conservative (i.e., has to conserve probability); and, according to the Pawula theorem [20, pp. 63-95], the Kramers-
Moyal expansion (i.e., a Taylor-series expansion of a master equation) should stop at the first three terms to preserve a PDF’s 
positivity (giving rise to the Fokker-Plank equation). Finally, PDF equations tend to be linear, even if the underlying physical 
law describing each realization is nonlinear [29], which also limits the dictionary’s size. Such considerations are, or should 
be, a key feature of physics-informed machine learning.

Our strategy to learn PDF equations from noisy data is presented in Section 2. A series of computational experiments 
in Section 3 is used to illustrate the robustness and accuracy of our approach. Main conclusions drawn from our study are 
summarized in Section 4.

2. Autonomous learning of PDF equations and their closure approximations

We start by formulating in Section 2.1 a generic problem described by a nonlinear PDE with uncertain (random) param-
eters and/or driving forces. A deterministic equation for the PDF of its solution is formulated in Section 2.2. In Section 2.3, 
we present two sparse-regression strategies for discovery of PDF equations. These are referred to as direct equation learning 
(DEL) and constrained equation learning (CEL).

2.1. Problem formulation

Consider a real-valued system state u(x, t) : D ×R+ → Du that is defined on the d-dimensional spatial domain D ⊂ Rd

and has a range Du ⊂R. Its dynamics is described by a PDE

∂u

∂t
+Nx(u;λN ) = g(u;λg), x ∈ D, t > 0, (1)

which is subject to an initial condition u(x, 0) = uin(x) and boundary conditions on the boundary ∂ D of D . Our method 
applies to any combination of initial and boundary conditions for which the resulting initial/boundary value problem is 
well-posed; to be specific, we consider a Dirichlet condition u(x, t) = ub(x, t) for x ∈ ∂ D . The linear or nonlinear differential 
operator Nx contains derivatives with respect to x and is parameterized by a set of coefficients λN (x, t). The source term 
g(u), a real-valued smooth function of its argument, involves another set of parameters λg(x, t). The system parameters 
λ = {λN , λg} are uncertain and treated as random fields. They are characterized by a single-point joint PDF fλ(�; x, t) and 
a two-point covariance function (a matrix) Cλ(x, t; y, τ ), both of which are either inferred from data or provided by expert 
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knowledge. The auxiliary functions uin(x) and ub(x, t) are also uncertain, being characterized by their respective single-point 
PDFs fuin (U ; x) and fub (U ; x, t) and appropriate spatiotemporal auto-correlation functions.

Uncertainty in the input parameters renders predictions of the system state u(x, t) uncertain (random) as well. Con-
sequently, the full solution to (1) is infinitely-dimensional joint PDF of u(x, t) at every space-time point (x, t) or, if the 
space-time domain D × [0, T ] is discretized into Ndis points, its Ndis-dimensional counterpart. Under certain conditions, a 
governing equation for such PDFs can be obtained by transforming (1) into a differential equation for the Hopf functional of 
u(x, t) [32]. Solving the latter is nontrivial and computationally expensive. Instead, our goal is to compute the single-point 
PDF fu(U ; x, t) of u(x, t), whose mean E(u) ≡ ū(x, t) = ∫

U fu(U ; x, t)dU and variance σ 2
u (x, t) = ∫

U 2 fu(U ; x, t)dU − ū2

(the integration is over Du ) serve as an unbiased prediction and a measure of predictive uncertainty, respectively.
Multiple uncertainty propagation tools can be used to estimate the PDF fu(U ; x, t). These include (multilevel) Monte 

Carlo simulations (e.g., [30] and the references therein), which require one to draw multiple realizations of the inputs 
{λ, uin, ub} and solve (1) for each realization. This and other uncertainty quantification techniques are typically computa-
tionally expensive and provide little (if any) physical insight into either the expected (average) dynamics or the dynamics of 
the full PDF fu . The method of distributions provides such an insight by yielding a deterministic PDE, which describes the 
spatiotemporal evolution of fu(U ; x, t).

2.2. PDF equations

Regardless of whether the differential operator Nx in (1) is linear or nonlinear, the PDF fu(U ; x, t) satisfies (in general, 
approximately) a (d + 1)-dimensional linear PDE [29]

∂ fu

∂t
+Lx̃( fu;β) = 0, x̃ ≡ (x, U ) ∈ D × Du, t > 0, (2)

with a set of coefficients β(x̃, t). According to the Pawula theorem [20, pp. 63-95], the linear differential operator Lx̃ can 
include either first, second or infinite-order derivatives with respect to x̃. Since solving infinite-order PDEs is not practical, 
we only consider second-order PDF equations (i.e., Fokker-Planck equations). Transition from (1) to (2) involves two steps: 
projection of the d-dimensional (linear or nonlinear) PDE (1) onto a (d + 1)-dimensional manifold with the coordinate x̃, 
and coarse-graining (stochastic averaging) of the resulting (d + 1)-dimensional linear PDE with random inputs.1 For first-
order hyperbolic PDEs, this procedure can be exact when the system parameters λ are certain [1] and requires closure 
approximations otherwise [7]. It is always approximate when PDEs involved are parabolic [3] or elliptic [38], in which 
case the meta-parameters β might depend on the moments of the PDF fu in a manner akin to the Boltzmann equation. 
Identification of the coefficients β(x̃, t), some of which might turn out to be 0, is tantamount to physics-informed learning 
of PDF equations.

When the system parameters λ are random constants—or when a space-time varying parameter, e.g., random field 
λ(x), is represented via a truncated Karhunen-Loève expansion in terms of a finite number NKL of random variables 
λ1, . . . , λNKL —the PDF equation (2) is approximate, but an equation for the joint PDF fuλ(U , �; x, t) of the inputs λ and 
the output u,

∂ fuλ

∂t
+ L̂x̃( fuλ; β̂) = 0, x̃ ≡ (x, U ) ∈ D × Du, t > 0, (3)

is exact [33]. Similar to (2), the differential operator L̂x̃ is linear and consists of up to second-order derivatives with respect 
to x̃; its dependence on � is parametric, β̂ = β̂(�, x, t). Since the number of parameters in the set λ can be very large, one 
has to solve (3) for multiple values of �, which is computationally expensive. A workable alternative is to compute a PDF 
equation (2) for the marginal fu(U ; x, t) by integrating (3) over �. In general, this procedure requires a closure [33].

2.3. Physics-informed dictionaries

Traditional data assimilation approaches for parameter identification, and deep learning strategies for PDE learning, rely 
on a priori knowledge of a dictionary of plausible terms in the differential operator. This is where a key advantage of 
learning the dynamics of fu(U ; x, t) in (2), rather than the underlying dynamics of u(x, t) in (1), manifests itself. Theoretical 
properties of PDF equations significantly constrain the membership in a dictionary, ensuring a faster and more accurate 
convergence to an optimal solution. We propose two strategies for discovering the PDF equation: DEL seeks to learn the 
full operator in (2), and CEL utilizes partial knowledge of the operator. This is illustrated in the following formulation of an 
optimization problem.

1 When the system parameters λ vary in space and/or time, PDF equations are typically space-time nonlocal [2,14], i.e., integro-differential; in that case, 
the derivation of (2) requires an additional localization step [14,39].
3
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Our goal is to discover the differential operator

Lx̃ = β(x̃, t) ·
(

1,
∂

∂ x̃1
, · · · ,

∂

∂ x̃d+1
,

∂2

∂ x̃2
1

,
∂2

∂ x̃1∂ x̃2
, · · · ,

∂2

∂ x̃2
d+1

, · · ·
)�

︸ ︷︷ ︸
The dictionary H consisting of Q members

, (4)

where β(x̃, t) = (β1, . . . , βQ )� ∈ RQ is the Q -dimensional vector of unknown (variable) coefficients. This is accomplished 
by minimizing the residual

R(β) = ∂ f̂u

∂t
+Lx̃( f̂u;β), (5)

for all points (x̃, t) in the domain D × Du × [0, T ]. Here, f̂u is a discrete sampling of fu , typically given by observation data 
(see section 2.4 for details). Accordingly, the vector of optimal coefficients, β̌ , is found as a solution of the minimization 
problem

β̌(U ,x, t) = argmin
β(U ,x,t)

⎧⎪⎨
⎪⎩

T∫
0

∫
D×Du

R2(β)dx̃dt + γ ‖β‖2
1

⎫⎪⎬
⎪⎭ . (6)

The L1 norm, ‖ · ‖1, is a regularization term that provides sparsification of the PDF equation, with γ serving as a hyper-
parameter coefficient. Discovery of the full operator Lx̃ , i.e., the solution of (4)–(6) is referred to as DEL.

The challenge in making the optimization problem (6) generalize to unseen space-time points is to identify a proper 
dictionary of derivatives in (4) that balances model complexity and predictability. On the one hand, a larger hypothesis 
class H (here, parametrized by Q coefficients βq(U , x, t) with q = 1, . . . , Q ) has a higher chance of fitting the optimal 
operator Lx̃ that honors f̂u . It does so by minimizing the bias at the cost of a higher variance. On the other hand, a smaller 
dictionary H discards hypotheses with large variance, automatically filtering out noise and outliers that prevent the model 
from generalizing.

Both features are often used in coordination to nudge the regression problem in the right direction. For instance, having 
variable instead of constant coefficients in (6) significantly increases the power of the model to describe simulation data. At 
the same time, the L1 regularization favors the parsimony of (i.e., fewer terms in) the operator Lx̃; making the resulting 
PDF equation more interpretable and easier to manipulate analytically.

The construction of the dictionary in (4) and, hence, of the residual R(β) is guided by the following considerations. 
First, if the random state variable u(x, t) is represented by a master equation, the Pawula theorem provides an exhaustive 
dictionary for PDF/CDF equations, i.e., specifies the form of Lx̃ . It states that a truncated Taylor expansion of the master 
equation (i.e., the Kramers-Moyal expansion) must contain no higher than second-order derivatives for the function fu to 
be interpretable as a probability density; otherwise, it can become negative. Consequently, if we restrict our discovery to 
local PDEs, i.e., ignore the possibility of fu satisfying integro-differential equations or PDEs with fractional derivatives, then 
the dictionary containing first- and second-order derivatives in (4) is complete.

Second, the learned PDE for fu(U , x, t) has to conserve probability, 
∫

fudU = 1 for all (x, t) ∈ D × [0, T ], i.e., the dif-
ferential operator in (4) must be of the form L̄x̃ = ∇x̃ · (β̄∇x̃), where ·̄ designates operators, and their coefficients, in the 
conservative form of the PDF equation. Accordingly, L̄x̃(·; β̄) is a subset of its non-conservative counterpart Lx̃(·; β) in (2). 
The conservative form not only constrains the form of the operator, but also facilitates its numerical approximation. For 
example, a conservation law can be discretized using a finite volume scheme ensuring that the learned solution conserves 
probability.

Remark 1. For a particular initial condition, the solution of the minimization problem (6) could predict the differential 
operator Lx̃ containing the derivatives of order higher than two. However, we are only interested in learning PDF equations 
that generalize over arbitrary initial conditions, guaranteeing both positivity and conservation of probability independently 
of how these PDEs are solved after being discovered.

In a typical coarse-graining procedure, only a fraction of the terms in a PDF/CDF equation (i.e., in the dictionary H) are 
unknown [29] and need to be learned from data. For example, an ensemble mean 〈I O 〉 of two random fields, the model 
input I and (a derivative of) the model output O is written as 〈I O 〉 = 〈I〉〈O 〉 + 〈I ′ O ′〉, where the prime ′ indicates zero-
mean fluctuations about the respective means. The first term in this sum is a known term in a coarse-grained PDE, while the 
second requires a closure approximation, i.e., needs to be discovered. When applied to (1), the method of distributions [29]
leads to an operator decomposition Lx̃ =Kx̃ + Cx̃ , where Kx̃ is a known differential operator and the unknown operator Cx̃
contains the closure terms to be learned. With this decomposition, the discretized residual (5) takes the form

R(β) = ∂ f̂u +Kx̃( f̂u;η) + Cx̃( f̂u;β), (7)

∂t
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with known coefficients η and unknown coefficients β , which are a subset of their counterparts in (5). Minimization of 
the residual (7) lies at the heart of CEL. We posit that CEL provides a proper framework for physics-informed equation 
discovery, in which physics guides the construction of the operator Kx̃ and observational/simulated data are used to infer 
the unknown closure operator Cx̃ . In general, physical and mathematical properties of the differential equations one aims to 
learn constrain the dictionary H. Depending on the problem, the scientific literature is full of versatile physical constraints 
that can and should improve equation discovery.

Remark 2. While generalization is what all human and machine learning aims to achieve, experience shows that the set over 
which a model generalizes is always bounded. That is why it is important to keep the human in the loop of discovering 
ever more generalizable and interpretable models. With that purpose in mind, while deep learning techniques are good at 
fitting nonlinear functions, learning equations by sparse regression provides a better collaborative framework between the 
scientist and the machine.

2.4. Numerical implementation

Let f̂u ∈ RM×N×P , with entries f̂ i jk
u ≡ fu(Ui, x j, tk) for i ∈ [1, M], j ∈ [1, N] and k ∈ [1, P ], be a (numerical) solution 

of (2), at nodes of the discretized U ∈ Du , x ∈ D , and t ∈ [0, T ], such that Ui = U0 + i�U , tk = t0 + k�t , and j is defined 
according to an appropriate indexing scheme in which x j spans the entire d-dimensional grid. In practice, the residual R
in (5) is computed numerically at finite collocation points in the domain Du × D × [0, T ] by approximating the derivatives 
in (4) via finite differences, fast Fourier transforms, total variation regularized differentiation, etc. [8,23]. In the discretized 
version of (6), the residual Ri jk is a third-order tensor corresponding to the discretized domain on which the solution f̂ i jk

u

is given, and the integrals become the sums over i, j and k:

β̌
i jk = argmin

β i jk

⎧⎨
⎩ 1

MN P

M∑
i=1

N∑
j=1

P∑
k=1

R2
i jk(β

i jk) + γ ‖β‖2
1

⎫⎬
⎭ , (8)

where β i jk = β(Ui, x j, tk) is a third-order tensor.
Since the coefficients β(U , x, t) are functions of (d + 2) arguments, a numerical solution of the optimization problem 

in (6) might be prohibitively expensive. For example, a simulated annealing strategy (e.g., [4] and the references therein) 
calls for discretizing the coefficients β i jk at the grid points (Ui, x j, tk) at which the solution f̂ i jk

u is defined and optimizing 
over β i jk . With Q features in the dictionary H, this strategy yields Q × M × N × P unknown coefficients β i jk

q and an op-
timization problem with complexity O(Q M3), where typically M ≈ 103. Solving such a high-dimensional problem requires 
adequate computational resources, e.g., multithreading on GPUs, proper memory allocation, etc. It can be implemented by 
stacking the minimization problems over all grid points in one large matrix, as done in [21] for learning parametric PDEs.

A more efficient approach is to represent the variable coefficients βq(U , x, t) via a series of orthogonal polynomial basis 
functions (e.g., Chebyshev polynomials), ψr(·), such that

βq(U ,x, t) =
R∑
r

S∑
s

W∑
w

αrsw
q ψr(U )ψs(x)ψw(t), q = 1, . . . , Q , (9)

where αrsw
q ∈ R denote the dpol = R SW coefficients in the polynomial representation of βq . With this approximation, the 

minimization problem (6) is solved over the unknown coefficients αrsw = (αrsw
1 , . . . , αrsw

Q ) ∈RQ . For dcoef = Q dpol unknown 
coefficients β i jk

q , the optimization dimension is of order O(Q R3), where typically R � 10. This dimension is many orders of 
magnitude smaller than the brute force parametric optimization in [21], so that the resulting optimization problem can be 
solved on a personal computer.

Given the data matrix f̂u ∈RM×N×P and its numerical derivatives with respect to U , x and t from the dictionary (4), we 
build the derivative feature matrix

F =

⎡
⎢⎢⎢⎢⎣

1 ∂x1 f̂ 111
u · · · ∂xd f̂ 111

u ∂U f̂ 111
u · · · ∂2

U f̂ 111
u

1 ∂x1 f̂ 211
u · · · ∂xd f̂ 211

u ∂U f̂ 211
u · · · ∂2

U f̂ 211
u

...
...

...
. . .

...

1 ∂x1 f̂ MN P
u · · · ∂xd f̂ MN P

u ∂U f̂ MN P
u · · · ∂2

U f̂ MN P
u

⎤
⎥⎥⎥⎥⎦ ∈Rddis×Q , ddis = MN P ; (10)

and its corresponding label vector (i.e., the known part of the PDF equation); e.g., based on the CEL formulation of the 
residual in (7),
5
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Fig. 1. A diagram of the algorithm for learning PDF equations from Monte Carlo simulations.

V =

⎡
⎢⎢⎢⎢⎣

∂t f̂ 111
u +Kx̃( f̂ 111

u ;η)

∂t f̂ 211
u +Kx̃( f̂ 211

u ;η)
...

∂t f̂ MN P
u +Kx̃( f̂ MN P

u ;η)

⎤
⎥⎥⎥⎥⎦ ∈Rddis . (11)

For variable coefficients β(U , x, t), we define the vector �rsw ∈ Rddis whose elements �rsw
i jk ≡ ψr(Ui)ψs(x j)ψw(tk) corre-

spond to the grid-point elements in the columns of F and V. For every polynomial coefficient vector �rsw , the matrix form 
of the residual in (7) becomes

R(αrsw) = V + (F � �rsw 1�)αrsw , (12)

where � is the Hadamard (element-wise) product, 1 ∈RQ is a vector of ones, such that the outer product �rsw 1� broad-
casts the variable coefficient vector �rsw into Q identical columns. Let us introduce matrices

V =

⎡
⎢⎢⎢⎣

V
V
...

V

⎤
⎥⎥⎥⎦ ∈Rdtot , F =

⎡
⎢⎢⎢⎣

F � �1111�
F � �2111�

...

F � �R SW 1�

⎤
⎥⎥⎥⎦ ∈Rdtot×Q , A =

⎡
⎢⎢⎢⎣

α111

α211

...

αR SW

⎤
⎥⎥⎥⎦ ∈Rdcoef , (13)

where dtot = ddisdpol. Then, minimization of the residual in (12) over all variable coefficients leads to the optimization 
problem

Ǎ = argmin
A

‖V +F �A‖2
2 + γ ‖A‖2

1 , (14)

where ‖·‖2 denoting the L2 norm. A schematic representation of the resulting algorithm is shown in Fig. 1.
Following [8], our algorithm combines LASSO [31], i.e., L1 regularization, with recursive feature elimination (RFE), which 

sequentially eliminates derivative features with small coefficients based on a tunable threshold at every iteration. This means 
that our algorithm has two hyper-parameters, γ and the RFE threshold, which are chosen based on the test set error (rather 
than being part of the optimization variable A) and a desired sparsity (i.e., a variance-bias balance). For this purpose, we test 
a few cross-validation algorithms for parameter estimation from Python’s scikit-learn package [17]. These algorithms, 
which rely on grid search to find the optimal regularization hyper-parameter γ , are LassoCV (an n-fold cross-validation set 
on each iteration), LassoLarsCV (an additional least-angle regression model), and LassoLarsIC (the Akaike or Bayes 
information criterion as an optimization variable over γ ). They give very similar results when the optimal solution is in the 
6
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vicinity of the hypothesis class, but might differ significantly when the solution is far from optimal. In general, the choice 
of the algorithm depends on whether one favors more sparsity or accuracy.

For NMC realizations of the random inputs, (1) is solved NMC times on the discretized space-time domain D × [0, T ], 
yielding NMC solutions u(x, t). These Monte Carlo results are post-processed, e.g., with a Gaussian kernel density estimator 
(KDE) used in this study, to obtain the single-point PDF fu(U ; x, t) on the discretized domain Du × D × [0, T ]. The KDE 
bandwidth is estimated for every grid point in D × [0, T ] using Scott’s normal reference rule h = 3.49 σ N−1/3

MC [26], where 
σ is the standard deviation of the data. The effect of the bandwidth on the solution is discussed in Appendix D. Both the 
kernel type and the bandwidth are added hyper-parameters that can be optimized.

The matrices V and F in (14) can be very large, depending on the selected order of the polynomials (R , S and W ). 
We assume the coefficients to be time-independent, β = β(U , x), so that W = 1. This makes the resulting optimization 
problems numerically tractable on a personal computer. To increase the computational efficiency, we exclude grid points 
on which the labels, e.g., ∂t fu(U ; x, t), remain close to zero during the entire simulation. This sampling method leads to a 
significant reduction in computational cost (around a four-fold reduction in matrix size), especially in the case of a PDF that 
remains unchanged (equal zero) on the majority of the infinite domain.

To evaluate the generalization power of the method, we test its temporal extrapolation accuracy by fitting the hypothesis 
on the first 80% of the time horizon T , i.e., on the domain Dtrain = Du × D × [0, 0.8T ], and testing it on the remaining 20%
of the simulation, i.e., on Dtest = Du ×D × (0.8T , T ].

3. Results

We validate our approach on a set of nonlinear problems with uncertain initial conditions and parameters. In these 
experiments, we use the method of distributions [29] to map the PDE (1) for the random field u(x, t) onto either closed 
or unclosed PDEs of the marginal PDF fu(U ; x, t). This illustrates the difficulties associated with analytical derivation of a 
PDF/CDF equation, and shows how our data-driven approach to PDE discovery ameliorates them.

Section 3.1 deals with a nonlinear advection-reaction PDE driven by additive noise, for which the PDF equation is exact; 
this setting serves to validate our method by discovering a known PDF equation. In section 3.2, we consider a nonlinear 
advection-reaction PDE with multiplicative noise. The derivation of a corresponding PDF equation in this setting requires 
a closure approximation and, hence, our method leads to the discovery of a new PDF equation. In section 3.3, we analyze 
a nonlinear conservation law (Burgers’ equation) subject to a random initial condition. This example demonstrates the 
importance of choosing an appropriate quantity, the single-point PDF or CDF of the state variable, for which to discover an 
equation.

3.1. Nonlinear advection-reaction PDE with additive noise

This experiment, in which the derivation of a PDF equation is exact, serves to test the method’s accuracy in reconstruction 
of a PDF equation from NMC Monte Carlo runs. Let u(x, t) be a real-valued state variable, whose dynamics is governed by

∂u

∂t
+ k

∂u

∂x
= rg(u), x ∈R, t ∈R+ (15)

where k ∈R+ and r ∈R+ are deterministic advection and reaction rate constant, respectively. The initial condition u(x, 0) =
u0(x) is a random field with compact support in R; it is characterized by a single-point PDF fu0(U ; x) and a two-point 
correlation function ρu0 (x, y) specified for any two points x, y ∈R. The nonlinearity g(u) is such that for any realization of 
u0(x) a solution of this problem, u(x, t), is almost surely smooth. The PDF fu(U ; x, t) satisfies exactly a PDE (Appendix A)

∂ fu

∂t
+ k

∂ fu

∂x
+ r

∂ g(U ) fu

∂U
= 0, (16)

subject to the initial condition fu(U ; x, 0) = fu0(U ; x).
For the nonlinear source g(u) = u2 used in this experiment, the analytical solution of (15) is u(x, t) = [1/u0(x − kt) −

rt]−1. Uncertainty in the initial state, u0(x) = a exp [−(x − μ)2/(2σ 2)], is incapsulated in the real constants a, μ, and σ . 
These parameters are sampled from independent Gaussian distributions, a ∼ N (ηa, ξa), μ ∼ N (ημ, ξμ), σ ∼ N (ησ , ξσ ). 
The means and variances in these distributions are chosen to ensure that u0(x) almost surely has a compact support, 
u(x → ±∞, t) = 0, which ensures integrability of u(x, ·) on R. We set k = 1, r = 1, T = 0.5, �t = 0.0085, x ∈ [−2.0, 3.0], 
�x = 0.0218, �U = 0.0225, ηa = 0.8, ξa = 0.1, ημ = 0.5, ξμ = 0.1, ησ = 0.45, ξσ = 0.03, and polynomial coefficients of 
order M = 3 and N = 3.

We use the grid search algorithm LassoCV to find γ = 0.0004 that minimizes the test-set error, while seeking a sparse 
solution tunable by the RFE threshold. This direct equation learning (DEL) procedure leads to a PDE,

∂ f̂u + 0.996
∂ f̂u + 0.955 U 2 ∂ f̂u + 2.06 U

∂ f̂u = 0, (17)

∂t ∂x ∂U ∂U

7
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Fig. 2. Error in estimation of the PDF fu on Dtest (left) and the coefficients in the discovered PDF equation (17) (right) as function of the number of Monte 
Carlo realizations NMC, without recursive feature elimination (RFE).

Fig. 3. The model coefficients, accompanied by error bars, estimated via first-order (forward difference) and second-order (central difference) accurate 
approximations of the derivatives. The second-order approximation leads to the smaller coefficient error and the comparable confidence intervals.

which demonstrates our method’s ability to identify the relevant derivatives and their coefficients in equation (16) with 
g(U ) ≡ U 2, eliminating all the remaining features in the dictionary H; the original coefficients k = 1 and r = 1 are es-
timated with 3.2% error. In the absence of recursive feature elimination, the algorithm yields 11 non-zero terms (Fig. 2), 
highlighting the importance of using RFE sparsification in addition to L1 regularization. This is due to the variance-bias 
trade-off discussed in section 2.3.

The amount and quality of simulated data are characterized by two hyper-parameters: the number of Monte Carlo 
runs, NMC, and the mesh size, � = max{�U , �x, �t}. Fig. 2 reveals that both the values of the coefficients β in the PDF 
equation (17) and the root mean square error (RMSE) of its solution f̂u in the extrapolation mode are relatively insensitive 
to NMC for around NMC > 20 realizations. This means that, in this particular problem, the required number of Monte Carlo 
simulations is very small. But this is not always the case, as will be shown in section 3.3.

The average RMSE in Fig. 2 is on the order O(�2), where � ≈ 0.02. This error is equivalent to a numerical scheme’s 
approximation error (a truncation error of the relevant Taylor expansion). The second-order error observed here could be 
due to the use of a first-order finite difference scheme to create the derivative features. In Fig. 3, we verify this hypothesis 
by comparing the coefficients β in (17) predicted via the first-order (forward difference) and second-order (central differ-
ence) approximations of the derivatives. The second-order approximation predicts the coefficients (0.998, 0.994, 1.976) and, 
indeed, leads to a smaller error of 0.5%—relative to the first-order approximation error of 3.2%—with comparable confidence 
intervals.

A solution u(x, t) to (15) can be (nearly) deterministic in a part of the space-time domain S ∈ D × [0, T ], e.g., when 
u(x, t) has a compact support; in this experiment the size of S is controlled by the support of the initial state u0(x) which 
is advected by (15) throughout the space-time domain R ×[0, T ]. This situation complicates the implementation of KDE and 
numerical differentiation, because the resulting PDF fu(U ; x, t) is (close) to the Dirac delta function δ(·); in this experiment, 
fu(U ; x, t) ∼ δ(U ) for (x, t) ∈ S , as shown in Fig. 4 for space-time points (x = 2.03, t) with small t . Consequently, a numerical 
implementation of our algorithm must provide an adequate approximation of the delta function and be able to handle 
8
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Fig. 4. PDF fu(U ; x = 2.03, t) (left) and the coefficient values in the discovered PDF equation using DEL (right) The effect of omitting training samples from 
the U domain Do

u ∈ [0, s|Du |], with s ∈ [0, 1], where the sharp PDF profiles complicate numerical differentiation. An RFE threshold of 0.1 is used.

sharp gradients with respect to U in the neighborhood of U = 0. (We found that rejecting data points near u(x, t) = 0
from KDE leads to a poor MC approximation of fu(U ; ·) and its derivatives, and to the discovery of an incorrect PDF 
equations on Dtrain.) We address this issue by adding small perturbations ξ to the initial state u0(x), i.e., by generating the 
training data from (15) subject to the initial condition um

0 (x) = ξ + u0(x), where the random variable ξ has the exponential 
PDF, fξ (s) = λ exp(−λs) for s ≥ 0 and = 0 for s < 0, with λ � 1 (in our experiments, λ = 10).2 Another alternative is to 
omit training data from the simulation domain where the PDF has sharp profiles. In this case, the data in the domain 
Do

u ∈ [0, s|Du |], with s ∈ [0, 1], are excluded from the training set Dtrain (Fig. 4b). Other strategies, which we defer for 
follow-up studies, include the discovery of PDF/CDF equations in the frequency domain.

3.2. Nonlinear advection-reaction PDE with multiplicative noise

This test deals with a situation in which the exact PDF equation is not available and, hence, its multiple approximations 
have the right to exist, one of which we aim to discover. The setting is the same as in the previous section, except for the 
system parameter k in (15) that is now random rather than deterministic. It is statistically independent from the random 
initial state u0(x) and has the PDF fk(K ) with ensemble mean 〈k〉 and standard deviation σk . In the simulations reported 
below, we take fk(K ) to be Gaussian with 〈k〉 = 1 and σk = 0.2.

The PDF fu(U ; x, t) of the solution to this problem, u(x, t), satisfies a PDE (Appendix A),

∂ fu

∂t
+ 〈k〉∂ fu

∂x
+ r

∂ g(U ) fu

∂U
+ C( fu) = 0. (18)

This equation is formally exact but not computable since the operator C( fu) is unknown. It has to be conservative and 
is generally nonlocal [14,15], taking the form of an integro-differential operator or, equivalently, a fractional-derivatives 
operator. One of its plausible approximations is (Appendix C)

C( fu) = −σ 2
k

∂

∂x

t∫
0

∫
D

∫
Du

G(U , V ; x, y; t − τ )
∂ fu

∂ y
(V ; y, τ )dV dydτ , (19)

where the kernel G is the Green’s function of the two-dimensional advection equation. The spatiotemporal localization 
of (19) yields a PDF equation of the form (2). While one could include nonlocal terms in the dictionary H, we leave this 
endeavor for future work; instead, our goal is to learn the localized version of C( fu) in (18). The resulting PDF equation, 
discovered via CEL (7), is compared with its counterpart discovered via DEL (5).

Fig. 5 exhibits the coefficients of the PDF equations discovered with these two alternative strategies for equation discov-
ery. These equations are not, and do not have to be, identical because a closure approximation is not unique. Nevertheless, 
the overall structure of the differential operators identified with the two strategies is largely consistent: the first eight most 
relevant features identified by direct learning, and two most relevant features in the learning with decomposition, involve 
the terms ( fu , ∂x fu and ∂U fu) that must be present in the PDF equation based on the theoretical considerations leading to 
the unclosed PDE (18). The next most relevant term identified by both learning strategies is around −0.02∂2

x fu , regardless 

2 The choice of an exponential distribution ensures that fu(U ; x, t) = 0 for U < 0, thus honoring the physical meaning of the random variable u(x, t), e.g., 
solute concentration, that must stay positive throughout the simulation.
9
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Fig. 5. The coefficients in the PDF equations, as function of the recursive feature elimination threshold, alternatively discovered via constrained equation 
learning (left), as in (7) or (18), and direct equation learning (right), as in (5).

Fig. 6. Cross-validation error as function of the recursive feature elimination threshold for DEL (5) and CEL (18) (left). Cross-validation error as function of 
the extrapolation time fraction τe = t/T on the test set time domain [0.7T , T ], with corresponding training time domain [0, 0.7T ] (right). The RMSE of the 
latter is lower because it is constrained by known derivative features, which reduces the hypothesis set.

of the RFE threshold. Considering the value of σk = 0.2, this is consistent with a theoretical diffusion-type localized closure 
C( fu) ≈ −(σ 2

k /2)∂2
x fu in (19).

Fig. 5 reveals that the two learning strategies do differ in their identification of the variable coefficients β(U , x). For 
example, when small RFE thresholds are used, the direct learning identifies the coefficient of the feature fu to be 0.5 +
1.2U + 0.35U 2, instead of its counterpart 2U identified by the learning with decomposition. This discrepancy might either 
be a manifestation of non-uniqueness or reflect numerical differentiation error. Large RFE thresholds introduce additional 
dependency of this coefficient, x2U .

Over a wide range of the RFE threshold, learning with decomposition (18) outperforms direct learning (5) in terms of 
the RMSE on the test set (Fig. 6). This proves the point stated in section 2.3: constraining the hypothesis class with physics 
improves the approximation accuracy. That is, the more terms in a PDE we know, the more accurate the discovered PDE is 
likely to be.

Remark 3. Given the lack of uniqueness, generalizability of a discovered PDE depends on the amount of information about 
the inputs one can transfer into its discovery. The PDF equation (18) with the closure C( fu) ≈ −(σ 2

k /2)∂2
x fu depends only 

on the first two moments of the random parameter k, its mean 〈k〉 and standard deviation σk , rather than on its full PDF 
fk(K ). Hence, it might not generalize well to an arbitrary distribution of k. This can be remedied by learning a PDE for 
fuk(U , K ; x, t), the joint PDF of the input k and output u(x, t). We show in Appendix B that the latter satisfies exactly an 
initial value problem

∂ fuk + K
∂ fuk + r

∂ g(U ) fuk = 0, fuk(U , K ; x,0) = fu0(U ; x) fk(K ), (20)

∂t ∂x ∂x

10
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Fig. 7. Error in estimation of the PDF fu on Dtest (left) and the coefficients in the discovered PDF equation (right) for inviscid Burgers model without a 
shock. These are plotted as function of the number of Monte Carlo realizations NMC, with the RFE threshold of 0.001. Only the features whose values 
exceed 0.01 are shown, out of 21 non-zero features.

for any given input parameter distribution fk(K ). This suggests that marginalization of fuk over k, i.e., transition from (20)
to (18), transfers the information about fk(K ) from the initial condition for the former to the differential operator in the 
latter; thus, leading to a weaker generalizability.

3.3. Nonlinear conservation laws

As a more nonlinear example of (1), we consider a smooth state variable3 u(x, t) whose dynamics is governed by a 
hyperbolic conservation law with a nonlinear flux g(u),

∂u

∂t
+ ∂ g(u)

∂x
= 0, u(x,0) = u0(x), x ∈R, t > 0. (21)

Randomness comes from the uncertain initial state u0, which is characterized by a single-point PDF fu0(U ; x) and a two-
point correlation function ρu0 (x, y). In the simulations reported below, we set g(u) ≡ u2/2, i.e., analyze the inviscid Burgers 
equation; and u0(x) ≡ ξ + a exp [−(x − b)2/(2c2)] with Gaussian variables ξ ∼N (ηξ , σξ ), a ∼N (ηa, σa), b ∼N (ηb, σb), and 
c ∼ N (ηc, σc). We focus on the simulation time horizon T before a shock develops. Once again, our goal is to discover a 
governing equation for fu(U ; x, t), the single-point PDF of u(x, t), from NMC Monte Carlo realizations of (21).

When applied to (21) with smooth solutions, the method of distributions yields the exact integro-differential equa-
tion [29]

∂ fu

∂t
+ g′(U )

∂ fu

∂x
+ g′′(U )

∂ Fu

∂x
= 0, Fu(U ; x, t) =

U∫
−∞

fu(Ũ ; x, t)dŨ , (22)

where g′(U ) and g′′(U ) are the first and second derivatives of g(U ), respectively. Its local approximation within the dic-
tionary H in (4) is not unique. Given the superior behavior of CEL (7) observed above, we report in Fig. 7 the results of 
this strategy only. The RMSE of predicted PDF fu over the test set Dtest is an order of magnitude higher than in the pre-
vious experiments on advection-reaction equations. Both this error and the concomitant estimates of the coefficients in the 
learned PDF equation require a larger number of Monte Carlo realizations to stabilize compared to the previous experiment, 
and that with a significant error.

An alternative to learning a PDF equation for fu(U ; x, t) is to discover a CDF equation that governs the dynamics of 
Fu(U ; x, t), the single-point CDF of u(x, t). The integration of (23) over U leads to the PDE [29]

∂ Fu

∂t
+ U

∂ Fu

∂x
= 0, (23)

which is exact. Both the uniqueness of this CDF equation and the form of its differential operator suggest that its discov-
ery from the dictionary H in (4) might be more tractable than the discovery of the corresponding PDF equation. Fig. 8
demonstrates this to be the case. In the absence of the recursive feature elimination, the test set error is optimal when a 
few extra terms are included. These are advection (∂x Fu) and diffusion (∂2

x Fu) terms that account for Monte Carlo sampling 

3 Strategies for handling discontinuities and shocks are discussed in the end of this section.
11
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Fig. 8. Error in estimation of the CDF Fu on Dtrain and Dtest (left) and the coefficients in the discovered CDF equation (right) for inviscid Burgers model 
without a shock. These are plotted as function of the number of Monte Carlo realizations NMC. An RFE threshold of 0.001 is used and only the features 
whose values exceed 0.01 are shown, out of 22 non-zero features.

error and its associated KDE approximation. When an RFE threshold of 0.03 is used, with NMC = 50000 realizations, the CDF 
equation is recovered almost exactly; with coefficient 1.001U . This finding demonstrates the importance of choosing the 
“right” observable to learn. In this sense, it is akin to construction of reduced order models via the Koopman operator and 
dynamic mode decomposition [12,13].

The results presented above are for smooth solutions on the space-time domain before a shock or discontinuity develops. 
However, many nonlinear hyperbolic conservation laws (21), including the inviscid Burgers equation (21) with g(u) ≡ u2/2, 
develop such discontinuities in finite time. When a shock develops, the PDE (21) is valid only in parts of the simulation 
domain where u(x, t) is differentiable, and has to be supplemented with an equation for the position of and jump across 
the shock, i.e., with the Rankine-Hugoniot condition. Accordingly, PDF/CDF equations, such as (22) and (23), for problems 
with a shock are also invalid across the shock front and require special treatment [1,35].

Specifically, (23) has to be replaced with [6]

∂ Fu

∂t
+ U

∂ Fu

∂x
= β1(U , x, t). (24)

This CDF equation is exact even in the presence of shocks; while the “kinetic defect” β1(U , x, t) is unique, its functional 
form is generally unknown. This equation falls within the dictionary H in (4) and, hence, has a chance of being discovered 
from NMC Monte Carlo realizations, u(m)(x, t) with m = 1, . . . , NMC, of a solution to (21). These realizations are computed 
using a finite volume algorithm with a van Leer flux limiter to resolve the shock front without tracking its position. In this 
simulation, a periodic boundary condition is used.

As before, we explore two alternative strategies for equation discovery: DEL with the dictionary H in (4), and CEL 
in which only the source term β1(U , x, t) in (24) has to be learned. In both cases, the coefficients β are approximated 
with polynomials (9) in U and x; their time dependence is reflected through the selection of training data. Let t(m)

sh with 
m = 1, . . . , NMC denote the shock breaking times in each of the NMC Monte Carlo realizations of (21). The test and training 
set sampling time interval [tst, tend] is chosen to contain the minimal shock breaking time tsh ≡ min{t(1)

sh , . . . , t(NMC)

sh }, such 
that 0 ≤ tst ≤ tsh ≤ tend ≤ T . We investigate the relative importance of pre- and post-shock data in terms of the post-shock 
sampling fraction,

ps = tend − tsh

tend − tst
. (25)

Fig. 9 demonstrates the performance of the two learning strategies, DEL and CEL, as function of ps = tend/tsh − 1; the latter 
corresponds to the sampling time interval whose length is kept constant, |tend − tst| = tsh, for all ps . The results of the DEL 
approach (top row) show that the learning algorithm accounts for the shock by adding advection terms in both U and x
but with an increasing RMS error as the sampling time domain enters the post-shock region t > tsh. Compared to the DEL 
approach, CEL with only polynomial features (bottom row) starts with a smaller cross-validation error for ps < 0.5, showing 
the approximation power of this constrained approach, as justified by known existence theorems. The drastic increase in 
error for ps > 0.5 can be explained by the fact that i) the optimal source term β1(U , x, t) is typically time-dependent (here 
assumed time-independent) and ii) a polynomial approximation of β1 cannot capture a spatially localized shock region.

The similar trend in the change of the coefficients in CEL motivates the time-dependent representation of the kinetic 
defect β1(U , x, t) = β1(U , x)I(t ∈ [ti, ti+1]), where I is the indicator function for the membership in disjoint sampling in-
tervals [ti, ti+1] on a regular grid, such that i = 0, . . . , n − 1 and n(ti+1 − ti) < T . While this approach is computationally 
more expensive than including time polynomials in the source term, it does not assume a specific functional form. We will 
investigate this and other strategies for explicit treatment of time dependence in a follow-up study.
12
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Fig. 9. Error in estimation of the CDF Fu on Dtest (left column) and the learned coefficients (right column) for the inviscid Burgers model with a shock. 
These are plotted as function of the post-shock sampling fraction, ps , defined in (25). DEL identifies the differential operator for the CDF equation (top 
row), while CEL infers the polynomial representation of the kinetic defect term (bottom row). Only the features whose values exceed 0.01 are shown, out 
of 23 non-zero features in the top row, and 27 features in the bottom row.

4. Discussion and conclusions

We presented a sparse-regression strategy for discovering coarse-grained equations from data generated with either a 
fine-scale model or Monte Carlo simulations of a model with random/uncertain coefficients and inputs. Motivated by the 
latter setting, we used this strategy to learn deterministic partial differential equations (PDEs) for the probability density 
function (PDF) or cumulative distribution function (CDF) of a random system state. The learning is not only data-driven but 
also physics-informed, in the sense that the construction of a dictionary of plausible terms in the differential operator, i.e., 
the formulation of scientific hypotheses, is driven by theoretical considerations such as the Pawula theorem [20, pp. 63-
95]. Our sparse-regression strategy can be implemented in two modes. The first, direct equation-learning (DEL), discovers a 
differential operator from the whole dictionary. The second, constrained equation learning (CEL), discovers only those terms 
in the differential operator that need to be discovered, i.e., learns closure approximations.

Our analysis leads to the following major conclusions.

• Discovery of PDF/CDF equations is advantageous because they are known to be linear and to satisfy a number of 
theoretical constraints that reduce both the hypothesis set and the dictionary size.

• Selection of an observable whose dynamics is to be learned is key for successful equation discovery. In our example, the 
discovery of a CDF equation turned out to be significantly more robust than that of the corresponding PDF equation.

• The hyper-parameters used to fine-tune the algorithm, especially those used to generate and postprocess Monte Carlo 
data, play an important role in its performance. For example, the KDE bandwidth that leads to the accurate discovery 
of a differential operator can also add irrelevant terms.

• Our algorithm can be used to reverse-engineer black-box simulators by rediscovering the equations they solve from 
their output data. This can be used for solution verification, particularly when the solver does not strictly use rigorous 
numerical techniques, as occurs in physics-informed neural networks [18].
13
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Future studies will deal with a number of theoretical and computational aspects of equation discovery, some of which 
are mentioned below. First, our framework provides a venue for hypothesis testing, since it relies on physical considerations 
to construct a dictionary of plausible terms in the operator. In this study, we constrained such a dictionary to the class of 
local models. Future studies will account for nonlocality by incorporating integro-differential or fractional-derivative terms 
in the dictionary.

Second, the accuracy and computational efficiency of the proposed algorithm require further investigation and im-
provement. Future lines of research include the deployment of advanced techniques for optimization over tunable hyper-
parameters such as the KDE bandwidth and the regularization coefficient.

Finally, we used a threshold on the labels ∂t fu to exclude grid points on which the PDF does not change throughout the 
simulation from the training set. A more robust strategy might use the Kullback-Leibler divergence for feature elimination 
before running the optimization algorithm.
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Appendix A. Derivation of the PDF equation

Consider a generalized function

πu(U − u) ≡ δ(U − u(x, t)), (A.1)

where δ(·) is the Dirac delta function. If the random variable u at any space-time point (x, t) has a PDF fu(U ; x, t), then, by 
definition of the ensemble average E[·],

E[πu(U − u)] =
+∞∫

−∞
πu(U − Ũ ) fu(Ũ ; x, t)dŨ

=
+∞∫

−∞
δ(U − Ũ ) fu(Ũ ; x, t)dŨ

= fu(U ; x, t).

(A.2)

That is, the ensemble average of πu coincides with the single-point PDF of u(x, t). This suggests a two-step procedure for 
derivation of PDF equations. First, one derives an equation for πu(U − u). Second, one ensemble-averages (homogenizes) the 
resulting equation.

The first step relies on rules of differential calculus applied, in the sense of distributions, to the function πu (U − u),

∂πu

∂u
= −∂πu

∂U
,

∂πu

∂t
= ∂πu

∂u

∂u

∂t
= −∂πu

∂U

∂u

∂t
,

∂πu

∂x
= −∂πu

∂U

∂u

∂x
. (A.3)

Multiplying both sides of (15) with ∂U πu , using the above relations and the sifting property of the delta function, g(u)δ(U −
u) = g(U )δ(U − u) for any “good” function g(u), we obtain a linear stochastic PDE for πu ,

∂πu

∂t
+ k

∂πu

∂x
+ r

∂ g(U )πu

∂U
= 0. (A.4)

For deterministic parameters k and r, the ensemble average of this PDE yields (16), a deterministic equation for the 
PDF fu(U ; x, t). If one or two of these parameters are random (e.g., k), then ensemble averaging of this PDF is facilitated 
by a Reynolds decomposition that represents all the independent and dependent variables involved as the sums of their 
14
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ensemble means and zero-mean fluctuations about these means, e.g., k = 〈k〉 + k′ and πu = fu + π ′
u with E[k′] = 0 and 

E[u′(x, t)] = 0. For the deterministic r, the ensemble average of (A.4) yields an unclosed PDE for fu(U ; x, t),

∂ fu

∂t
+ 〈k〉∂ fu

∂x
+ r

∂ g(U ) fu

∂U
+ C( fu) = 0, C( fu) ≡E

[
k′ ∂π ′

u

∂x

]
= ∂E[k′π ′

u]
∂x

; (A.5)

which is the same as (18).

Appendix B. Derivation of the joint PDF equation

Consider a generalized function

πuk(U − u, K − k) = δ(U − u(x, t))δ(K − k). (B.1)

Let fuk(U , K ; x, t) denote a joint PDF of the random input k and the random output u at any space-time point (x, t). In 
analogy to (A.2), E[πuk] = fuk(U , K ; x, t). A procedure similar to that used to derive a stochastic PDE (A.4) now yields a 
deterministic PDE for πuk ,

∂πuk

∂t
+ K

∂πuk

∂x
+ ∂ g(U )πuk

∂U
= 0. (B.2)

The randomness of πuk stems from the random initial state u0, rather than the model coefficients. Consequently, the 
averaging of this equation is trivial and exact, and given by (20). This equation is subject to the initial condition 
fuk(U , K ; x, 0) = fu0,k(U , K ; x). If u0(x) and k are mutually independent, then fuk(U , K ; x, 0) = fu0(U ; x) fk(K ).

The solution can be obtained numerically with a linear solver or, in some cases, analytically. For example, if g(U ) ≡ 0, 
then the method of characteristics yields an exact PDF solution

fuk(U , K ; x, t) = fu0(U ; x − Kt) fk(K ). (B.3)

Appendix C. Derivation of closure approximations

One way to approximate the mixed ensemble moment Ckπ = 〈k′π ′
u〉 in (A.5) is to subtract (A.5) from (A.4), giving an 

equation for the random fluctuations π ′
u(U ; x, t),

∂π ′
u

∂t
+ k′ ∂π ′

u

∂x
+ k′ ∂ fu

∂x
+ 〈k〉∂π

′
u

∂x
+ r

∂ g(U )π ′
u

∂U
− C( fu) = 0. (C.1)

Multiplying (C.1) by k′ and taking the ensemble average, we obtain an unclosed PDE for Ckπ ,

∂Ckπ

∂t
+ ∂〈k′k′π ′

u〉
∂x

+ 〈k′k′〉∂ fu

∂x
+ 〈k〉∂Ckπ

∂x
− ∂〈k′k′π ′

u〉
∂x

+ ∂ g(U )Ckπ

∂U
= 0. (C.2)

This equation is closed by neglecting the third-order term, 〈k′k′π ′
u〉, which yields a two-dimensional advection equation for 

Ckπ ,

∂Ckπ

∂t
+ 〈k〉∂Ckπ

∂x
+ ∂ g(U )Ckπ

∂U
= −σ 2

k
∂ fu

∂x
. (C.3)

A closed system of PDEs (A.5) and (C.3) defines the joint dynamics of two dependent variables, fu(U ; x, t) and 
Ckπ (U ; x, t). To reduce this system to a single equation for fu(U ; x, t), we write the solution of (C.3) as

Ckπ (U ; x, t) = −σ 2
k

t∫
0

+∞∫
−∞

∫
Du

G(U , V ; x, y; t − τ )
∂ fu(V ; y, τ )

∂ y
dV dydτ , (C.4)

where G(U , V ; x, y; t −τ ) is the Green’s function for (C.3), defined as the solution of ∂t G −U ·∇x̃G = δ(U − V )δ(x − y)δ(t −τ )

subject to the homogeneous initial and boundary conditions. Here, x̃ = (x, U )� and U = (〈k〉, g(U ))� . Taking the derivative 
of this solution with respect to x leads directly to (19).

Appendix D. Hyper-parameter tuning

Hyper-parameter tuning can significantly increase the optimization dimensionality. To avoid this, we investigate the de-
pendence of RMSE on two of these parameters: the polynomial order used to represent the coefficients β and the KDE 
bandwidth used to process Monte Carlo realizations. The polynomial order increases the representation accuracy but de-
creases the sparsity of the discovered PDEs. Fig. D.10 reveals that the sparsity reaches a plateau at polynomial order of 2. 
This is the order we use in the numerical experiments reported in section 3.
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Fig. D.10. RMSE and sparsity in the closure as function of the polynomial order in the advection-reaction closure problem of section 3.2. The results show 
marginal gains in accuracy and sparsity when the polynomial order is ≥ 2.

Fig. D.11. Error and coefficients as function of the KDE bandwidth.

Fig. D.11 demonstrates that the KDE bandwidth plays a big role in the accuracy of an estimated PDF fu and its corre-
sponding derivatives. We found that Scott’s or Silverman’s rule for estimating the bandwidth does not guarantee optimal 
coefficients, in comparison to fixed bandwidths. On the other hand, a bandwidth of h = 1.3 leads to accurate estimates of 
the relevant model coefficients, but also adds irrelevant terms with large coefficients.
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