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Abstract: Data-driven reconstruction of biological networks is a crucial step towards making sense of large volumes of biological
data. Although several methods have been developed recently to reconstruct biological networks, there are few systematic and
comprehensive studies that compare different methods in terms of their ability to handle incomplete datasets, high data
dimensions and noisy data. The authors use experimentally measured and synthetic datasets to compare three popular
methods – principal component regression (PCR), linear matrix inequalities (LMI) and least absolute shrinkage and selection
operator (LASSO) – in terms of root-mean-squared error (RMSE), average fractional error in the value of the coefficients,
accuracy, sensitivity, specificity and the geometric mean of sensitivity and specificity. This comparison enables the authors to
establish criteria for selection of an appropriate approach for network reconstruction based on a priori properties of
experimental data. For instance, although PCR is the fastest method, LASSO and LMI perform better in terms of accuracy,
sensitivity and specificity. Both PCR and LASSO are better than LMI in terms of fractional error in the values of the
computed coefficients. Trade-offs such as these suggest that more than one aspect of each method needs to be taken into
account when designing strategies for network reconstruction.

1 Introduction

Inferring the topology of networks from experimental data is a
central endeavour in modern biology [1]. It is essential for
meaningful interpretation and use of biological data.
Although there has been progress in developing kinetic
models of biochemical networks with known topology and
interactions, the number of such networks is not large [1].
Recent advances in high-throughput techniques have led to
the collection of different types of data related to signalling,
gene regulatory and metabolic networks. Various data types,
for example, cellular read outs, obtained via alternative
experimental techniques, have distinct observational scales
(e.g. high against low intensity in microarray datasets) and
accuracy. Integration of different data types, although
technically challenging, can lead to dramatic improvements
in our ability to identify the connectivity of different
segments of a network and to predict events within a cellular
system. Some recent studies, in which data integration was
used to reconstruct biochemical networks and predictive
models from large-scale datasets, can be found in [2–4].
Given the importance of network reconstruction, various

methods have been introduced and are being developed to
reconstruct static, dynamic and static–dynamic networks
[5, 6]. Some of the drawbacks of different approaches can be

compensated by the others [7]. Examples of well-developed
network reconstruction techniques include optimisation-based
approaches (e.g. least-squares methods [8]), dimensionality
reduction methods (e.g. statistical significant tests combined
with either principal component regression (PCR), or partial
least-squares (PLS) [4, 9]), partial-correlation-related analyses
[10], Bayesian networks [3, 11], hybrid methods (e.g. linear
matrix inequalities (LMI) [12, 13] and least absolute
shrinkage and selection operator (LASSO) [2, 14]) and
matrix-based approaches [15, 16]. Through appropriate
formulation these approaches can be tailored to static or
temporal (dynamic) data. When yielding conflicting
predictions, such alternative approaches provide opportunities
to propose additional hypothesis and experiments. A detailed
review of various network-reconstruction methods can be
found in [1].
These methods highlight the importance and benefits of

employing systems approaches to decipher and reconstruct
cellular networks from high-throughput data. For example,
a PLS approach has been used to identify the interaction of
apoptotic and pro-survival signals in cellular apoptosis [3].
Deciphering the connections in this network is complicated
since any given stimulus activates more than one pathway,
and any given pathway can also be activated by several
stimuli. In turn, the signalling pathways act together as a
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module or network to extract specific responses. In [3] the
authors used high-throughput data on signalling activations
and apoptotic or survival phenotypes for reconstructing a
canonical network to link signalling to apoptosis. An
alternative algorithm proposed in [4] enables one to
perform an input–output mapping by utilising steady-state
or time-averaged data. The algorithm was used to identify
lumped networks from signalling pathways to cytokines in
macrophages. It employed the levels of activation of the
signalling pathway acting as inputs and the levels of
cytokine release acting as outputs.
To the best of our knowledge, there have been a few

systematic efforts to compare the performance of various
network-reconstruction methods in terms of their ability to
deal with data patterns characterised by different amounts
of missing data, dimension of the dataset and type and level
of noise. For example, the Dialogue for Reverse
Engineering Assessments and Methods (DREAM) is an
extensive effort towards optimal design, application and
assessment of models in systems biology [17]. Several
prediction and model assessment metrics have been used in
DREAM that are common with the current work. There are
also a number of worthy reviews available in the literature
for comparing the network reconstruction methods such as
[18, 19]. However, as pointed out by Cho et al. [19], there
is still a need for improvement of our understanding
regarding the fundamental idea presented by each method
and to consider properties of input data, constraints and
specific applications for selecting an appropriate network
reconstruction method. The ability to effectively deal with
different levels of noise is especially important for
biological datasets because different types of measurements,
such as proteomic data [4] against gene-expression data
[20], inherently have different measurement errors and other
uncertainties. For example, in gene-expression
measurements, the relative level of noise in fold-change
data is higher if the corresponding intensities are in the
low-value regime [21]. In the present work, we provide a
systematic comparison of the ability of three methods –
PCR, LMI and LASSO to reconstruct networks from
experimentally measured biological data and synthetic data.
Comparison criteria are the robustness in identifying a
‘true’ network and the accuracy of the estimated model
coefficients to different levels of missing/unavailable data
and different types and levels of noise in the data. When
appropriate, the comparison also includes results from a
standard least squares (SLS; abbreviation ‘LS’ also used)
approach. This study is motivated by the fact that although
a systematic comparison is theoretically intractable, it is
amenable to computational exploration. Additional novelty
of the current work also includes a more accurate approach
to statistical significance analysis of the model coefficients
in the PCR approach than that used in [4]. Further, previous
application of LMI to network reconstruction [12] used an
ad hoc approach to decide the threshold. We have improved
this approach by using a cross-validation procedure to
compute the threshold in the LMI method automatically.
In Section 2, we briefly describe the four network-

reconstruction methods as mentioned above. These methods
are used in Section 3 to reconstruct biological networks
from an experimentally measured dataset (phosphoprotein
[PP] signalling and cytokine measurements in RAW 264.7
cells provided by the Alliance for Cellular Signalling
[AfCS] [22]) and from simulated data for which the true
network (or model coefficients) is known. In this section,
the effect of noise level, noise type and the size of dataset

on the performance of different methods will be
investigated. The effect of the amount of missing data will
also be studied. This section ends with a comparison of
computation time used by these methods. Section 4 presents
a discussion and comparative analysis of the different
methods for non-collinear and collinear input datasets.
Section 5 concludes the article with some directions for
future efforts.

2 Methods

In this study, we compare four methods for network
reconstruction, namely, LS, PCR, LASSO and LMI. The
selection of these methods is based on the conceptual
differences in the approaches they employ for network
reconstruction. LS is based on minimisation of the sum of
squared errors between predicted response and true
response, PCR is based on dimensionality reduction,
LASSO is based on shrinkage of the model coefficients by
minimising the sum of squared errors [2, 14] and LMI is
based on the minimisation of L-infinity norm of the
prediction error and shrinkage heuristics [12, 13]. Here we
introduce the well-studied method of SLS. Detailed
description of the other three methods, PCR, LASSO and
LMI, are presented in Supplementary material (Sections
1.2–1.4).
The SLS method, one of the oldest techniques in modern

statistics [23], estimates unknown coefficients (or
parameters) of a linear model by minimising the sum of
squares of model deviations from an observed response.
Consider a system that consists of n input variables
(predictors) and p outputs. Let m denote the number of data
points, X denote an m × n matrix of input data (each
column normalised to zero-mean and unit standard
deviation) and Y denote an m × p matrix of the
corresponding (mean-centred) observed response (outputs).
For simplicity, we assume that p ¼ 1 (else repeat the
procedure on each output individually) and hence denote
the data by y as opposed to Y. Let b̂ be an estimate of the
coefficient vector b in the linear affine system, so that,
y ¼ Xb. Specifically

y = Xb̂+ 1 (1)

where 1 is the residual vector. SLS computes b̂ as

b̂ = argmin{e2 = (y− Xb)T(y− Xb)} (2)

The least squares solution to (2) is

b̂ = (XTX )−1XTy (3)

The predicted values of the output data, yp, can be computed
as

yp = Xb̂

More details, such as calculation of root-mean-squared error
(RMSE) for prediction, are described in Supplementary
material Section 1.1. Two different metrics (fractional error
in the estimated coefficients, and sensitivity, specificity and
related metrics) have been utilised to evaluate the
performance of the methods. They are described in
Supplementary material, Section 1.5.
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3 Results

In this section, we present the results with input data
containing independent columns. The case of collinear data
is presented in the next section. Relative performance of the
four network-reconstruction methods is analysed below.

3.1 Performance on experimental data (PP/
cytokine data)

This case study deals with network reconstruction for
cytokine release in RAW 264.7 cells using the data from
the AfCS [22]. In response to molecules that bind to cell
surface receptors, these macrophage cells utilise a cascade
of cellular signalling events to alter gene expression
resulting in release of cytokines. The cytokines are a
hallmark of inflammation and innate immune response in
physiology [24]. The large scale measurements of PPs and
cytokines as a function of stimulus and time in these cells
serve as an excellent testbed for network reconstruction
methods. Although these individual macromolecule
measurements and cell phenotypes are well-characterised,
the knowledge of precise pathways and context-specific
networks is incomplete. Prior work has established some of
these networks and hence serves as a good metric for
comparison and validation of network reconstruction
methods [24, 25]. We use this as the experimental case
study to analyse the reconstruction methods described
above. The PP/cytokine dataset consists of 22 inputs and 6
outputs (G-CSF, IL-1a, IL-6, IL-10, MIP-1a, TNFa). Both
the input and output data are time averaged since the time
scales of the input (PP) data are in minutes (measurements
taken at 1, 3, 10 and 30 min) whereas that of the output

(cytokines) data are in hours (measurements taken at 2, 3
and 4 h). The PPs were measured using western blots
(AfCS protocols #PP00000177 and #PP00000181) and
cytokines were measured using multiplex suspension arrays
(AfCS protocols #PP00000209 and #PP00000223 [22]).
More details about the experiments can be found on the
AfCS website [22] and the procedure for pre-processing the
data is explained elsewhere [4]. RMSE of the network
reconstructed with each of the four methods was calculated
for all outputs. Fig. 1 shows a scatter plot of the predicted
outputs against corresponding experimental values for the
LS and PCR methods. The dashed and dotted lines
represent the s ¼ RMSELS and 2s bands, respectively.
As discussed in Section 2 and Supplementary material,

Sections 1.1–1.4, each method employs a different strategy
to identify the most informative/significant variables
contributing to network identification. The number of
significant variables depends on a selection criterion (tuning
parameter). For PCR, 0.8 , Fraction of the cumulative
variance (FCV) , 0.95 was used to capture 80–95% of the
variance in the input data, and the significance was based
on the average ratio for t-test to obtain a stable estimate.
The t-test was also employed in the LS method to identify
significant predictors (‘LS_sig’ in Table S1; LS refers to
SLS without any significance testing). In LASSO, the
criterion was set to t ¼ 0.66 which translates into about
33% (¼ 120.66) of the coefficients becoming zero in the
resulting model. For LMI, the threshold rLMI ¼ 0.3 was
used. A detailed discussion on the selection of appropriate
thresholds for the LASSO and LMI methods using cross-
validation is presented in Supplementary material, Section
3.1. For each method the number of significant input
variables identified and used to build the model is listed in

Fig. 1 Actual response (experimental data) against response predicted with the LS and PCR methods for PP/cytokine data

Dashed and dotted lines represent the s and 2s bands, respectively. IL: interleukin; TNF: tumor necrosis factor; G-CSF: granulocyte colony stimulating factor,
MIP: macrophage inflammatory protein
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Table 1 along with the number of true and false positive (TP,
FP) connections. The method of LS with significance testing
retains the smallest number of inputs (predictors). PCR comes
second, whereas LASSO tends to retain the largest number of
inputs (depending on the value of t). Overall, LASSO and
LMI are comparable.

3.2 Performance on synthetic noisy data

Next, we apply the four methods to reconstruct a network
from a synthetic data consisting of 25 inputs and 1 output.
In an effort to make the synthetic networks as compatible
as possible with experimental datasets, several factors such
as network size, noise variance, granularity, sparse network
topology and appropriate correlation range among columns
of input matrix have been taken into account in generating
‘synthetic’ data for network reconstruction and analysis.
Synthetic datasets, which are generated with a model whose
parameters are known, facilitate the assessment of the
overall accuracy of network reconstruction performed by
the four methods. A portion (about a third) of true
coefficients for the inputs are intentionally made zero to test
the ability of these methods to identify them as
insignificant. The input data can be made collinear based on
a fraction of co-linearity (zero means all input columns are
independent). The algorithm for generating the synthetic
dataset has been described in Supplementary material
(Section 2).

3.2.1 Effect of noise level: The first study is designed to
investigate the effect of increasing noise in the output data.
Four sets of outputs corresponding to 5, 10, 20 and 40%
noise levels, respectively, were generated from the noise-
free (true) output. The size of the input data matrix is
m ¼ 100, n ¼ 25. Supplementary material Fig. S1 shows
the fit of predicted against supplied (noisy) output data for
LMI, as a representative of all the methods. Increase in the
noise is evident. In terms of RMSE (Supplementary
material Table S2), LS performs better than PCR, LMI and
LASSO. Since the inputs were independent, RMSELS is
comparable with the standard deviation of the noise added
to the outputs. Overall, a similar pattern was observed for
the training set as well. RMSELMI is very close to RMSELS

for the training set.
Table 2 demonstrates how the sensitivity, specificity,

accuracy and geometric mean of sensitivity and specificity
(G) of PCR, LASSO and LMI vary as the noise level
increases. In terms of these metrics, LMI exhibits the best
overall performance, and PCR the worst. For example, at
10% noise level, G ¼ 0.71, 0.90 and 0.97 for PCR, LASSO
and LMI, respectively. However, at higher levels of noise,
the performance of the three methods becomes similar. At

40% noise level, G ¼ 0.70, 0.82 and 0.75, for PCR,
LASSO and LMI, respectively. The other metrics (accuracy,
sensitivity and specificity) follow a similar trend. For
example, both sensitivity and accuracy decrease with
increasing noise level for all the three methods, whereas
specificity increases for PCR and decreases for LASSO and
LMI. We also note that with increasing noise level G of
LMI and LASSO decreases more rapidly with increasing
noise level than G of PCR does.
The second study is designed to analyse the effect of

different types (distribution) of noise in the data. In terms
of fractional error in estimating the coefficients,
performance of all methods decreases with increase in the
level of noise with LASSO exhibiting the smallest decrease.
For datasets with white noise, accuracy of LMI and LASSO
decreases with the noise level and for datasets with
t-distributed and uniformly distributed noise, the accuracy
of PCR increases with the noise level whereas it decreases
for LMI and LASSO. The details are presented in
Supplementary material, Section 3.1.

3.2.2 Variability between realisations of data with
white noise: The three network reconstruction methods –
PCR, LASSO and LMI – are used to identify significant
predictors for 1000 different realisations of white noise
added to the output (described in Supplementary material,
Section 3.2) and the resulting spectra of the coefficient
values for the significant inputs are compared for the
different methods (Fig. 2). Lowest standard deviation and
closest mean value to the true values from LMI
(error ,3%, Supplementary material, Table S5) suggest that
overall LMI is the most robust method for detecting the
significant predictors and computing their values.

3.2.3 Effect of the size of the dataset: Datasets extracted
from many biological experiments have different sizes both in
the number of data points (cases or experiments) and in the
number of inputs. One important measure of the
performance of network-reconstruction methods is to
evaluate the reliability of each method in terms of the
dataset structure (the number of predictors and the ratio of
the number of data points to the number of predictors). A
method’s performance on datasets of different sizes can be
used to understand their applicability to datasets of a

Table 2 Accuracy, sensitivity and specificity of methods for

white noise (m ¼ 100, n ¼ 25) (based on average of 50 runs)

Noise, % 5 10 20 40

PCR

ACC. 0.71 0.71 0.70 0.69

Sense. 0.72 0.70 0.66 0.57

Spec. 0.71 0.73 0.77 0.87

G 0.71 0.71 0.71 0.70

LASSO

ACC. 0.88 0.89 0.88 0.83

Sense. 0.81 0.83 0.83 0.84

Spec. 0.99 0.99 0.96 0.81

G 0.89 0.90 0.89 0.82

LMI

ACC. 0.97 0.97 0.93 0.79

Sense. 0.95 0.94 0.93 0.90

Spec. 1.00 1.00 0.92 0.63

G 0.97 0.97 0.92 0.75

Table 1 Number of significant inputs (TP, FP) for each output of

PP/cytokine data

Output LS_sig. PCR LASSO LMI

G-CSF 3 (1,2) 11 (2,9) 6 (3,3) 12 (3,9)

IL-1a 4 (1,3) 12 (2,10) 6 (3,3) 15 (3,12)

IL-6 1 (1,0) 5 (3,2) 2 (2,0) 8 (1,7)

IL-10 3 (2,1) 7 (4,3) 7 (4,3) 8 (3,5)

MIP-1a 2 (1,1) 11 (3,8) 6 (3,3) 16 (3,13)

RANTES 1 (1,0) 9 (2,7) 4 (2,2) 9 (3,6)

TNFa 4 (2,2) 12 (4,8) 6 (4,2) 13 (3,10)
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particular size and structure. In this section, we evaluate the
performance of the four methods when (i) the ratio of the
number of samples (the number of rows in the input/output
data matrices) to the number of inputs decreases, whereas
the number of samples remains fixed (comparison between
the datasets with n ¼ 25 and 50; m ¼ 100 in both cases);
and (ii) the number of both inputs and samples increase
whereas the ratio m/n is kept fixed (comparison between the
datasets with m ¼ 100, n ¼ 25, and m ¼ 400 and n ¼ 100).
Table 3 shows that in case (a) for both the datasets (n ¼ 25

and ¼ 50), the fractional error in estimation of coefficients
increases with the noise level for PCR and LMI but
decreases for LASSO. On the other hand, the geometric
mean G decreases with the noise level for all methods and
all dataset sizes. PCR exhibits the slowest rate of decrease
in G for increasing noise, but it is more sensitive as
compared to other methods to the number of inputs. Some
more details are presented in the Supplementary material,
Section 3.3, case (a). The main result from case (b) is that

the performance of the methods are similar when the ratio,
r ¼ m/n, is comparable. Supplementary material, Section
3.3, case (b) provides more details for this conclusion.

3.3 Effect of missing data

The effect of the amount of training data used on the
prediction accuracy (through RMSE), both for the
experimentally measured data and the synthetic data, has
been studied in different scenarios.
For testing the effect of missing data, we re-analysed

experimentally measured and synthetic datasets. To this end,
up to 60% of data, in increments of 5%, were assumed to be
missing. The average computed validation RMSE confirms
that a larger amount of missing data leads to less accurate
predictions. Detailed procedure and results are presented in
Supplementary material, Sections 3.4.1 and 3.4.2.
In terms of computing time, with increasing data sizes,

PCR scales very well (sub-linear time complexity), LASSO
scales nearly linearly (or sub-linearly) and LMI scales in a
quadratic manner (Supplementary material, Section 3.5).

4 Discussion

In this section we provide an overall summary of the results
and discuss the important conclusions of our analyses. We
discuss the results and analysis of the methods in using the
experimentally measured and synthetic data with correlated
inputs.

4.1 Comparison of different methods on the
experimentally measured data

We found that the different methods identified unique sets of
common and distinct predictors for each output. As an
example, consider the output interleukin (IL)-6 of the
experimental data (PP/cytokine). Fig. 3 illustrates a
comparison of the common and distinct sets of predictors

Fig. 2 Histograms of the three selected significant coefficients from PCR, LASSO and LMI (based on 1000 realisations)

Table 3 Fractional error in estimation of parameters for datasets

of different sizes (based on average of 50 runs)

Noise, % 5 10 20 40

m ¼ 100, n ¼ 25 (same as in Supplementary material Table S3 for

white noise)

PCR 0.15 0.16 0.21 0.26

LASSO 0.48 0.46 0.44 0.44

LMI 0.12 0.15 0.22 0.35

m ¼ 100, n ¼ 50

PCR 0.33 0.35 0.36 0.43

LASSO 0.50 0.48 0.46 0.43

LMI 0.16 0.23 0.39 0.71

m ¼ 400, n ¼ 100

PCR 0.17 0.18 0.21 0.27

LASSO 0.48 0.47 0.44 0.43

LMI 0.10 0.13 0.20 0.35
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identified for IL-6 by these methods. In the Venn diagram of
Fig. 3, the sizes of the areas labelled by each method are
proportional to the number of significant predictors detected
by the corresponding method and the largest area represents
all the 22 inputs. The names of the true inputs are known
from literature and are listed in the diagram in the labelled
areas [4]. Zone I contains the true inputs that are detected
by all methods, zone II represents the predictors that are
detected by different methods as being significant, but are
not true in reality (related to false positive) and zone III
corresponds to the true inputs that are detected by only a
specific method. For IL-6, the true inputs are: cAMP, JNK
lg and NFkB p65. Only the PCR method detects the true
input cAMP. Therefore zone III for PCR contains cAMP.
On the other hand, all the methods identified NFkB p65 as
a significant predictor which belongs to zone I. In
summary, zone I provides validation and highlights the
common output of all the methods. Zone III highlights the
unique outcomes from individual methods. In terms of
comparing the different methods on the experimentally
measured dataset, PCR had the best overall performance.
In Supplementary material, Section 3.6, a detailed

comparison of different methods on the experimental data is
also presented with respect to whether or not one of the
ligands applied was lipopolysaccharide (LPS). LPS
activates Toll-like receptors resulting in very large response,
and thus masking the effect of other ligands.

4.2 Comparison of the performance of methods on
the synthetic non-collinear data

Fig. 4 provides a summary of the performance of the methods
on synthetic data with respect to several criteria. The variation
of RMSE and fractional estimation error (FEE) of the
parameters against noise level for different methods are
shown in Figs. 4a and b (Supplementary material Tables S2
and S3), respectively. Based on RMSE and FEE, LMI is the
best method. PCR is the next best method. LASSO performs
least well based on these criteria. The trend of FEE for the
LASSO method is opposite to that for PCR and LMI.
However, it can be noted that FEE values for the LASSO

method are much larger than for PCR and LMI for all noise
levels. Mathematical reasoning of either of these trends
appears intractable.
Based on accuracy and sensitivity criteria, Figs. 4c and d

(Tables 2 and Supplementary material Table S4) (accuracy
value for 20% noise) show that LMI provides maximum
accuracy and sensitivity. LASSO is the next best method in
this aspect and PCR performs least well although it is not
significantly poor.
In this work, we have tried to provide a broad comparison

of the methods by using the following metrics – RMSE,
fractional error in the estimated coefficients, sensitivity,
specificity and related metrics. For example, although the
LMI study [12] claims that LMI is a leading method based
on true and negative occurrence in reconstruction of the
networks, or the LASSO study [14] claims that it is a
prominent tool in network reconstruction based on error in
finding the coefficients, the metrics are not unique.
Therefore even if one method outperforms others based on
a certain metric score, it might suffer from scores based on
another metric. Table 4 summarises the performance of the
methods with respect to different criteria such as ratio of
the number of data points to the number of inputs
(dimensional ratio), data size, noise level and type of noise
contaminating the data and the amount of missing data. The
normalised score of each method is described along with
how the normalised score is computed to provide a semi-
quantitative picture of how the different methods perform.
The data reported in Table 4 are based on the analysis of
synthetic data. Some more details of comparison with
respect to various metrics are presented in Supplementary
material, Section 3.7. In summary, it can be concluded that
LMI is the best method overall, and is closely followed by
LASSO. The method of PCR is comparable with the
method of LASSO with respect to several of the above
criteria, although it performs poorly with respect to a few
other criteria such as accuracy and fractional error in
parameter estimation.

Fig. 4 Variation of RMSE

a Fractional error in estimation of coefficients (FEE) (Supplementary
material Table S2)
b Accuracy (Supplementary material Table S3)
c Sensitivity (Table 2 and Supplementary material Table S4)
d Table 2 and Supplementary material Table S4 against noise level

Fig. 3 Graphical illustration of methods PCR, LASSO and LMI in
detection of significant predictors for output IL-6 in PP/cytokine
experimental dataset
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4.3 Comparison with respect to amount of
collinearity in the input dataset

In biological data inputs are not necessarily independent of
each other. For example, in the PP/cytokine data,
extracellular signal-regulated kinase (ERK) 1 (ERK1) and
ERK2 are highly correlated. To compare the performance
of the methods in presence of collinearity, a synthetic
dataset with the same size and same levels of noise as used
in Section 3.2.1 (m ¼ 100, n ¼ 25) has been used such that
10–30% of the columns are linear combinations of the
remaining independent columns. Fig. 5 illustrates the
outcome of applying the different methods on noisy
datasets with different fractions of dependence among the

input columns (see also Supplementary material
Tables S12–S16). The surface plots shown in Figs. 5a and
b suggest that the rate of increase of FEE for increase in the
noise level is smallest for PCR and largest for LMI;
Figs. 5a–c also show similar trend for FEE with increasing
level of collinearity. As shown in Figs. 5d– i, the accuracy
and G metrics show similar trend in that they deteriorate
with increasing fraction of collinearity in the datasets for all
the methods studied. Further, Figs. 5d– i suggest that
accuracy and G metrics deteriorate (decrease) with
increasing noise level for LASSO and LMI; however, they
increase for PCR with increasing noise (especially when the
fraction of collinearity is considerably high [20–30%])
which is counter-intuitive. Analysis of the number of TP

Table 4 Summary of the performance of different methods on non-collinear data according to different criteria

Methods/criteria PCR LASSO LMI

Increasing noise

RMSE (Supplementary material Table S2) 33/0.68

score ¼ (average RMSE across different noise levels for

LS)/(average RMSE across different noise levels for the

chosen method)

degrades gradually

with level of noise

3/0.56 333/0.94

standard deviation and error in mean of coefficients.

(Supplementary material Table S5):

33/0.53 33/0.47 333/0.55

score ¼ 12 average (fractional error in mean (10, 12,

20)+ (std(10, 12, 20)/|true associated coefficients|))
Acc./G (Table 2 and Supplementary material Table S4) 3/0.70 33/0.87 333/0.91 at

high noise all

similar

score ¼ average accuracy across different noise levels for

chosen method (white noise)

fractional error (Table 3 and Supplementary material

Table S3)

33/ 0.81 3/0.55 33/0.78

score ¼ 12 average fractional error in estimating the

coefficients across different noise levels for chosen

method (white noise)

Types of noise

fractional error (Supplementary material Table S3) 33/0.80 3/0.56 33/0.79

score ¼ 12 average fractional error in estimating the

coefficients across different noise levels and different

noise types (20% noise level)

accuracy and G (Table 2 and Supplementary material

Table S4)

3/0.71 33/0.87 333/0.91

score ¼ average accuracy across different noise levels and

different noise types

Dimension ratio/size

fractional error (Table 3) 33/0.77 3/0.53 33/0.75

score ¼ 12 average fractional error in estimating the

coefficients across different noise levels and different

ratios (m/n ¼ 100/25, 100/50, 400/100)

accuracy and G (Table 2 and Supplementary material

Tables S4, S6 and S7)

33/0.66 333/0.83 333/0.90

score ¼ average accuracy across different white noise

levels and different ratios (m/n ¼ 100/25, 100/50, 400/100)

Missing data

overall (Supplementary material Table S9) 33/0.68 33/0.67 333/ 0.71

let A ¼ Max RMSE of all methods across all level of

missing data

score ¼ (A2 (max RMSE+ fractional max deviation in

RMSE+ fractional std deviation in RMSE)/3)/A
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and TN (Supplementary material Table S17) offers help to
resolve this anomaly. For PCR, the number of TP decreases
with increasing noise as expected. At the same time, the
number of TN increases. LMI and PCR exhibit largest and
smallest decrease, respectively, in accuracy and G value
with increase in collinearity across different noise levels.
Hence, PCR is the most robust method in dealing with
collinear input data with respect to the accuracy and G
metrics. It is no surprise that PCR deals with collinear data
much more effectively than LMI and LASSO, especially
when compared with their ability to deal with data with
independent input columns. Table 5 summarises the
performances of the methods in terms of accuracy,
geometric mean of sensitivity and specificity, and fractional
error in estimating the parameters for collinear data.

5 Conclusions

Four methods for reconstruction of networks (LS, PCR,
LASSO and LMI) described in this work have been applied
to two different types of datasets: an experimental dataset
and a synthetically constructed dataset. The first dataset

comprised of experimental data on PPs/cytokines and the
second set contained different artificially synthesised
datasets. The least-squares method is seen to perform the
best in terms of goodness of fit, but the other three methods
are better in capturing most of the true inputs/predictors for
the outputs. Various case studies were designed on the
artificially synthesised datasets to evaluate the performance
of the methods for increasing level of noise, noise type,
dimension ratio (size of dataset), missing data (availability
of data for building the models) and amount of collinearity
in input dataset. LMI performed better than other methods
for synthetic data with increasing levels of noise. With
regard to the robustness of the methods for different types
of the noises, method of LMI exhibited the best
performance for reconstruction of the network. LASSO and
PCR followed LMI with respect to least fractional error in
estimation of coefficients and detection of true predictors,
respectively. Based on the dimensional ratio and size of the
dataset, PCR and LMI were shown to be the most robust
methods in terms of fractional error in estimating the
coefficients and LMI and LASSO in terms of accuracy in
detection of true predictors. The investigation of the

Fig. 5 Fractional error in estimating the coefficients (Panels a, b, c), accuracy (Panels d, e, f) and geometric mean of sensitivity and specificity
(Panels g, h, i) of each method against level of noise and percentage of collinearity in input data

Table 5 Summary of the performance of different methods on collinear data according to different criteria

Methods/criteria PCR LASSO LMI

Accuracy and G (Tables S14 and S15) 333/ 0.71 33/0.65 33/0.63 at low noise all similar

score ¼ average accuracy across different levels of collinearity

for 40% noise level for chosen method (white noise)

Fractional error for the 40% white noise case (Table S13) 333/0.43 3/1.72 3/2.30

since fractional error is more than one for LASSO and LMI, the

score (¼ 12 fractional error) would be negative, and hence it is

not reported
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missing data case demonstrates that the LASSO technique is
the most robust method for both the experimentally measured
data and synthetic data and LMI results in the lowest
prediction error (RMSE) with low/medium percentage of
missing data and for medium level of noise. Not surprising
is the fact that LS and PCR are the fastest and LMI is the
slowest in computational performance. The result of
comparisons on datasets with different amount of
collinearity in input dataset showed that PCR performs
better than other methods overall. This can be owed, at least
in part, to the fact that PCR can inherently handle the
correlation among the inputs. There are several unanswered
questions such as why LASSO performed poorly on
synthetic data with increasingly more missing data.
Nevertheless, the results presented for the three noise types
suggest that all three methods perform similarly overall to a
large degree. It is imperative that the user needs to use
more than one method and evaluate their pros and cons on
the dataset of interest before deciding method of choice.
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1. Methodology 

Details of the four methods of network reconstruction are described in this section as following. 

1.1 Standard Least Squares 

The Least Squares method minimizes the root-mean-squared error (RMSE) on the given 

(training) dataset where RMSE can be computed as 

2
,

1

1 ( ) ( ) ( 1) /
m

LS i i p p
i

RMSE y y std m m
m

y - y . 

To test whether an element of the parameter vector b  is statistically different from zero, a two-

tailed t-test can be performed on the coefficient (1). First, the standard deviation of the model 

parameters b  is computed as 

1 1/2 1/2
, (( ) ) ( / ) ; 1T
LS LSdiag RMSE m v v m nb X X    (S1) 

The ratio , ,/j j B LS jr b  is computed for the jth input. The predictor is considered significant if 

this ratio is greater than rj =tinv (1 /2,v) , where tinv denotes the inverse of cumulative t-

distribution, and 01.0 for a confidence level of 0.99 (1, 2). 

 

1.2 Principal Component Regression (PCR) 

PCR is based on the principal component analysis and is employed when TX X is (nearly) 

singular, so that one or more of its eigenvalues are (close to) zero. Then, the principal 

components corresponding to only the first several eigenvalues (starting with the largest) are 

used. 



3 

 

PCR consists of the follow steps. 

1) Given normalized input data X  and mean-centered output data y , let j  be jth  eigen 

jv  be the corresponding eigen vector of the covariance matrix 

/ ( 1)T mC = X X , arranged in the order of decreasing eigen values. Let 

k { j, j 1,...k} be a set of k largest eigenvalues and 1[ ,... ,..., ]k j kV v v v  be a set of 

corresponding eigenvectors. Calculate the matrix of latent variables kT , 

k kT X V .                         (S2) 

2) Create a PCR model based on the k latent variables as 

-1 T
k k kb V ,  p ky = X b , 

1/2( ) (( -1) / )PCR pRMSE std m my - y .                   (S3) 

The number of latent variables in PCR can be determined either by cross-validation or by 

specifying the fraction of the cumulative variance (FCV) captured (say, 0.8 < FCVk < 0.95).  

Partial least squares (PLS) is a method similar to PCR, with the difference being that both matrix 

X and vector y (rather than only X) are used to construct the set of linear combinations of 

significant inputs for regression. A detailed description of PLS can be found in (3, 4). Statistical 

significance of the model parameters b determined with either of these two methods can be 

tested by first estimating their standard deviation B  and then using a two-tailed t-test to 

compare their ratios. For PCR,  
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  -1 1/2 1/2
, ( ) ( / ) ; 1T

b k k k k PCRdiag RMSE m v v m kV  

and , , , ,/j k j k B j kr b  for the jth input when k latent vectors are used. Average of kjr ,  over k, 

such that fractional cumulative variance (FCV), 0.8 < FCVk < 0.95, is computed.  The input is 

considered significant if rj,k tinv (1 /2,v), where v m k 1 and 01.0 for a 

significance level of 0.99 (2). 

1.3 Least Absolute Shrinkage and Selection Operator (LASSO) 

LASSO recasts the problem of network reconstruction into an optimization problem analogous to 

(2), but with an additional nonlinear constraint. An abstract formulation of LASSO is given by  

2arg min{ ( - ) ( - )}  /   T
j

j
e s t b tb y Xb y Xb .          (S4) 

The parameter t  of b . The constraint in 

(S4) leads to shrinkage in absolute value of the parameters. For certain values of t 

( ,   LS LS j
j

t t t b  obtained from LS) the algorithm shrinks some of the larger parameter-

values and sets some of the parameters to zero, thus identifying a parsimonious model. The 

constrained optimization problem (S4) is solved by employing a quadratic programming 

approach (e.g., the interior-point method used in this paper) (5). 
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1.4 Linear Matrix Inequalities (LMI) 

The basic idea of LMI is to convert a nonlinear optimization problem into a linear optimization 

problem (6). This method has been used to reconstruct and minimize dynamic networks (7-9). To 

facilitate the comparison of the four network-reconstruction approaches, the LMI method is also 

applied to static data. Equations in this section are for 1p . LMI replaces optimization problem 

(2) with    

min( )  /  ( - )( - )
n p

T
m m

B
e s t ey Xb y Xb I .                    (S5) 

The constraint in (S5) is nonlinear with respect to B . A congruence transformation of (8) yields 

an LMI representation 

-
0

( ) -
m m

T
p p

eI y Xb
y - Xb I .              (S6) 

Prior knowledge (e.g., 12 0b  or 31 0b ) can be added as LMI constraints, 

( )0T T T
i j j iv u u vB B , (general form of constraints for multiple outputs)  (S7) 

where 
0,
1,

r
i

r

v r i
v

v r i
 and 

0,
1,

r
i

r

u r i
u

u r i
 are respectively 1n  and 1p  column-vectors 

constraining the element ijb . The LMI assembled by equations (S6) and (S7) can be solved 

simultaneously to obtain optimal estimate for b (10). 
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The normalized matrix of parameters b  is calculated by dividing each element by the L2-norm of 

its row and column, 

.. :2 2
/ij ij i jb b b b .                                    (S8) 

If ijb  becomes smaller than a threshold (say, LMIr ), then the corresponding parameter is nullified 

(deemed insignificant). Since all analyses have been carried out based on a single output at a 

time, constraint described in Eqn. S7 can be determined by only one vector (v or u) and the 

matrix of parameters morphs to a column vector. A further discussion of this method can be 

found in (8).  

1.5 Metrics for comparing the methods 

We used two data sets to evaluate the performance of the four network-reconstruction methods 

presented in above Supplementary Material Sections 1.1-1.4. The first set is experimental data 

measured in macrophage cells stimulated with a defined set of ligands; for the network 

construction, we use Phosphoproteins (PP) as inputs and Cytokines as outputs (11). The data is 

made available by the Alliance for Cellular Signaling (11). The second set consists of synthetic 

data. We reconstruct the networks from 80% of each dataset (called a training set; randomized 

but pairs of rows in the input-output maintained) and then use the remaining portion (20%, called 

a test set) to validate the reconstruction. We have found that the models based on 100% of the 

data and 80% of the data are similar. Root-Mean-Squared-Error (RMSE) on the test set, and the 

number and the identity of the significant predictors (network parameters) selected is used as the 

basic metric to evaluate the performance of each method.  
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Once the network parameters have been identified with each method, we utilized the two 

different metrics described below to evaluate both the overall performance of the methods and 

the validity of the computed parameters.  

1.5.1. Fractional error in the parameter values 

The fractional error of the estimated coefficients with respect to the true synthetic parameters 

serves as the first measure. It can be computed as 

,
,

,
1method j

frac j
true j

b
b mean

b
         (S9) 

where bmethod and btrue are the estimated and true values, respectively, of the parameters for a 

n inputs. 

In order to avoid the effect of very small true value of the coefficients in the denominator, the 

parameters smaller than 10% of the standard deviation of all parameter values were set to 0 when 

generating the synthetic data. 

1.5.2. Sensitivity, specificity and related metrics 

The second measure used in our analysis is an aggregate of the several measures of model 

evaluation that are described below. The latter rely on the following definition of positive and 

negative occurrences in a reconstructed network (with respect to one output at a time): 

a) True Positive (TP): the number of true predictors identified as significant in an estimated 

model (found in the correct network; significant in the estimated model). 



8 

 

b) False Positive (FP): the number of false predictors identified as significant in the 

estimated model (not found in the correct network; significant in the estimated model). 

c) True Negative (TN): the number of predictors not present in the correct network and 

identified as insignificant in the estimated model as well. 

d) False Negative (FN): the number of predictors present in the actual network but identified 

as insignificant in the estimated model. 

The performance of each network-reconstruction method can be evaluated according to their 

accuracy, sensitivity, and specificity, which are defined as 

:

:

:

TN TPAccuracy
TN TP FN FP

TPSensitivity
TP FN

TNSpecificity
TN FP

 

noise-free model is non- oise-

free model is zero) predictors detected correctly. Sensitivity is the fraction of relevant predictors 

detected correctly. Specificity is the fraction of irrelevant predictors detected correctly.  

Since the measure of accuracy is meaningful only if the numbers of relevant and irrelevant 

predictors is about the same, the accuracy metric and the geometric mean of sensitivity and 

specificity ( G sensitivity specificity ) can be used as a robust measure to benchmark the 

methods (12). The definitions of sensitivity and specificity imply, that, 0 G 1. The closer G is 

to 1, the higher the percentage of correct detections. 
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2. Algorithm for generating synthetic data 

The synthetic datasets referred to in the main text were generated as follows.  

 Generate a random zero-mean, unit standard deviation m × n matrix X. 

 Generate a random zero-mean, unit standard deviation m × matrix X where  = (1 - 

fraction of co-linearity) × n. 

 Generate a random ( × (n- )) collinearity coefficient matrix (C). Set X X×C. 

of size m × (n- ) and its columns are dependent on X. 

 Augment  to X to create the final input matrix X of size m×n. 5% noise can be added to 

X if desired. 

 Generate a random n × p (p = 1) coefficient matrix, and set the (randomly selected) one-

third of these coefficients to 0 (b). 

 Multiply X  and b  to obtain matrix of true output data 0y .  

 Generate a zero-mean, unit standard deviation m × p 

following distributions:  

o (0,1)N for white noise,  

o 1/2( ) / ( / ( 2)) ; 10t  for T-distributed noise, and  

o 1/2( [0,1] 0.5) / (1/12)U  for shifted-uniform noise; 

 Scale the raw noise matrix with the factor 0( )f std y  (set f = 0.05 for 5% noise level); 

 Add the resulting noise matrix to 0y  to obtain the output data y . 
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Table S1. RMSE on training set for different methods (PP/cytokine data). The LS method has 

the smallest RMSE due to the absence of constraints in the optimization problem, but RMSEs of 

the other three methods (PCR, LMI and LASSO) are also comparable.  

Output G-CSF IL-  IL-6 IL-10 MIP-   
LS 0.73 0.41 0.61 0.61 1.30 0.99 

LS_sig 1.16 0.56 0.80 0.80 2.30 1.27 
PCR 0.79 0.44 0.73 0.76 1.45 1.06 

LASSO 0.92 0.56 0.79 0.72 1.84 1.27 
LMI 0.76 0.41 0.67 0.67 1.34 1.09 

 

 

Table S2. RMSE on all data: methods vs. noise level (synthetic data). 

Noise % 5 10 20 40 
On training set 

LS_sig 0.94 1.5 2.47 4.22 
PCR 2.28 2.79 3.99 6.86 

LASSO 3.46 3.52 3.91 5.12 
LMI 0.57 1.31 2.39 4.23 

On validation set 
LS_sig 0.95 1.64 2.66 4.82 
PCR 2.3 2.8 4.05 9.08 

LASSO 3.64 3.71 3.89 5.77 
LMI 0.97 1.57 2.65 4.9 

 

 

3 Results 

In support of the results presented in Section 3 of main text, here we present the details of the 

analysis of effect of noise distribution, size of the dataset, and missing data in comparing the 

different methods.  
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3.1 Effect of noise distributions of (type of noise in) the output data 

In the first study (main text Section 3.2.1), the effect of increasing noise in the output data has 

been investigated. The second study (this study) is designed to elucidate the effect of different 

types of noise on the performance of different methods in reconstructing the network, i.e., on 

identification and estimation and of significant predictors. We considered biologically relevant 

white noise (noise type 1), t-distributed noise (noise type 2), and shifted uniform noise (noise 

type 3). These were added to the noise-free output as described in Supplementary Material 

Section 2. 

Table S3 shows the fractional error (defined in Supplementary Material Section 1.5.1, Eqn. S9) 

in the computed values of the coefficients relative to the true values. These results are based on 

the average from 50 runs. The different types of noises result in a similar (and obvious) trend: the 

fractional error in estimating the coefficients by the three methods increases with the level of 

noise. LASSO exhibits the smallest increase. 

 

Table S4 lists the values of sensitivity, specificity, and other relevant indicators 

performance for different types of noises. For noise types 2 and 3, only the values for 5% and 

20% are listed, which serves adequately for comparison purposes. The relevant results for noise 

type 1 (white noise) are discussed in main text Section 3.2.1 (Table 2). Here we focus on the 

geometric mean of sensitivity and specificity, G, and accuracy as two main metrics for 

comparing the performance of the three methods. The results reveal that for the output data with 

the type 1 noise, both the accuracy and G of LMI and LASSO decrease with the noise level. For 

the type 2 and 3 noise, both the accuracy and G of PCR increase with the noise level, but they 

decrease for LMI and LASSO.  
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Table S3. Effect of noise type: Fractional error in estimating the coefficients [based on average 

of 50 runs]. 

Noise % 5% 10% 20% 40% 
White noise     

PCR 0.15 0.16 0.21 0.26 
LASSO 0.48 0.46 0.44 0.44 

LMI 0.12 0.15 0.22 0.35 
Noise from t-distribution   

PCR 0.16 0.17 0.20 0.28 
LASSO 0.48 0.47 0.43 0.44 

LMI 0.13 0.16 0.21 0.37 
Uniform noise with mean 0   

PCR 0.16 0.16 0.18 0.26 
LASSO 0.48 0.47 0.44 0.45 

LMI 0.11 0.13 0.21 0.38 
 

 

Table S4. Accuracy, Sensitivity, and Specificity of methods for noise with t-distribution (noise-

type = 2) and uniform distribution (noise-type = 3) (m = 100, n = 25) [based on average of 50 

runs]. 

  Noise type = 2 Noise type = 3 
Noise % 5 20 5 20 
PCR     
ACC. 0.74 0.73 0.72 0.72 
Sense. 0.73 0.69 0.74 0.68 
Spec. 0.75 0.81 0.70 0.78 
G 0.73 0.74 0.71 0.73 
LASSO      
ACC. 0.89 0.89 0.89 0.89 
Sense. 0.82 0.84 0.82 0.85 
Spec. 0.99 0.95 1.00 0.95 
G 0.90 0.89 0.90 0.90 
LMI      
ACC. 0.97 0.92 0.98 0.93 
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Sense. 0.94 0.94 0.97 0.95 
Spec. 1.00 0.89 1.00 0.91 
G 0.97 0.91 0.98 0.93 

 

The tuning parameters in LASSO and LMI (the threshold parameters t and rLMI, respectively) 

were identified through k-fold (with k = 10) cross-validation, for different noise levels in the 

synthetic dataset. The optimal value of the tuning parameter was computed by analyzing the 

dependence of the prediction error from the ten-fold cross-validation estimation on the tuning 

parameter. The tuning parameter in the LASSO method, t, varies between 0 (the null model 

without predictors) and 1 (LS model with all predictors). Supplementary Material Figure S2 

illustrates how the RMSE (its mean and standard deviation across the k-folds) varies over the 

validation set. For LMI, the upper bound of the tuning parameter (rLMI = 1) corresponds to the 

null model and the lower bound (rLMI = 0) corresponds to the full model. 

 

Following (13), we define the optimal parameter value to be the smallest value of the tuning 

parameter that is within one standard deviation from the lowest RMSE on the RMSE vs. tuning-

parameter curve (e.g., Supplementary Material Figure S2). This definition provides a 

conservative estimate of the tuning parameter that prevents over-fitting. Applying this algorithm 

to obtain the optimal values of the tuning parameters in LASSO and LMI, we obtain t 2 /3 and 

rLMI 1/3, respectively. These values of t and rLMI did not vary much with the noise level, which 

indicates their robustness. 

This procedure is repeated for different types of noise in the output data (synthetic data case) and 

used in the subsequent studies as appropriate. 
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3.2 Variability between realizations of data with white noise 

The data set is generated as follows. First the true input-output (noise free) data are generated. 

About one third of the coefficients are set to 0. Then 1000 realizations of the noisy output data 

are generated by adding white noise. Four levels of noise (5, 10, 20 and 40%) were considered, 

but only representative results from the 20% noise set are presented below.   

The shape of the distributions of the coefficient values for the predictors 10, 12, and 20 is 

similar. These distributions are approximately Gaussian, with different means but similar 

standard deviations (Supplementary Material Table S5). For a selected input, the discrepancy in 

the means is due to the fact that different methods give rise to different sets of significant input 

predictors. The similarity of the standard deviations is a reflection of the consistency in the level 

of noise in the predictors obtained with the three methods. The LMI and PCR methods result in 

the lowest standard deviations. This implies that PCR and LMI are relatively more robust in 

detecting significant predictors for output data with moderate level of noise. While not shown 

here, for common predictors, we found that higher levels of noise result in higher standard 

deviations in the values of the coefficients. 
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Table S5. Mean and standard deviation in the histograms of the coefficients computed with 

PCR, LASSO, and LMI. 

Method Predictor No. 10 12 20 
 True value -3.40 5.82 -6.95 
PCR Mean -3.81 4.73 -6.06 

  
Std. 0.33 0.32 0.32 
Frac. Err. in mean 0.12 0.19 0.13 

LASSO Mean -2.82 4.48 -5.62 

  
Std. 0.34 0.32 0.33 
Frac. Err. in mean 0.17 0.23 0.19 

LMI Mean -3.70 4.74 -6.34 
  Std. 0.34 0.32 0.34 
 Frac. Err. in mean 0.09 0.18 0.09 

 

 

3.3 Comparison of methods on the data sets of different sizes 

Two cases studies are designed as discussed below. 

Case (a): 

m = 100 data points. The 

number of input columns in the two datasets is n = 25 (dataset 1, the base case with white noise 

presented in Section 3.2.1) and n = 50 (dataset 2), respectively. Table 2 lists the sensitivity and 

other metrics for the n = 25 (dataset 1), while Table 3 provides the corresponding fractional error 

metric. Table 3 also contains these metrics for the n = 50 case. In both cases, the fractional error 

in estimation of coefficients increases with the noise level for PCR and LMI but decreases for 

LASSO. On the other hand, the geometric mean G decreases with the noise level for all methods 

and all dataset sizes. PCR exhibits the slowest rate of decrease in G. Comparing the results in 

Section 3.2.1 for the type 1 noise (Table 2) with those presented in Supplementary Material 
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Table S6 reveals that, as the number of inputs increases, G of PCR decreases faster than G of 

both LASSO and LMI does. In other words, PCR is more sensitive to the number of inputs. Also, 

comparison of Tables 2 (dataset 1) and S5 (dataset 2) shows that for the same noise type (i.e., 

white noise) and the same number of samples (i.e., m = 100), both accuracy and G decrease as 

the number of inputs increases from dataset 1 (n = 25) to dataset 2 (n = 50), with PCR exhibiting 

the smallest rate of degradation (for dataset 1, G and accuracy ranges across noise levels are: 

PCR = [0.71 - 0.69], LMI = [0.90 - 0.82], LASSO = [0.97  0.75]).  

Case (b): 

To investigate the impact of increasing the number of inputs as well as the number of samples 

(with same dimension ratio m/n = 4), we created the third dataset with m = 400 and n = 100 

(dataset 3). The fractional error (Table 3), sensitivity and other performance metrics (Table S7) 

of the network reconstruction methods are consistent with their counterparts observed for the 

previous two datasets. As the noise level increases, the fractional error in estimation of 

coefficients increases except for the LASSO which is decreasing and the geometric mean G 

decreases for all methods. A comparison of results from datasets 1 and 3 in Table 3, and between 

Tables 2 and S7 suggests that the performance of the methods are similar when the ratio, r = 

m/n, is comparable.  

For example, comparing the fractional error in estimating the coefficients of dataset 1 and data 3 

in Table 3 reveals that LASSO is the most robust methods when the system size increase in a 

manner that preserves the dimensional ratio r = m/n. The comparison of Tables 2 and S7 implies 

that the change in the number of samples, m, does not affect the G and accuracy of the methods 

when the dimensional ratio r = m/n remains unchanged. 
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Table S6. Accuracy, Sensitivity, and Specificity (m = 100, n = 50). 

Noise Type = 1, 50 runs 
PCR          
Noise % 5 10 20 40 
ACC. 0.65 0.64 0.63 0.58 
Sense. 0.52 0.52 0.47 0.36 
Spec. 0.84 0.84 0.87 0.92 
G 0.66 0.65 0.64 0.57 
LASSO      
ACC. 0.83 0.83 0.79 0.71 
Sense. 0.77 0.78 0.79 0.81 
Spec. 0.91 0.90 0.78 0.55 
G 0.84 0.84 0.79 0.66 
LMI      
ACC. 0.96 0.91 0.80 0.69 
Sense. 0.93 0.89 0.89 0.85 
Spec. 1.00 0.94 0.67 0.44 
G 0.96 0.92 0.77 0.61 

 

Table S7. Accuracy, Sensitivity, and Specificity (m = 400, n = 100). 

Noise Type = 1, 50 runs 
PCR          
Noise % 5 10 20 40 
ACC. 0.71 0.71 0.71 0.68 
Sense. 0.71 0.70 0.67 0.56 
Spec. 0.71 0.73 0.77 0.86 
G 0.71 0.71 0.72 0.69 
LASSO      
ACC. 0.87 0.88 0.88 0.83 
Sense. 0.79 0.80 0.82 0.81 
Spec. 0.99 0.99 0.98 0.86 
G 0.89 0.89 0.89 0.83 
LMI      
ACC. 0.97 0.97 0.92 0.79 
Sense. 0.95 0.95 0.93 0.90 
Spec. 1.00 1.00 0.91 0.62 
G 0.97 0.97 0.92 0.74 
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3.4 Effect of missing data 

Detailed analysis of effect of the amount of training data used on the prediction accuracy 

(through RMSE) is studied in this section for both the experimentally measured and synthetic 

data. 

3.4.1 Experimentally measured dataset 

To test the effect of missing data, we analyzed the output GCSF from the experimentally 

measured data set (11). This analysis consists of the following steps. First, 5-60% data (in 

increments of 5%) were assumed to be missing. Second, the remaining data were used for 

parameter estimation, and RMSE was computed on the test data (20% of the data). Third, this 

was repeated 100 times by randomly choosing the selected fraction of missing data. Finally, an 

average RMSE was computed which is shown in Supplementary Material Figure S3. As 

expected, the larger the amount of missing data, the less accurate (higher RMSE) the predictions 

are. Table S8  lists the corresponding fractional standard deviation, std(RMSE0-60%) / RMSE0%, 

and fractional maximum deviation, max(RMSEx% -  RMSE0%) / RMSE0%, for the four methods. 

Table S8 suggests that PCR and LASSO are more robust than LS and LMI for increases in the 

fraction of missing data, especially when less than half the data is used for training the model. 

However it can be noted from Supplementary Material Figure S3 that for missing data fraction 

less than 45%, both PCR and LASSO result in larger RMSE as compared to the other two 

methods. 
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Table S8. Effect of missing data with PP/cytokine data (validation set). 

Method 

Fractional 
standard deviation 

of RMSE across 
different fractions 

of missing data 

Fractional max 
deviation of 

RMSE across 
different 

fractions of 
missing data 

LS 0.12 0.40 
PCR 0.07 0.20 

LASSO 0.05 0.14 
LMI 0.10 0.32 

 

3.4.2 Synthetic dataset 

We conducted the analysis described above to ascertain the performance of the four network 

reconstruction methods on the synthetic data with 20% noise. The results are shown in 

Supplementary Material Figure S4. In terms of RMSE, LMI and LS with significant predictors 

yield the best performance, while LASSO provides the worst. At the same time, RMSE of 

LASSO exhibits the slowest rate of increases as the amount of missing data increases. PCR 

demonstrates a stable performance when the percentage of missing data is low (less than 30%). 

Table S9 lists the fractional standard deviation and fractional maximum deviation for each 

method. LASSO is the most robust method in terms of the fractional standard deviation, while 

other methods are comparable. LMI and LS with significant predictors perform well when the 

percentage of missing data is small (less than 20%). LASSO performs slightly worse for the 

experimentally measured data, and PCR for the synthetic data. Overall, given the robust behavior 

of LASSO to the missing data in the network reconstruction from experimental data, its use is 

recommended.  
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Table S9. Effect of missing data with Synthetic data (validation set). 

Method 

Fractional 
standard deviation 

of RMSE across 
different fractions 

of missing data 

Fractional max 
deviation of 

RMSE across 
different 

fractions of 
missing data 

LS 0.06 0.21 
PCR 0.08 0.21 

LASSO 0.02 0.06 
LMI 0.08 0.25 

 

3.5 Computational efficiency 

The simulations were run on a Dual-Core Intel Pentium IV processor with 2.66GHz processing 

speed per core, 4MB of cache, and 3 GB of RAM. An estimate of the CPU time used by each 

method is summarized in Supplementary Material Table S10. The time reported also includes the 

time taken for some text-output on the screen in Matlab®. A trade-off between robustness and 

computational time is apparent. LASSO and LMI are slower than LS and PCR by a factor of 

hundred for the datasets we analyzed. With increasing data sizes, PCR scales very well (sub-

linear time-complexity) LASSO scales nearly linearly (or sub-linearly) and LMI scales in a 

quadratic manner. A plot of computing time versus the data-size is shown in Supplementary 

Material Figure S5.   

Table S10. Processing time vs. methods. 

Method 
Processing time(sec) 

(m = 100, n = 25) (m = 100, n = 50)  (m = 400, n = 100) 

PCR 4.67 E-2 4.34 E-1 4.38 E-1 
LASSO 5.86 E 0 1.25 E+1 4.36 E+1 

LMI 1.97 E+1 9.56 E+1 7.63 E+2 
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3.6 Comparison on Toll and Non-Toll data sets 

In order to demonstrate a practical comparison between the methods given in this paper, we have 

applied the methods on experimental data sets in two different ways. In the PP/cytokine 

experiment data (11), both single- and double-ligands (stimuli) were applied. One of the ligands 

is lipopolysaccharide (LPS). LPS activates Toll-like receptors (TLR) and hence it is also referred 

to as a TLR-ligand. Since LPS results in very large response, it can mask the effect of other 

ligands. Hence, in our application, we tested the methods in two ways. In one case, we included 

data from all ligands (Toll data). In the second case, all the experiments with LPS as one of the 

ligands were excluded (non-Toll data). Both sets have the same number of inputs (22) and 

outputs (7).  

Supplementary Material Table S11 shows the true and identified predictors from each method 

for Toll data (all ligands included). As an example, for the output MIP-

some or all of the true predictors. Least squares with only significant predictors was able to 

identify one, PCR three, LASSO three, and LMI two predictors. Although PCR and LASSO 

have identified the same set of true predictors (hence same value of sensitivity of 3/4), there is 

still difference between the numbers of predictors identified as significant in each of these two 

methods. PCR has identified 11 significant predictors and LASSO has identified 6 among which 

only three of them are true predictors (TP).  

 

Supplementary Material Table S12 shows the identified predictors from each method for 

PP/Cytokine dataset when the data from TLR ligand are removed i.e. experiments in which LPS 

is a ligand are not included. In order to compare the results of each method to others, predictors 
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identified by PCR are considered as the base for the comparison. For instance, consider the 

output TNFa. The significant identified predictors for PCR are cAMP, p38, p40Phox, and RSK 

out of 22 predictors. The method of least squares has identified 3 predictors where 2 of them are 

in common with the outcome of PCR. LASSO and LMI have identified 9 and 4 significant 

predictors with 3 and 2 predictors being common with that from PCR, respectively.  
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Table S11. Identified predictors by PCR, LASSO, and LMI versus true predictors for Toll data. 

Output G-CSF IL-  IL-6 IL-10 MIP-  RANTES  
TRUE JNK lg JNK lg JNK lg cAMP cAMP JNK lg cAMP 

 p38 NFkB p65 NFkB p65 JNK sh JNK lg NFkB p65 JNK lg 
 NFkB p65  cAMP NFkB p65 p38  p38 
    STAT3 STAT1   NFkB p65 

LS Sig NFkB p65 JNK sh NFkB p65 Ezr/Rdx cAMP NFkB p65 p38 
 PKCd MSN  NFkB p65 PKCmu2  NFkB p65 
 PKCmu2 NFkB p65  STAT3   PKCmu2 
  PKCmu2     STAT3 

PCR AKT cAMP cAMP cAMP cAMP ERK1 cAMP 
 ERK1 ERK1 JNK lg JNK lg ERK1 ERK2 ERK1 
 ERK2 ERK2 JNK sh JNK sh ERK2 JNK lg ERK2 
 JNK lg JNK lg p38 p38 JNK lg JNK sh JNK lg 
 JNK sh JNK sh NFkB p65 NFkB p65 JNK sh p38 JNK sh 
 p38 p38  PKCmu2 p38 NFkB p65 p38 
 NFkB p65 NFkB p65  STAT3 NFkB p65 PKCd NFkB p65 
 PKCd PKCd   PKCd PKCmu2 PKCd 
 PKCmu2 PKCmu2   PKCmu2 RSK PKCmu2 
 RSK RSK   RSK  RSK 
 STAT3 STAT1    STAT5  STAT3 
  STAT5     STAT5 

LASSO ERK2 JNK lg JNK lg cAMP cAMP ERK1 cAMP 
 JNK lg JNK sh NFkB p65 Ezr/Rdx ERK1 JNK lg ERK1 
 JNK sh p38  JNK sh JNK lg NFkB p65 JNK lg 
 p38 NFkB p65  NFkB p65 p38 STAT1  p38 
 NFkB p65   PKCd NFkB p65  NFkB p65 
 PKCd STAT5  STAT1  STAT5  PKCd 
    STAT3    

LMI AKT ERK1 ERK1 Ezr/Rdx cAMP AKT cAMP 
 ERK2 ERK2 ERK2 JNK sh ERK1 ERK1 ERK1 
 Ezr/Rdx Ezr/Rdx Ezr/Rdx MSN ERK2 ERK2 Ezr/Rdx 
  GSK3  JNK sh NFkB p65 Ezr/Rdx Ezr/Rdx GSK3  
 GSK3  JNK lg MSN PKCmu2 GSK3  JNK lg GSK3  
 JNK lg JNK sh NFkB p65 STAT1  GSK3  MSN JNK sh 
 JNK sh MSN PKCmu2 STAT1  JNK sh NFkB p65 p38 
 MSN p40Phox STAT5 STAT3 MSN PKCd NFkB p65 
 p38 NFkB p65   p38  PKCmu2 
 NFkB p65 PKCmu2   NFkB p65  RSK 
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 PKCd RSK   PKCmu2  STAT1  
 PKCmu2 SMAD2   RSK  STAT1  
     STAT1   STAT3 
  STAT3   STAT1    
  STAT5   STAT3   
     STAT5   

 

 

Table S12. Identified predictors by PCR, LASSO, and LMI versus true predictors for Non-Toll 

data. 

Output G-CSF IL-  IL-6 IL-10 MIP-  RANTES TNF  
LS Sig p38  STAT1  STAT1  cAMP STAT1  cAMP 

   STAT1  STAT1    p38 
    STAT3   STAT3 

PCR p38  cAMP cAMP cAMP STAT1  cAMP 
    AKT JNK lg STAT1  p38 
    ERK1 p38  p40Phox 
    ERK2 STAT1   RSK 
    RSK STAT1    
    STAT3 STAT3   

LASSO p38 cAMP cAMP cAMP cAMP GSK3  cAMP 
  STAT1  Rps6 ERK1 AKT JNK sh AKT 
   STAT5 ERK2 ERK1 STAT1  Ezr/Rdx 
    Ezr/Rdx ERK2  p38 
    STAT1  GSK3   p40Phox 
    STAT3 JNK lg  PKCmu2 
    STAT5 JNK sh  SMAD2 
     p38  STAT1  
     NFkB p65  STAT3 
     STAT3   
     STAT5   
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LMI ERK2 ERK1 ERK1 ERK1 cAMP ERK1 cAMP 
 MSN ERK2 ERK2 ERK2 ERK1 ERK2 p38 
 p38 Ezr/Rdx Ezr/Rdx  ERK2 GSK3  STAT1  
 STAT1  GSK3  MSN STAT1  JNK lg p38 STAT3 
 STAT5 MSN STAT1  STAT1  NFkB p65 STAT1   
  STAT1  STAT1  STAT3 STAT1  STAT1   
  STAT3   STAT1    
     STAT3   
     STAT5   

 

 

3.7 Overall comparison of the methods 

investigator can use this summary in selecting an appropriate method, or designing a new 

method, for network-reconstruction based on the properties of the data. 

 

RMSE for different noise levels: To score the methods according to RMSE, the average RMSE 

across the four noise levels (5, 10, 20 and 40%) is computed for a chosen method (PCR, LASSO 

or LMI) and the LS method. Then, their ratio (e.g. average RMSE for LS/ average RMSE for 

PCR) is taken as the score of the method (i.e. LS gets a score of 1 corresponding to the 

best/smallest RMSE). With respect to this basis, LMI gets the best score (0.94) and LASSO gets 

the worst score (0.56).  With increasing noise level, accuracy and G of LMI and LASSO 

decreases more rapidly as compared to that for the PCR method (Figure 4(C)). 

 

Comparison with respect to the distribution of estimated coefficients: For a better method, 

standard deviation and the difference of the mean value from the true value of the coefficient 
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should be smaller. Hence the score as defined in Table 4 is used. Data from Supplementary 

Material Table S5 is used to compute the scores. LMI method performs best according to this 

comparison too. One can say the numerical values of the coefficients obtained from LMI method 

are least affected due to the presence of noise as compared to other methods.  

 

Comparison on the basis of accuracy and related metrics: While at the highest noise level all 

the methods have similar accuracy, LMI receives the best score for accuracy (average for 5, 10, 

20, and 40 percent noise level) followed by LASSO. This comparison encourages the application 

of LMI in presence of medium level of noise. LMI performs better well (similar to PCR) for 

different types of noises as well.  

 

Comparison with respect to fractional error in the coefficients estimates: Fractional error in 

estimating the coefficients is the average deviation of each coefficient value from the 

corresponding true value. The corresponding score is such that smaller fractional deviation 

results in a higher score. PCR receives the highest score for different levels and types of noise 

followed by LMI.  

 

Comparison with respect to performance on datasets of different sizes and dimensional 

ratios: The effect of dimension of data has been considered in two different aspects: The size of 

dataset, and the dimensional ratio of dataset. It is shown that with increase in the size of the 

dataset the fractional error in estimating the coefficients decreases. This is not surprising because 

if the structure of the model (e.g. linear mapping) is correctly chosen then, generally, more data 

provides a better estimate of the model parameters. The method of PCR has the highest average 
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score for different dimensional ratios and different sizes followed by the method of LMI. 

However, in terms of detecting the true inputs, LASSO and LMI, in that order, are better than 

PCR. Overall, this comparison suggests the use of LMI when the size of data is not very large.  

 

Comparison with respect to the amount of missing data:  For the case of missing data in 

which different fractions of dataset are not available for reconstruction of the network, 

simulations are run on two different datasets: experimental (PP/cytokine) dataset and synthetic 

dataset with 20% noise. The performance of each method has been evaluated with respect to 

RMSE on the validation set (20% of the data assumed to be available; 80% of the data assumed 

to be available is used for training the model). A performance score is calculated as described in 

Table 4 and assigned to each method. Based on scores assigned to the methods, LMI is assessed 

as the best method with respect to smallest validation RMSE, and sensitivity to different 

fractions of missing data, overall. 
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Table S13..Fractional error in estimating the coefficient versus fraction of collinearity and noise 
level for different methods. 

PCR 
Noise/Collinearity 5% 10% 20% 40% 

0 collinearity 0.08 0.10 0.14 0.21 
0.1 collinearity 0.17 0.23 0.24 0.33 
0.2 collinearity 0.41 0.54 0.53 0.50 
0.3 collinearity 0.57 0.77 0.75 0.68 

LASSO 
Noise/collinearity 5% 10% 20% 40% 

0 collinearity 0.48 0.46 0.45 0.44 
0.1 collinearity 0.42 0.34 0.47 1.07 
0.2 collinearity 0.45 0.54 1.11 2.32 
0.3 collinearity 0.45 0.69 1.41 3.04 

LMI 
Noise/collinearity 5% 10% 20% 40% 

0 collinearity 0.09 0.12 0.20 0.34 
0.1 collinearity 0.17 0.45 0.97 1.77 
0.2 collinearity 0.40 1.00 1.84 2.99 
0.3 collinearity 0.62 1.22 2.13 4.10 
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Table S14. Accuracy versus fraction of collinearity and noise level for different methods. 

PCR 
Noise/Collinearity 5% 10% 20% 40% 

0 collinearity 0.84 0.83 0.81 0.74 
0.1 collinearity 0.77 0.78 0.77 0.75 
0.2 collinearity 0.68 0.71 0.71 0.67 
0.3 collinearity 0.63 0.65 0.67 0.67 

LASSO 
Noise/Collinearity 5% 10% 20% 40% 

0 collinearity 0.88 0.88 0.87 0.79 
0.1 collinearity 0.85 0.83 0.72 0.63 
0.2 collinearity 0.76 0.67 0.63 0.57 
0.3 collinearity 0.71 0.62 0.60 0.58 

LMI 
Noise/collinearity 5% 10% 20% 40% 

0 collinearity 0.97 0.97 0.91 0.77 
0.1 collinearity 0.93 0.79 0.68 0.61 
0.2 collinearity 0.84 0.64 0.59 0.57 
0.3 collinearity 0.74 0.62 0.60 0.57 
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Table S15. Geometric mean of sensitivity and specificity versus fraction of collinearity and 
noise level for different methods.  

PCR 
Noise/Collinearity 5% 10% 20% 40% 

0 collinearity 0.82 0.83 0.82 0.75 
0.1 collinearity 0.67 0.73 0.76 0.76 
0.2 collinearity 0.54 0.62 0.67 0.68 
0.3 collinearity 0.41 0.50 0.60 0.66 

LASSO 
Noise/collinearity 5% 10% 20% 40% 

0 collinearity 0.89 0.89 0.88 0.79 
0.1 collinearity 0.85 0.78 0.56 0.31 
0.2 collinearity 0.73 0.50 0.37 0.25 
0.3 collinearity 0.66 0.45 0.38 0.34 

LMI 
Noise/collinearity 5% 10% 20% 40% 

0 collinearity 0.97 0.97 0.91 0.72 
0.1 collinearity 0.93 0.76 0.61 0.49 
0.2 collinearity 0.83 0.58 0.51 0.47 
0.3 collinearity 0.71 0.54 0.50 0.49 
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Table S16. Sensitivity versus fraction of collinearity and noise level for different methods.  

PCR 
Noise/Collinearity 5% 10% 20% 40% 

0 collinearity 0.88 0.85 0.76 0.62 
0.1 collinearity 0.94 0.89 0.81 0.66 
0.2 collinearity 0.92 0.89 0.81 0.62 
0.3 collinearity 0.93 0.90 0.82 0.68 

LASSO 
Noise/collinearity 5% 10% 20% 40% 

0 collinearity 0.81 0.82 0.82 0.81 
0.1 collinearity 0.84 0.90 0.92 0.95 
0.2 collinearity 0.83 0.90 0.92 0.89 
0.3 collinearity 0.84 0.88 0.89 0.89 

LMI 
Noise/collinearity 5% 10% 20% 40% 

0 collinearity 0.94 0.94 0.92 0.88 
0.1 collinearity 0.92 0.86 0.82 0.79 
0.2 collinearity 0.86 0.77 0.73 0.73 
0.3 collinearity 0.82 0.77 0.78 0.73 
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Table S17. Specificity versus fraction of collinearity and noise level for different methods.  

PCR 
Noise/Collinearity 5% 10% 20% 40% 

0 collinearity 0.76 0.81 0.88 0.92 
0.1 collinearity 0.51 0.63 0.73 0.87 
0.2 collinearity 0.34 0.45 0.57 0.75 
0.3 collinearity 0.21 0.31 0.46 0.65 

LASSO 
Noise/collinearity 5% 10% 20% 40% 

0 collinearity 0.98 0.98 0.95 0.77 
0.1 collinearity 0.87 0.72 0.43 0.17 
0.2 collinearity 0.66 0.33 0.19 0.11 
0.3 collinearity 0.54 0.26 0.19 0.15 

LMI 
Noise/collinearity 5% 10% 20% 40% 

0 collinearity 1.00 1.00 0.90 0.60 
0.1 collinearity 0.94 0.69 0.48 0.33 
0.2 collinearity 0.80 0.46 0.39 0.33 
0.3 collinearity 0.63 0.41 0.35 0.35 
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Table S18. Average number of true positives, true negatives, false positives, and false negatives 
versus noise level for different methods (total number of inputs = 25). 

Method 5 10 20 40 
PCR         
FN 1 1.5 2.6 4.7 
FP 8.2 7.2 5.7 3.6 
TP 13.6 13.1 12 9.9 
TN 2.2 3.2 4.7 6.8 

LASSO      
FN 2.4 1.8 1.6 1.6 
FP 4.8 7.7 8.5 8.8 
TP 12.2 12.8 13 13 
TN 5.6 2.7 1.9 1.6 

LMI         
FN 2.6 3.3 3.3 4 
FP 3.8 6.1 6.7 6.8 
TP 12 11.3 11.3 10.6 
TN 6.6 4.3 3.7 3.6 
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Nomenclature 

B, b  Matrix or vector, respectively, of model coefficients  

C  Covariance matrix 

FP, FN  False positive and false negative, respectively 

G  Geometrical mean of sensitivity and specificity 

RMSE  Root-mean squared error 

T  Matrix of latent variables 

TP, TN True positive and true negative, respectively 

V  Set of eigen vectors 

X   Matrix of input data 

Y,y   Matrix or vector, respectively, of output data 

e  L2 or L  norm 

m  Number of rows in X, Y and y 
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n  Number of columns in X 

p  Number of columns in Y 

std  Standard deviation 

t  Shrinkage coefficient, t-distribution 

tinv  Inverse of cumulative t-distribution 

 

Subscripts 

frac   

i, j, k  Generic indices 

LS  Values derived from the method of least squares 

LS_sig  Least squares with significant predictors only 

p  Values derived from prediction 

 

Greek letters 

,    Set of eigen values and an eigen value, respectively 

  Significance level 

  Residual vector 
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v  Degree of freedom 

   Standard deviation of the model parameters 
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Figures: 

 

 

Figure S1. Supplied (noisy) response vs. response predicted with the LMI method for the 

synthetic noisy data. The dashed and dotted lines represent the  and 2 bands, respectively. 
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Figure S2. Validation error versus selection threshold t for LASSO. Vertical dashed line 

indicates the optimal tuning parameter (the smallest value of the tuning parameter that is within 

one standard deviation from the lowest RMSE on curve). 
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Figure S3. RMSE versus percentage of missing data for different methods on PP/Cytokine data. 
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Figure S4. RMSE versus percentage of missing data for different methods on synthetic date with 

20% noise level. 
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Figure S5. Scaling of computing time with the data-size for different methods. 


