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Multiscale and multiphysics simulations are two rapidly developing fields of scientific 
computing. Efficient coupling of continuum (deterministic or stochastic) constitutive solvers 
with their discrete (stochastic, particle-based) counterparts is a common challenge in both 
kinds of simulations. We focus on interfacial, tightly coupled simulations of diffusion 
that combine continuum and particle-based solvers. The latter employs the reverse 
Brownian motion (rBm), a Monte Carlo approach that allows one to enforce inhomogeneous 
Dirichlet, Neumann, or Robin boundary conditions and is trivially parallelizable. We 
discuss numerical approaches for improving the accuracy of rBm in the presence of 
inhomogeneous Neumann boundary conditions and alternative strategies for coupling the 
rBm solver with its continuum counterpart. Numerical experiments are used to investigate 
the convergence, stability, and computational efficiency of the proposed hybrid algorithm.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Multiscale and multiphysics simulations are two rapidly developing fields of scientific computing. We use the terms 
“multiphysics” and “multiscale” as distinct classifiers. The former involves two or more processes (e.g., fluid flow and solid 
deformations), while the latter employs two or more descriptions of the same process (e.g., kinetic Monte Carlo and Navier–
Stokes equations used to describe fluid flow). Efficient coupling of continuum (deterministic or stochastic) constitutive 
solvers with their discrete (stochastic, particle-based) counterparts is a common challenge in both kinds of simulations 
(e.g., [13, Sec. 3.3]).

Such a coupling can be either distributed, when constitutive solvers are defined on overlapping computational (sub)do-
mains (e.g., [5,19]), or interfacial, i.e., confined to the boundaries ! between non-overlapping computational subdomains 
(e.g., [8,18]). We focus on interfacial, tightly coupled simulations that combine a continuum deterministic solver and a dis-
crete stochastic solver. While the approach proposed here is also applicable to multiphysics simulations of this kind, we 
pose the problem in terms relevant to hybrid algorithms. These represent a subset of multiscale simulations in which a 
continuum description of a certain phenomenon breaks down in a (small) part of the computational domain. That occurs, 
for example, in simulations of dilute gas flows, which are adequately described by (continuum) Navier–Stokes equations ev-
erywhere except in the vicinity of solid walls where a (discrete) direct simulation Monte Carlo method has to be used [9,19].

Constitutive multiscale solvers of a typical hybrid algorithm are coupled by enforcing continuity of relevant state variables 
across the interface !. To be concrete, let us consider a hybrid simulation that combines a reaction–diffusion equation in 
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one subdomain, D1, with its discrete counterpart (e.g., Brownian motion and stochastic simulation algorithm describing, 
respectively, diffusion and reactions [5]) in the other, D2 (D1 ∩ D2 = ∅ and D1 ∪ D2 = D where D is the simulation domain). 
At every time step, an initial guess of the system state’s value along the interface ! between the subdomains D1 and D2, 
u(x, t) = u!(x, t) for x ∈ !, would result in a system of two boundary-value problems, which can be solved independently 
from each other. The outcome is solutions u1(x, t) for x ∈ D1 and u2(x, t) for x ∈ D2 that are, by construction, continuous 
at x ∈ ! but might violate continuity of the normal components of Fickian flux, qn ∼ n · ∇u where n(x) is the unit vector 
normal to !. The latter is enforced by modifying the initial guess u! and iterating until both the state variable u and its 
flux qn are continuous within a prescribed tolerance.

This tight-coupling strategy offers a number of advantages, chief among which is the ability to use legacy codes in 
each subdomain. However, it poses a number of challenges, especially in the presence of stochastic noise generated by the 
particle-based solver [3]. These include reduction in the order of accuracy of the constitutive solvers [22] and the need to 
propagate the noise throughout the whole simulation domain by adding a stochastic term to the (otherwise deterministic) 
continuum nonlinear solver [2,4,21,25]. Boundary conditions, in particular of Neumann and Robin types, pose another chal-
lenge to particle-based methods in general (e.g., [17] and the references therein), and to their use in hybrid simulations. 
(Even such a well-studied discrete model as Brownian motion appears to be rigorously analyzed and numerically imple-
mented only on domains with reflecting boundaries [11] or, at steady state, witeDmann boundaries [15]; we are not aware 
of similar analyses of other discrete methods on bounded domains with general boundary conditions.)

In hybrid simulations, the difficulty of enforcing inhomogeneous boundary conditions can be obviated by replacing the 
coupling interface ! with a “handshake region” wherein both discrete and continuous models are solved [1,7,21]. An added 
benefit of this approach is that it provides an iteration-free coupling. Disadvantages are the increased computational cost 
associated with having to solve the discrete model on a subdomain enlarged by at least one element of the continuum 
solver’s discretization, and the high frequency of inter-solver communications. We therefore adopt a tight-coupling iterative 
strategy that both preserves the sharp interface ! and reduces the computational cost of discrete (Monte Carlo) simulations. 
These two features are achieved by employing the reverse local Brownian motion (rBm) [12], a Monte Carlo approach that 
allows one to enforce inhomogeneous Dirichlet, Neumann, or Robin boundary conditions and is trivially parallelizable.

The theory and our implementation of rBm are discussed in Appendix B. In section 2 we formulate a hybrid discrete-
continuum algorithm, which couples rBm and a diffusion equation, and discuss alternative coupling strategies in section 3. 
Numerical strategies for improving the accuracy of rBm in the presence of inhomogeneous Neumann boundary conditions 
are presented in section 3.5. The convergence, stability, and relative performance of our hybrid algorithm vis-à-vis the hybrid 
algorithm [1] based on standard (i.e., forward and global) Brownian motion are investigated in section 4. Major conclusions 
drawn from this analysis are collated in section 5.

2. Formulation of a hybrid model of diffusion

Consider a d-dimensional Lipschitz domain D ⊂ Rd consisting of two non-overlapping Lipschitz subdomains Dc and 
Dd on which continuum and discrete models of diffusion, respectively, are defined; the interface between Dc and Dd is 
denoted by !. Furthermore, let ∂ Dc and ∂ Dd denote the boundaries of Dc and Dd, respectively, such that ∂ Dc ∩ ∂ Dd = !. 
A continuum model consists of a diffusion equation

∂uc

∂t
= αc∇2uc, x ∈ Dc, t > 0 (1a)

subject to initial and boundary conditions

uc(x,0) = uin, x ∈ Dc; (1b)

uc(x, t) = uD, x ∈ !D; n · ∇u(x, t) = JN, x ∈ !N (1c)

where αc is the diffusion coefficient in the subdomain $c; uin(x) is an initial distribution of the state variable (e.g., concen-
tration) u(x, t); and uD(x, t) and JN(x, t) are sufficiently smooth functions prescribed on the Dirichlet (!D) and Neumann 
(!N) boundary segments, respectively.

Brownian motion provides a discrete model of diffusion in the subdomain Dd. A particle’s trajectory X(t) evolves in time 
according to a stochastic differential equation dX(t) = √

2αd dW(t), where αd is the diffusion coefficient in the subdomain 
$d and dW(t) ∼ N (0, dt) is a d-dimensional Wiener process. Our Monte Carlo simulations use the rBm implementation, in 
which individual trajectories of NMC particles released at point x ∈ Dd at time t satisfy

X(t − %td) = X(t) −
√

2αd N (0,%td). (2)

The fixed time step %td is defined such that tn = t − n%td (n = 0, 1, 2, . . .). The i-th particle (i = 1, . . . , NMC) follows a 
random trajectory Xi(tn) with Xi(t) = x until either it reaches the Dirichlet boundary !D at exit time Ti = inf{0 < s < t :
Xi(s) /∈ Dd} or n%td = t , whichever happens first. Hence, the set of NMC trajectories consists of mutually exclusive subsets 
&D and &in, comprising ND particles that satisfy the first stopping condition and Nin particles that satisfy the second 
stopping condition, respectively. If a particle reaches the Neumann boundary !N before any of the two stopping conditions 
are met, it is reflected back along the normal to !N inside the domain at a distance dh ∼ √

2αd%td. These NN particles 
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Fig. 1. Three particles, released at a space–time point (x, t), undergo one-dimensional reverse Brownian motion (rBm) along trajectories Xi(tn) with i = 1, 2.3
and tn = t − n%td (n = 0, 1, 2, . . .). Deterministic Neumann and Dirichlet boundary conditions ∂xu = JN(t) and u = uD(t) are prescribed at x = a and x = b, 
respectively; a deterministic initial condition is u(x, 0) = uin(x). An rBm estimate of the solution of a diffusion equation, ∂t u = αd∂2

x u, at point (x, t) is 
û(x, t) = JN(t − T1,1)dh + uin[X1(0)] + uin[X2(0)] + uD(t − T3).

form a set &N ∈ (&D ∪ &in). Given the initial and boundary functions uin(x), uD(x, t) and JN(x, t) specified for the discrete 
simulations domain, we compute the sample mean ûd(x, t) of the random state variable ud(x, t) at space–time point (x, t)
as a weighted sum (see [12] and Appendix B)

ûd(x, t) = Nin

NMC
Ŝin + ND

NMC
ŜD + NN

NMC
ŜN (3a)

of sample averages

Ŝin ≡ 1
Nin

∑

i∈&in

uin[Xi(0)], ŜD ≡ 1
ND

∑

i∈&D

uD[Xi(t − Ti), t − Ti], (3b)

ŜN ≡
√

2αd%td

NN

∑

i∈&N

ni∑

j=1

JN[Xi(t − Ti, j), t − Ti, j], (3c)

where ni is the number of times the ith particle reaches !N, and Ti, j is the jth reflection time of the ith particle. The 
simulation process is illustrated in Fig. 1. The sample means Ŝin, ŜD, ŜN and, hence, ûd(x, t) are different from the exact 
(ensemble mean) counterparts due to the finite number of samples. Confidence intervals for these estimates are derived in 
Appendix A.

These deterministic and stochastic problems are coupled at the interface ! by enforcing the continuity conditions

uc(x, t) = ûd(x, t) and αcn(x) · ∇uc(x, t) = αdn(x) · ∇ûd(x, t), x ∈ !, (4)

where n(x) is the unit vector normal to !.
Alternative numerical strategies for this continuum-discrete hybrid model of diffusion are explored below. Before doing 

that, several salient features of rBm (3) are worthwhile discussing. First, the rBm treatment of the initial and Dirichlet 
conditions in (3) is exact, in the sense that the sample mean ûd converges to the ensemble mean E[u], i.e., ûd(x, t) →
E[u(x, t)], in the limit of NMC → ∞ [12, Sec. 6.2.1]. The treatment of Neumann boundaries, the third term in (3), is heuristic; 
improving its accuracy and numerical implementation are goals of this study. Second, the rBm is a local particle method, 
i.e., it allows one to compute û at selected points x ∈ $d, e.g., at points x in the neighborhood of ! that are necessary 
to approximate the gradient ∇ûd in (4). This renders the rBm-based hybrid more efficient than its counterpart based on 
standard Brownian motion, because the discrete domain $d is much smaller than the continuum domain $c (often it is a 
single element of a numerical mesh in $c) and, hence, can be assigned a value of ûd at a single point x ∈ $d or an average 
over a few points.

3. Coupling algorithms

We analyze two coupling strategies, which are referred to here as the Dirichlet coupling and the Dirichlet–Neumann 
coupling. The former enforces continuity of the state variable, giving rise to a Dirichlet boundary condition at the interface 
!, while the latter alternates between assigning Dirichlet and Neumann boundary conditions.

3.1. Dirichlet coupling

Fig. 2 provides a workflow for this coupling strategy. At each macro-step of the hybrid algorithm, %th, a continuum 
solution at the interface !, uc(x, t + %th) for x ∈ !, is treated as a Dirichlet boundary condition for the particle domain $d. 
Using (3) with ŜN ≡ 0, an rBm estimate of the mean solution, ûd(y, t +%th), is computed only in a small ε-neighborhood of 
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Fig. 2. Workflow for the Dirichlet coupling strategy. Here ud and uc are the solutions in the discrete (Dd) and continuum (Dc) domains, and xb is a point 
of the interface !.

!, Vε = {y ∈ $d : ∥x −y∥ ≤ ε for x ∈ !}. This solution is used to numerically approximate the interfacial flux Ĵd(x, t +%th) =
−αdn · ∇ûd. If the latter satisfies the second continuity condition in (4) within a prescribed tolerance, then the continuum 
model (1) provides an adequate representation of diffusion throughout the computational domain during time interval 
%th, i.e., no hybrid simulations are required. Otherwise, the discrete and continuum interfacial fluxes thus computed are 
discontinuous, and enforcement of (4) necessitates an adjustment of the value of the hybrid solution u at the interface !, 
leading to an iterative procedure shown in Fig. 2.

Since this coupling strategy imposes only the Dirichlet boundary conditions at the interface !, it enables an exact treat-
ment of the discrete problem with either standard or reverse Brownian motion. However, it calls for a derivative-free 
optimization method to achieve flux continuity at the interface, which might require a large number of iterations to con-
verge.

3.2. Alternating Dirichlet–Neumann coupling

The coupling strategy shown in Fig. 2 ameliorates this problem at the cost of having to deal with a Neumann boundary 
condition. At each macro-step %th, a numerical solution of the continuum model provides an initial guess of both u(x, t +
%th) and J (x, t + %th) = −αdn · ∇u at the interfacial points x ∈ !. We use rBm to solve two problems: the first prescribes 
u(x, t + %th) as a boundary condition on !, while the second imposes J (x, t + %th) as a boundary condition on !. Let 
û1(x, t) and û2(x, t) denote the mean solutions of these two problems, respectively; both are computed with (3). (The 
computational cost of solving these two problems is essentially the same as that of solving one of them, since û1 and 
û2 are obtained by post-processing the same trajectories of the NMC Brownian particles.) An interfacial average of these 
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solutions, uav(x, t) = (û1 + û2)/2 for x ∈ !, serves as a new Dirichlet boundary condition for the continuum problem. Its 
solution yields a new estimate of J , and the two discrete problems are solved again. This iterative procedure continues until 
|û1 − û2| ≤ ϵiter for all x ∈ !, where ϵiter is a prescribed tolerance.

This Dirichlet–Neumann coupling strategy involves fewer optimization variables than the Dirichlet coupling method and, 
as we demonstrate below, proves to be more robust.

3.3. Algorithmic complexity

The Continuum() subroutine (line 5 in Algorithm 1) requires a runtime of O(Ngrid), where Ngrid is the number 
of grid points in the continuum domain and the solution at each grid point is computed at a given time. The Par-
ticle_sim() subroutine (line 6) involves a runtime of O (NMC%th/%td), where %th/%td ≫ 1. Finally, the rBm()
subroutine (line 8) computes the estimate ûd by averaging over all particle positions X(T ), O(NMC). Thus, the while
loop requires O

(
K (Ngrid + NMC)

)
computations, where K is the number of iterations required for convergence at each 

coupling time step %th. Note that a naive implementation of the optimization procedure would perform both Parti-
cles_sim() and rBm() inside the while loop, such that particle trajectories are recomputed at every iteration, resulting 
in O

(
K

(
Ngrid + NMC%th/%td

))
runtime.

Algorithm 1 Discrete-continuum hybrid algorithm.
1: procedure Hybrid
2: Initialize: IC and BC
3: for each time index i in u[x ∈ !, i%th] do
4: IC ≡ u(x, (i − 1)%th)

5: Continuum estimate: uest = Continuum(u[x ∈ Dc, i%th|uD, IC])
6: Particle trajectories: X(T ) = Particle_sim(X ∈ Dd)

7: while | Jc − Ĵd| > ϵiter with optimization variable u! do
8: Compute ûd near !: û(x, i%th) = rBm(X(T ), u!, IC) for x ∈ Vε

9: Compute uc: uc(x ∈ Dc, i%th), given u! and IC
10: Compute interfacial fluxes Jc and Ĵd
11: Perturb(u!)

12: end while
13: u(x, n%th) ← interpolate(uc ∪ ûd)

14: end for
15: end procedure

Finally, the complexity of the Perturb() subroutine (line 11) depends on the iterative optimization procedure of u!

given by

u∗
! = argmin

u!

| Jc − Ĵd|.

In our numerical experiments, we perform the perturbation using the optimization MATLAB function fminunc(), which 
results in K ∼ O(1).

Comparison of standard and reverse Brownian motion. Let NsBm denote the number of particles used in standard (global and 
forward) Brownian motion (sBm) simulations. Then an sBm estimate ũ(x, t) is given by the fraction of NsBm particles found 
in a volume V (x) centered around x at time t , i.e., ũ(x, t) depends on the relative size of the averaging volume, ∥V ∥/∥Dd∥. 
This is in contrast to the rBm estimate û(x, t), which has no averaging volume at all. This fact complicates a general 
comparison of the computational efficiency of the sBm and rBm simulations. However, the rBm approach has a definite 
edge in the context of hybrid modeling because it allows one to compute û(x, t) directly at points of interest (e.g., in the 
ε-neighborhood of the interface !), while the sBm approach yields ũ(x, t) at every point (element) of the computational 
domain Dd and hence requires a larger number of MC simulations, NsBm ≫ NMC.

Furthermore, a time step of the sBm algorithm is limited by the cell size ∥V ∥, while the rBm places no such constraint 
on the magnitude of %td. The sBm method also requires smaller communication time-steps %th, which are limited by 
the frequency with which particles are injected near the boundary in order to impose boundary conditions. Alternative 
strategies for employing large inter-solver communication time-steps %th in the rBm method are discussed in section 3.4.

These computational advantages of rBm stem from its ability to explicitly account for the prescribed initial and boundary 
conditions. If sBm is implemented with a deterministic initial condition u(x, 0) = uin(x), the “perfect” knowledge of uin(x)
is lost when the particles are generated at the initialization stage. In rBm, the ensemble of NMC particles explicitly accounts 
for uin(x). This is usually sufficient, since initial and boundary conditions are typically specified on average rather than by 
position of particles.

Finally, the computational cost of rBm depends on the mean exit time of Brownian particles. The latter it significantly 
shorter than that of sBm because û is computed only in the vicinity of the interface !, which reduces a particle’s mean exit 
time E(T ) = T̄ from the domain Dd. In one spatial dimension, i.e., for Dd = [a, b], the latter is given by [10]
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T̄ (x) = (x − a)(b − x)
2αd

, x ∈ (a,b). (5)

Since the rBm-based hybrid simulations require an estimate û(x, t) close to the coupling interface, e.g., at x = a + ε, 
the particles’ mean exit time is T̄ (a + ε) ≈ ε(b − a)/(2αd). This suggests that the most computationally intensive part 
of our hybrid algorithm, Particle_sim(), is reduced by a factor of T̄ (a + ε)/tsim. That results in a runtime of 
O

(
(T̄ (a + ε)/tsim)NMC%th/%td

)
, where tsim is the particle simulation horizon. In the context of hybrid simulations, 

tsim = %th, which yields a running time of O (εC NMC/%td), where C = (b − a)/(2αd).

3.4. Strategies for reducing the inter-solver communication frequency

Any two-solver hybrid has three time scales: the time steps of its discrete (%td) and continuum (%tc) components, 
and the frequency (1/%th) with which these solvers have to communicate with each other. Given the high computational 
cost of coupling algorithms, one would like to use a relatively large inter-solver communication time (macro-step), %th ≫
max{%tc, %td}, whose size is independent from the components’ time steps (typically, %tc ≫ %td).1

Let the inter-solver communication time be a multiple of the continuum solver’s time step, %th = n%tc with n ∈ N. 
Suppose that the continuity conditions (4) are enforced at both t and t + %th, such that uc(xb, t + %th) = ûd(xb, t + %th) ≡
u!(t + %th) at any point xb of the interface !. The continuum solver requires knowledge of the boundary condition 
u!(xb, t + k%tc) at intermediate times k%tc ≤ %th as well. We estimate its values via a linear interpolation,

u!(t + k%tc) = u!(t) + u!(t + %th) − u!(t)
%th

k%tc, (6)

for k = 0, 1, . . . , %th/%tc. For an ith particle used in the discrete simulations, (6) gives rise to

u!(t + %th − Ti) = u!(t + %th) − u!(t + %th) − u!(t)
%th

Ti . (7)

A similar interpolation is used for the continuum and discrete interfacial fluxes by replacing u! with J! in (6) and (7), 
respectively.

3.5. Improved accuracy of rBm on bounded domains

At each time step %td, position X(t) = (X1, . . . , Xd)
⊤ of a particle undergoing the rBm changes to X(t − %td) in accor-

dance with (2). The probability of the particle crossing the domain’s boundary ∂ Dd exactly at exit time T = inf{s > 0 : X(s) /∈
Dd} is P[X(T ) ∈ ∂ Dd] = 0. Consequently, evaluation of the boundary functions uD and J! in (3) entails an error of order √

2αd%td.
When the discrete simulations domain $d is fully embedded into the continuum simulations domain $d, i.e., when 

∂ Dd = !, this problem is resolved by using the continuum solution as a boundary condition to the discrete solution ûd[Xi(Ti)]
at point x = Xi and stopping time Ti = inf{0 < s < t : Xi(s) ∈ Dc} as soon as the ith Brownian particle enters the continuum 
domain Dc. This step requires storing the continuum solution uc(x, t) at each discrete time step %td and at each iteration in 
order to interpolate the Neumann and Dirichlet boundary conditions in the space–time domain Dc × [t, t + %th]. This cou-
pling strategy provides the most accurate solution in a discrete-to-continuum hybrid method (Fig. 3) but requires extensive 
memory storage and access time. Moreover, this method cannot deal with discrete domains that are not fully embedded 
in the continuum domain and with particles that might jump across the continuum domain, depending on the distance 
between ! and !D. Therefore, we address more general approximation strategies to increase the rBm solution’s accuracy in 
the presence of the external Dirichlet (!D) and Neumann (!N) boundary conditions.

Since P[X(T ) ∈ ∂ Dd] = 0, one has to either approximate ûd[X(T ), T ] or change the Brownian motion in a way that forces 
particles to end up exactly on the boundary ∂ Dd at the exit time T . The former can be achieved by either performing a 
Taylor expansion around the boundary or redefining the conditions for which particles exit the domain. The latter can be 
done by restricting the motion of the Brownian particles to a grid. The method used in our simulations is described below, 
while alternative methods are discussed in Appendix C. Grid-based methods will be explored in the future.

Linear extrapolation for boundary overshoot. The use of discrete time steps in computer simulations implies that an ith particle 
crosses a Dirichlet boundary !D at a discrete exit time Ť = m%td, where the integer m lies in the interval 1 ≤ m < %th/%td. 
In other words, the ith particle overshoots, almost surely, the boundary ∂ Dd by a distance |ϵx| = O(

√
2αd%td) with the 

difference between the actual exit time Ti and its discrete counterpart Ť denoted by ϵT = |Ti − Ť |. Since Ti is between the 
last time the particle was inside Dd and the first time it ended up outside, (m − 1)%td < Ti < m%td, ϵT is computed in rBm 
simulations from the knowledge of the particle positions right before and right after the exit,

1 This is in contrast to the handshake-region-based coupling that employs either %th = %tc or %th = %td (e.g., [1]).
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Fig. 3. Comparison of the boundary correction methods in terms of the relative error of solution estimates, EMCS = |1 − uMCS/uex|, at time t = 4 s (for 
αd = 0.17 cm2/s).

ϵT = |Xi(t − m%td) − xb|
|Xi(t − m%td) − Xi(t − (m − 1)%td)|

%td (8)

where xb is the point of intersection between the boundary ∂ Dd and the (line) trajectory of the particle upon exiting the 
domain.

If the ith particle exits $d through the Dirichlet boundary segment !D, then the value this particle acquires, i.e., ud[Xi(t −
Ti), t − Ti] = uD(xb, t − Ti) in (3b), is replaced with a first-order Taylor expansion of the boundary conditions in the vicinity 
of !D around the time t − Ti ,

ud(Xi(t − Ť i), t − Ť i) = ud(Xi(t − Ti − ϵT ), t − Ti + ϵT )

≈ uD(xb, t − Ti) + ϵT
Dud

Dt
(xb, t − Ti)

= uD(xb, t − Ti) + ϵT

[
∂uD

∂t
+ ∇ud · dXi

dt

]

(xb, t−Ti)

. (9)

The gradient ∇ud(xb, t − Ti) and the boundary condition uD(xb, t − Ti) are computed by linear interpolation, with (7). The 
particle velocity v = dXi/dt is calculated as v = [Xi(t − m%td) − Xi(t − (m − 1)%td)]/%td. Since ϵT v = ϵx , a correction for 
the Dirichlet boundary’s contribution in (3) is

ud(Xi(t − Ť i), t − Ť i) = uD(xb, t − Ti) + ϵx · ∇ud(xb, t − Ti) + ϵT
∂uD

∂t
. (10)

A similar procedure applied to the Neumann boundaries yields a correction

Jd(Xi(t − Ť i), t − Ť i) = JN(xb, t − Ti) + ϵx · ∇ Jd(xb, t − Ti) + ϵt
∂ JN

∂t
. (11)

Neumann boundary conditions. The empirical treatment of inhomogeneous Neumann boundary conditions in rBm (3c) calls 
for the particles that reach the boundary !N to be reflected back inside the domain Dd by a distance δx . In the absence of 
its theoretical estimate, we conduct a series of numerical experiments to estimate an optimal value of δx .

The experiments involve rBm simulations of a one-dimensional diffusion equation ∂t u = αd∂2
x u on the interval [0, 2π ], 

subject to deterministic initial conditions uin(x) = 2 + sin(x) and Neumann and Dirichlet boundary conditions JN(0, t) = 0.5
and uD(2π , t) = 2, respectively. The large number of particles, NMC = 50000, renders the MC sampling error negligible.

Fig. 4 demonstrates the effect of the normalized reflection distance δ⋆
x = δx/

√
2αd%td on the relative error of the mean 

solution, ErBm = |1 − û(x, t)/uex(x, t)|, where uex(x, t) is the exact solution. The error ErBm increases with δ⋆
x (Fig. 4a) and 

decreases with the distance x from the Neumann boundary !N (Fig. 4b).
While using small values of δ⋆

x improves the rBm solution’s accuracy, it significantly increases the computational cost 
(Fig. 5). That is because a reflected particle has a higher probability of hitting the boundary !N again for a smaller reflection 
distance δx . Consequently, the size of &N increases as δx decreases and more computations are required to find ŜN in (3c). 
Therefore, we chose an optimal value of δx by minimizing a cost function
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Fig. 4. Relative error in the rBm solution of the one-dimensional diffusion equation with an inhomogeneous Neumann boundary condition as a function of 
(a) normalized reflection distance δ⋆

x = δx/
√

2αd%td and (b) distance from the Neumann boundary.

C(δx) = ErBm(δx) − νTrun(δx) (12)

where both the error ErBm(δx) and the runtime Trun(δx) are obtained from Figs. 4a and 5a, respectively. The coefficient ν
with dimension 1/s is chosen according to the available computational speed and the willingness to trade efficiency for 
accuracy.

Fig. 5. Computational time for the rBm solution of one-dimensional diffusion equation with an inhomogeneous Neumann boundary condition as a function 
of (a) normalized reflection distance δ⋆

x = δx/
√

2αd%td and (b) distance from the Neumann boundary.

4. Simulation results

While the hybrid algorithm described above is applicable to any spatial dimension, we conduct a series of one-
dimensional numerical experiments. This allows us to analyze the method’s accuracy, convergence rate, and computational 
efficiency vis-à-vis the hybrid method [1] that employs the handshake-region coupling. In addition to providing a con-
venient computational testbed, such one-dimensional discrete/continuum hybrid models of diffusion are routinely used to 
represent phenomena as diverse as transport across a cell membrane [20], brain tumors [23], multiscale behavior of complex 
materials [6], complex fluid flow [24,16], and heat transfer in nano-structures [14].
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4.1. Computational testbed

Consider a one-dimensional diffusive process on the interval D = [0, 2π ]. Diffusion is driven by the difference between 
an initial condition u(x, 0) = uin(x) = 2 + sin(x) and Dirichlet boundary conditions u(x, t) = uD = 2 at x = 0 and x = 2π . The 
subsequent experiments are compared with the analytical solution uex(x, t) = exp(−αdt) sin x +2. The continuum model, i.e., 
the one-dimensional version of (1), is valid for all x ∈ [0, 2π ] except for a (small) sub-interval Dd = [a, b] where its validity 
breaks down and the discrete model (3) is used instead. In the simulations reported below, we set a = π/2, b = 3π/4, and 
αd = αc = 0.2. These and other physical quantities are defined in consistent units.

Fig. 6. The first step (pre-iteration) of the one-dimensional particle/continuum hybrid.

For small particle domains, the rBm-based Monte Carlo estimate û(x, t) has to be computed only at points aδ = a + δ
and bδ = b − δ with δ ≪ |b − a| (see Fig. 6), where it is required to estimate a sample mean of the interfacial fluxes, e.g., 
ĴN(a, t) ≈ −αd[û(a + δ, t) − û(a, t)]/δ. In our simulations, however, the particle domain size is chosen to be large and we 
add a few more evaluation points in the particle domain in order to explore the interpolation error (line 13 in Algorithm 1). 
In the results reported below we set δ = %x, with the continuum domain’s grid size %x = (b − a)/500. The Monte Carlo 
simulations involve NMC = 5000 particles.

4.2. Performance of the hybrid algorithm

A hybrid-simulations error Ehyb = EMCS + EPDE + Ecpl consists of the rBm-based Monte Carlo simulations error EMCS, the 
discretization error EPDE of the PDE solver, and the coupling error Ecpl. The MCS error EMCS = Esam + ErBm, where Esam is 
the sampling error due to the finite number of MC realizations NMC, and ErBm is the error introduced by the boundaries. 
The former is estimated by Esam ∼ 1/

√
NMC according to the central limit theorem. The latter follows from the discussion 

in section 3.5 showing that ErBm, originally of O(
√

αd%td), is reduced to O(αd%td) by linear extrapolation (a first-order 
Taylor expansion truncation error).

The coupling error Ecpl = Ecom(%th) + Eint(%th) + Etol arises from three independent sources. The communication error 
Ecom is related to the number of times a particle and the continuum domain communicate via the flux continuity; this error 
increases with the hybrid time step %th. The interpolation error Eint stems from the use of (6) and (7); as a truncation 
error of the first-order Taylor expansion it is Eint ∼ O(%t2

h). Finally, Etol = | Jc(xb − δ/2, t) − Jd(xb + δ/2, t)| is the simulation 
tolerance for the algorithm’s convergence.

Of these multiple sources of error only Ecom(%th) and Eint(%th) are specific to hybrid simulations. We therefore study 
their impact on the hybrid error Ehyb as a function of %th. Fig. 7 demonstrates that the error generated at the interface 
propagates from the discrete domain to the continuum domain and increases with %th. However, the error at the interface 
is small independently of the size of %th, which indicates that the optimal solution of u! is attained at the end of each %th
and is unique. Figs. 7b and 8b show that Ecpl < 0.01 even for the coupling time steps as large as 1 s. Finally, for the same 
error Ehyb, the Dirichlet–Neumann method converges faster than the Dirichlet method.

Implementation recommendations. Given %td and %tc, the simplest method of choosing %th is %th = k LCM(%td, %tc), where 
k ∈ N (typically, k = 1) and LCM stands for Least Common Multiplier. However, in general, %th should be chosen depending 
on the desired accuracy (Ehyb) of the hybrid method. Therefore, we choose a range for %th given a desired range of Ehyb, 
and then tweak %td and %tc such that LCM(%td, %tc) falls in that range.

The accuracy of the Dirichlet–Neumann method and that of the Dirichlet method are similar. The differences are in 
the ease of implementation, robustness and the computational cost. The Dirichlet–Neumann method requires two solutions 
at every iteration while the Dirichlet method requires only one. However, our experiments suggest that the number of 
solves required until convergence is roughly the same for both methods; the Dirichlet method being a little faster when 
%th is small and the initial guess close to the minimum (sometimes converging after only one iteration). This being said, 
the Dirichlet method requires the use of a nonlinear derivative-free optimization algorithm whose convergence properties 
depend on numerical implementation of the optimization procedure. In contrast, the Dirichlet–Neumann method updates 
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Fig. 7. Dirichlet–Neumann method: (a) relative error Ehyb(x, t = 4 s) = |uhyb − uex| for several values of the hybrid time step %th and (b) the corresponding 
RMS error as a function of %th.

u! by averaging the two solutions that are computed at every iteration. Therefore, the Dirichlet–Neumann hybrid method 
is more robust in complex domains and has an optimization procedure that is easier to implement than the one used in 
the Dirichlet method. Given this tradeoff between robustness and efficiency, we recommend using the Dirichlet–Neumann 
method in problems that involve large coupling time steps %th and rough solutions at the interface, and using the Dirichlet 
method for problems with a smoothly varying solution at the interface where stability is not a concern and computational 
speed is desired.

Fig. 8. Dirichlet method: (a) relative error Ehyb(x, t = 4 s) = |uhyb − uex| for several values of the hybrid time step %th and (b) the corresponding RMS error 
as a function of %th.

5. Conclusions

We developed an efficient and robust hybrid method to couple Brownian motion with a continuum diffusion equation. 
In the context of discrete-to-continuum hybrid simulations, the use of Monte Carlo simulations based on reverse Brownian 
motion (rBm) has a number of advantages. These include

1. the ability to use hybrid coupling time steps %th that are as large as those used in continuum-to-continuum hybrid 
algorithms, i.e., larger than what is possible with standard Brownian motion [1];

2. the possibility of computing the solution only near the boundaries, where it is required to ensure the continuity of the 
flux in the hybrid method;
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3. the ability to use the continuum domain as a deterministic source of the Dirichlet, Neumann and initial conditions for 
the rBm; and

4. a controllable loss of accuracy given a flexible choice of NMC at every location in the particle domain.

Our hybrid algorithm is easy to implement in any number of dimensions. Furthermore, extending the hybrid model to 
advection–diffusion equations is relatively straightforward.

The performance of the proposed hybrid algorithm can be improved by

1. developing efficient methods to deal with fully embedded particle domains, e.g., by storing the continuum solution only 
near the interface, and

2. using a grid-based Brownian motion to reduce boundary errors.

Given the flexibility of the rBm method, our algorithm can be extended to hybrid methods with overlapping discrete and 
continuum domains, offering the ability to choose particle stopping times based on characteristics of the continuum solution 
(e.g., local uncertainty, measure of dissipation, etc.)
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Appendix A. Confidence intervals for Brownian motion

A confidence interval for the estimate ûd(x, t) depends on Ŝin, ŜD and ŜN, which in turn depend on time t and the initial 
and boundary conditions. The estimates Ŝin, ŜD and ŜN in (3) are sampled from uin(x), uD(x, t) and JN(x, t) respectively, 
which are deterministic and known in advance. Therefore, the variances of Sin, SD and SN are given by

σ 2
Sin

(x, t) =
∫

Dd

1√
4π Dt

e− (y−x)2
4Dt y2uin(y)dy, x ∈ Dd; (A.1)

σ 2
SD

(x, t) =
t∫

0

∫

!D

τ 2y2uD(y,τ )dydτ , x ∈ !D; (A.2)

σ 2
SN

(x, t) =
t∫

0

∫

!N

τ 2y2 JN(y,τ )dydτ , x ∈ !N. (A.3)

The standard error for a given term Si(x, t) is a random variable defined by

Z = Ŝi − Si

σSi /
√

Ni
, i = in,D,N, (A.4)

where Ni is the sample size. We seek bounds on the exact mean Si , given a certain confidence level (1 − α), such that

P(−z∗ < Z < z∗) = P
(

− z∗ <
Ŝi − Si

σSi /
√

Ni
< z∗

)
= 1 − α, (A.5)

where z∗ can be determined if the distribution function is known, e.g., Gaussian. Even though Z is generally non-Gaussian, 
the confidence interval (CI) can be calculated, for large Ni , from the central limit theorem

CIi =
[
Ŝi − σSi√

Ni
z∗, Ŝi + σSi√

Ni
z∗

]
. (A.6)

For a Monte Carlo simulation with Nin, ND and NN, the CI of ûd(x, t) is given by

CIûd
(x, t) =

in, D, N∑

i

Ni

NMC + NN

[
Ŝi − σSi√

Ni
z∗, Ŝi + σSi√

Ni
z∗

]
. (A.7)

Unfortunately, NN is a priori unknown. For Dirichlet boundary conditions, NN = 0 and the exit probability Pe(x, t) can be 
obtained from a Fokker–Planck equation [10, Section 5.2.8]. In this case, the confidence interval is expressed as a function 
of NMC:
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Fig. 9. Particle density distribution: (a) analytical vs experimental comparison on the left side of the domain, (b) density of particles throughout the whole 
domain, with probability to be exactly at the boundary p(xb, t) = 0.

CIûd
(x, t) = Pe

[
ŜD − σSD z∗

√
NMCPe

, ŜD + σSD z∗
√

NMCPe

]
+ (1 − Pe)

[
Ŝin − σSin z∗

√
NMC(1 − Pe)

, Ŝin + σSin z∗
√

NMC(1 − Pe)

]
.

(A.8)

Appendix B. Particle-based simulations of diffusion

Consider a d-dimensional diffusion equation ∂t u = αd∇2u defined on a bounded domain D ∈ Rd , and subject to the initial 
and boundary conditions (1b). It can also be thought of as a Fokker–Planck or Smoluchowski equation for the probability 
density function of the position of particles undergoing Brownian motion. A particle trajectory X(t) satisfies a Langevin 
equation dX = √

2αd dW(t), where dW(t) ∼ N (0, dt) is an Rd-valued Wiener process.
According to [12], the reverse Brownian motion (rBm) accounts for time by adding an extra dimension with unit negative 

drift,

X̃ = (X, Xd+1)
⊤ ∈ Rd+1 : dX =

√
2αd dW(s), dXd+1(s) = −ds, (B.1)

giving rise to an Rd+1 advection–diffusion process. In this formulation, the stopping time

T = inf{s > 0 : X(s) /∈ Dt}, Dt = D × (0, t) (B.2)

with initial conditions Xd+1 = t > 0 and X(0) = x ∈ D , represents the time of exit through either time or space “boundaries” 
(Fig. 1). Given the initial condition uin(x) and Dirichlet boundary condition u(x, t) = uD(x, t) on the domain’s surface x ∈ !, 
the mean solution û(x, t) of (B.1) is given by û(x, t) = E(x,t)[u(X(T ))]. Recalling the definition of the stoppage time T in (B.2)
this yields

û(x, t) = E(x,t)[uin(X(T ))|T = t]P(T = t) + E(x,t)[uD(X(t − T ))|T < t]P(T < t) (B.3)

where E and P denote the expectation and probability of a random event, respectively.

Appendix C. Alternate boundary correction methods

In this section, we propose probabilistic methods to deal with the rBm error due to the finite exit distance at the 
stopping time.

A statistical approach to account for the error is to use the exit distance distribution of particles, f (x), shown in Fig. 9b, 
at time T and position Xi(Ti), such that x ∈ Dd ≡ Rn \ Dd. In one dimension, Dd = (−∞, a) ∪ (b, ∞). We define fa(x) for 
x ∈ (−∞, a) to be the left side density of particles upon exiting Dd. The distribution shown in Fig. 9a is computed as

fa(x) =
b∫

a

p(x, t; y, t − %td)dy (C.1)

where p(x, t; y, t − %td) is the joint probability density that the Brownian particle is at y at time t − %td and at x at time 
t . It is given by

p(x, t; y, t − %td) = 1√
4παd%td

e
− (x−y)2

4αd%td . (C.2)
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Therefore,

fa(x) = 1
2

[
erf

(
x − a

2
√

αd%td

)
− erf

(
x − b

2
√

αd%td

)]
, (C.3)

which is renormalized with 
∫ a
−∞ fa(x)dx to obtain the corresponding probability density function of exit distance. Knowing 

the mean exit distance γ =
∫ a
−∞ xfa(x)dx, we shift the original boundary a to a new position a +γ inside the domain, where 

γ = a − E[X(T )|X(T ) ≤ a] so that the mean exit distance becomes a. At b, the exit distribution is fb(x) = (b − a) + fa(−x)
by symmetry. In higher dimensions, the mean exit distance γ can still be computed but depends on the geometry. Similarly, 
knowing the mean exit distance “envelope”, we can shift the entire boundary inward to account for the error.

Without further analysis, we can assume that for large enough number of particles N → ∞, the expected exit distance 
converges to E[X(T )]. This method can be extended to higher dimensions using the probability flux of the corresponding 
Fokker–Planck equation. This method requires a large number of particles in order to converge, which might be a limitation 
when a small number of particles is desired.

A similar solution can be obtained by simply perturbing the boundary according to the distribution f (x). In this case, 
we perturb the boundary in such a way to get E[X(T )|X /∈ Dd] = x ∈ !. The perturbation of the boundary is done easily in 
1D but requires variational methods for higher dimensions.
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