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mal strains, is extended to encompass the regime of �nite deforma-

tions. The framework of nonlinear continuum mechanics with loga-

rithmic strain and its conjugate stress tensor is used to cast the formu-

lation. A connection between deformation and 
ow theory of metal

plasticity is discussed. Extension of theory to pressure-dependent

plasticity is constructed, with an application to geomechanics. Deriva-

tions based on strain and stress decompositions are both given. Dual-

ity in constitutive structures of rate-type deformation and 
ow theory

for �ssured rocks is demonstrated.
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OSVRT NA DEFORMACIONU TEORIJU PLASTI�CNOSTI

I z v o d

U radu je data formulacija deformacione teorije plasti�cnosti koja obuh-

vata oblast kona�cnih deformacija. Metodi nelinearne mehanika kon-

tinuuma, logaritamska mjera deformacije i njen konjugovani tenzor

napona su adekvatno upotrebljeni u formulaciji teorije. Veza izmedju

deformacione i inkrementalne teorije plasti�cnosti je diskutovana na

primjeru polikristalnih metala. Teorija je zatim pro�sirena na oblast

plasti�cnosti koja zavisi od pritiska, sa primjenom u geomehanici. For-

mulacije na bazi dekompozicija tenzora deformacije i napona su posebno

date. Dualnost konstitutivnih struktura deformacione i inkrementalne

teorije je demonstrirana na modelu stijenskih masa.

INTRODUCTION

Commonly accepted theory used in most analytical and computa-

tional studies of plastic deformation of metals and geomaterials is

the so-called 
ow theory of plasticity (e.g., Hill, 1950,1978; Lubliner,

1992; Havner, 1992). Plastic deformation is a history dependent phe-

nomenon, characterized by nonlinearity and irreversibility of under-

lining physical processes (Bell, 1968). Consequently, in 
ow theory of

plasticity the rate of strain is expressed in terms of the rate of stress

and the variables describing the current state of material. The over-

all response is determined incrementally by integrating the rate-type

constitutive and �eld equations along given path of loading or defor-

mation (Lubarda and Lee, 1981; Lubarda and Shih, 1994; Lubarda

and Krajcinovic, 1995).

There has been an early theory of plasticity suggested by Hencky

(1924) and Ilyushin (1947,1963), known as deformation theory of plas-

ticity, in which total strain is given as a function of total stress. Such

constitutive structure, typical for nonlinear elastic deformation, is in
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general inappropriate for plastic deformation, since strain there de-

pends on both stress and stress history, and is a functional rather

than a function of stress. However, deformation theory of plasticity

found its application in problems of proportional or simple loading,

in which all stress components increase proportionally, or nearly so,

without elastic unloading ever occurring (Budiansky, 1959; Kachanov,

1971). The theory was particularly successful in bifurcation studies

and determination of necking and buckling loads (Hutchinson, 1974).

Deformation theory of plasticity was originally proposed for non-

linear but in�nitesimally small plastic deformation. An extension to

�nite strain range was discussed by St�oren and Rice (1975). The

purpose of this paper is to provide a formulation of the rate-type

deformation theory for pressure-dependent and pressure-independent

plasticity at arbitrary strains. After needed kinematic and kinetic

background is introduced, the logarithmic strain and its conjugate

stress are conveniently utilized to cast the formulation. Relationship

between the rate-type deformation and 
ow theory of metal plasticity

is discussed. A pressure-dependent deformation theory of plasticity

is constructed and compared with a non-associative 
ow theory of

plasticity corresponding to the Drucker-Prager yield criterion. Devel-

opments based on strain and stress decompositions are both given.

Duality in the constitutive structures of deformation and 
ow theory

for �ssured rocks is demonstrated.

1 KINEMATIC PRELIMINARIES

The locations of material points of a three-dimensional body in its

undeformed con�guration are speci�ed by vectors X. Their loca-

tions in deformed con�guration at time t are speci�ed by x, such

that x = x(X; t) is one-to-one deformation mapping, assumed twice

continuously di�erentiable. The components of X and x are mate-

rial and spatial coordinates of the particle. An in�nitesimal material
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element dX in the undeformed con�guration becomes

dx = F � dX; F =
@x

@X
(1.1)

in the deformed con�guration at time t. Physically possible deforma-

tion mappings have positive detF, hence F is an invertible tensor; dX

can be recovered from dx by inverse operation dX = F�1 � dx.

By polar decomposition theorem, F is decomposed into the prod-

uct of a proper orthogonal tensor and a positive-de�nite symmetric

tensor, such that (Truesdell and Noll, 1965)

F = R �U = V �R: (1.2)

Here, U is the right stretch tensor, V is the left stretch tensor, and

R is the rotation tensor. Evidently, V = R � U � RT , so that U

and V share the same eigenvalues (principal stretches �i), while their

eigenvectors are related by ni = R �Ni. The right and left Cauchy-

Green deformation tensors are

C = FT
� F = U2; B = F � FT = V2: (1.3)

If there are three distinct principal stretches, C and B have their

spectral representations (Marsden and Hughes, 1983)

C =

3X
i=1

�2i Ni 
Ni; B =

3X
i=1

�2i ni 
 ni: (1.4)

2 STRAIN TENSORS

Various tensor measures of strain can be introduced. A fairly general

de�nition of material strain measures is (Hill, 1978)

E(n) =
1

2n

�
U

2n
� I

0
�
=

3X
i=1

1

2n

�
�2ni � 1

�
Ni 
Ni; (2.1)

where 2n is a positive or negative integer, and �i and Ni are the

principal values and directions of U. The unit tensor in the initial
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con�guration is I0. For n = 1, Eq. (2.1) gives the Lagrangian or

Green strain E(1) = (U2 � I0)=2, for n = �1 the Almansi strain

E(�1) = (I0 � U�2)=2, and for n = 1=2 the Biot strain E(1=2) =

(U� I0). The logarithmic or Hencky strain is

E(0) = lnU =
3X

i=1

ln�iNi 
Ni: (2.2)

A family of spatial strain measures, corresponding to material

strain measures of Eqs. (2.1) and (2.2), are

EEE(n) =
1

2n

�
V

2n
� I
�
=

3X
i=1

1

2n

�
�2ni � 1

�
ni 
 ni; (2.3)

EEE(0) = lnV =

3X
i=1

ln�i ni 
 ni: (2.4)

The unit tensor in the deformed con�guration is I, and ni are the

principal directions ofV. For example, EEE(1) = (V2�I)=2, and EEE (�1) =

(I�V�2)=2, the latter being known as the Eulerian strain tensor.

Since U2n = R
T � V2n � R, and ni = R � Ni, the material and

spatial strain measures are related by

E(n) = R
T
� EEE(n) �R; E(0) = R

T
� EEE(0) �R; (2.5)

i.e., the former are induced from the latter by the rotation R.

Consider a material line element dx in the deformed con�guration

at time t. If the velocity �eld is v = v(x; t), the velocities of the end

points of dx di�er by

dv = L � dx; _F � F�1: (2.6)

The tensor L is called the velocity gradient. Its symmetric and an-

tisymmetric parts are the rate of deformation tensor and the spin

tensor

D =
1

2

�
L+ LT

�
; W =

1

2

�
L� L

T
�
: (2.7)
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3 CONJUGATE STRESS TENSORS

For any material strain E(n) of Eq. (2.1), its work conjugate stress

T(n) is de�ned such that the stress power per unit initial volume is

T(n) : _E(n) = � : D; (3.1)

where � = (detF)� is the Kirchho� stress. The Cauchy stress is

denoted by �. For n = 1, Eq. (3.1) gives

T(1) = F
�1
� � � F

�T = U�1
� �̂ �U

�1: (3.2)

The stress �̂ = RT ���R is induced from � by the rotationR. Similarly,

T(�1) = F
T
� � � F = U � �̂ �U: (3.3)

More involved is an expression for the stress conjugate to logarithmic

strain, although the approximation

T(0) = �̂+O

�
E

2
(n) � �̂

�
(3.4)

may be acceptable at moderate strains. If deformation is such that

principal directions ofV and � are parallel, the matrices E(n) and T(n)

commute, and in that case T(0) = �̂ exactly (Hill, 1978). If principal

directions of U remain �xed during deformation,

_E(0) = _U �U
�1 = D̂; T(0) = �̂: (3.5)

The spatial strain tensors EEE(n) in general do not have their conju-

gate stress tensors TTT (n) such that T(n) : _E(n) = TTT (n) : _EEE(n). However,

the spatial stress tensors conjugate to strain tensors EEE(n) can be in-

troduced by requiring that

T(n) : _E(n) = TTT (n) :
�

EEE(n); (3.6)

where objective, corotational rate of strain EEE (n) is de�ned by

�

EEE(n) = _EEE(n) �! � EEE(n) + EEE(n) � !; ! = _R �R
�1: (3.7)
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In view of the relationship
�

EEE(n) = R � _E(n) �R
T , it follows that

TTT (n) = R �T(n) �R
T : (3.8)

This is the conjugate stress to spatial strains EEE(n) in the sense of Eq.

(3.6).

Note thatR���RT is not the work conjugate to any strain measure,

since the material stress tensor T(n) in Eq. (3.8) cannot be equal to

spatial stress tensor �. Likewise, although �̂ : D̂ = � : D, the stress

tensor �̂ = RT � � �R is not the work conjugate to any strain measure,

because D̂ = R
T �D � R is not the rate of any strain. Of course, �

itself is not the work conjugate to any strain, because D is not the

rate of any strain, either.

4 DEFORMATION THEORY OF PLASTIC-

ITY

Simple plasticity theory has been suggested for proportional loading

and small deformation by Hencky(1924) and Ilyushin (1947,1963).

A large deformation version of this theory is here presented. It is

convenient to cast the formulation by using the logarithmic strain

E(0) = lnU and its conjugate stress T(0). Assume that the loading is

such that all stress components increase proportionally, i.e.

T(0) = c(t)T�

(0); (4.1)

where T�

(0) is the stress tensor at instant t
�, and c(t) is monotonically

increasing function of t, with c(t�) = 1. Evidently, principal directions

of T(0) in Eq. (4.1) remain �xed during the deformation process.

Since stress proportionally increases, with no elastic unloading

taking place, it seems reasonable to assume that elastoplastic response

can be described macroscopically by the constitutive structure of non-

linear elasticity, in which total strain is a function of total stress. Thus,

decompose the total strain into its elastic and plastic parts,

E(0) = E
e
(0) +E

p
(0); (4.2)
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and assume that

E
e
(0) =

@�(0)

@T(0)
; (4.3)

E
p
(0) = '(0)

@f(0)

@T(0)
; (4.4)

where �(0) is a complementary elastic strain energy per unit unde-

formed volume, a Legendre transform of elastic strain energy  (0),

�(0)
�
T(0)

�
= T(0) : E(0) �  (0)

�
E(0)

�
: (4.5)

Isotropic elastic behavior will be assumed, so that �(0) = �(0)
�
T(0)

�
is an isotropic function of T(0). For plastically isotropic materials, i.e.

isotropic hardening, a function f(0) = f(0)
�
T(0)

�
is also an isotropic

function of T(0). The scalar '(0) is an appropriate scalar function to

be determined in accord with experimental data. Clearly, principal

directions of both elastic and plastic components of strain are parallel

to those of T(0), as are the principal directions of total strain E(0).

Consequently, E(0) and U have their principal directions �xed during

the deformation process, the matrix _U commutes with U, and by Eq.

(3.5)

_E(0) = _U �U
�1; T(0) = R

T
� � �R: (4.6)

The requirement for �xed principal directions of U severely restricts

the class of admissible deformations, precluding, for example, the case

of simple shear. This is not surprising because the premise of defor-

mation theory { proportional stressing imposes at the outset strong

restrictions on the analysis.

Introducing the spatial strain

EEE(0) = R
T
�E(0) �R; (4.7)

Eqs. (4.2)-(4.4) can be rewritten as

EEE(0) = EEE
e
(0) + EEE

p
(0); (4.8)
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EEE
e
(0) =

@�(0)

@�
; (4.9)

EEE
p
(0) = '(0)

@f(0)

@�
: (4.10)

Although deformation theory of plasticity is total strain theory,

the rate quantities are now introduced for later comparison with the


ow theory of plasticity, and for application of the resulting rate-

type constitutive equations approximately beyond proportional load-

ing. This is also needed whenever the boundary value problem of

�nite deformation is being solved in an incremental manner. Since
_U �U�1 is symmetric, we have

D = R � _E(0) �R
T ; W = _R �R

�1; (4.11)

and

_T(0) = R
T
�
�

� �R;
�

EEE(0) = D: (4.12)

By di�erentiating (4.2)-(4.4), or by applying the Jaumann derivative

to (4.8)-(4.10), there follows

D = De +Dp; (4.13)

D
e =M(0) :

�

�; M(0) =
@2�(0)

@�
 @�
; (4.14)

D
p = _'(0)

@f(0)

@�
+ '(0)

@2f(0)

@�
 @�
:
�

�: (4.15)

Assume quadratic representation of the complementary energy

�(0) =
1

2
M(0) :: (�
 �); M(0) =

1

2�

�
III �

�

2�+ 3�
I
 I

�
; (4.16)
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where � and � are the Lam�e elastic constants. Furthermore, let the

function f(0) be de�ned by the second invariant of deviatoric part of

the Kirchho� stress,

f(0) =
1

2
�
0 : � 0: (4.17)

Substituting the last two expressions in Eq. (4.15) gives

D
p = _'(0) �

0 + '(0)
�

�
0: (4.18)

The deviatoric and spherical parts of the total rate of deformation

tensor are accordingly

D
0 = _'(0) �

0 +

�
1

2�
+ '(0)

�
�

�
0; (4.19)

trD =
1

3�
tr

�

�; (4.20)

where � = �+ (2=3)� is the elastic bulk modulus.

Suppose that a nonlinear relationship � = � (
) between the Kirch-

ho� stress and the logarithmic strain is available from elastoplastic

pure shear test. Let the secant and tangent moduli be de�ned by

hs =
�



; ht =

d�

d

; (4.21)

and let

� =

�
1

2
�
0 : � 0

�1=2

=

�
1

2
T

0

(0) : T
0

(0)

�1=2

; (4.22)


 =
�
2EEE 0(0) : EEE

0

(0)

�1=2
=
�
2E0

(0) : E
0

(0)

�1=2
: (4.23)

Since from Eqs. (4.9) and (4.10)

EEE
0

(0) =

�
1

2�
+ '(0)

�
�
0; (4.24)
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substitution into Eq. (4.23) provides an expression for

'(0) =
1

2hs
�

1

2�
: (4.25)

In order to derive an expression for the rate _'(0), di�erentiate Eqs.

(4.22) and (4.23) to obtain

� _� =
1

2
�
0 :

�

�; 
 _
 = 2EEE 0(0) : D: (4.26)

In view of Eqs. (4.21), (4.24) and (4.25), this gives

1

2
�
0 :

�

� = 2hsht EEE
0

(0) : D
0 = ht �

0 : D0: (4.27)

When Eq. (4.19) is incorporated into Eq. (4.27), the rate is found to

be

_'(0) =
1

2

�
1

ht
�

1

hs

�
�
0 :

�

�

�
0 : � 0

: (4.28)

Taking Eq. (4.28) into Eq. (4.19), the deviatoric part of the total rate

of deformation is

D
0 =

1

2hs

"
�

�
0 +

�
hs
ht
� 1

�
(� 0 
 �

0) :
�

�

�
0 : � 0

#
: (4.29)

Eq. (4.29) can be inverted to give

�

�
0 = 2hs

�
D

0
�

�
1�

ht
hs

�
(� 0 
 �

0) : D

�
0 : � 0

�
: (4.30)

During initial, purely elastic stages of deformation, ht = hs = �. The

onset of plasticity, beyond which Eqs. (4.29) and (4.30) apply, occurs

when � , de�ned by the second invariant of the deviatoric stress in Eq.

(4.22), reaches the initial yield stress in shear. The resulting theory

is referred to as the J2 deformation theory of plasticity.
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5 RELATIONSHIP BETWEENDEFORMA-

TION AND FLOW THEORY OF PLAS-

TICITY

For proportional loading de�ned by Eq. (4.1) the stress rates are

_T(0) =
_c

c
T(0);

�

� =
_c

c
�: (5.1)

Consequently, from Eq. (4.28) the plastic part of the rate of deforma-

tion tensor is

_'(0) =
1

2

�
1

ht
�

1

hs

�
_c

c
; (5.2)

while from Eq. (4.29)

D
p = D0

�D
e0 =

1

2

�
1

ht
�

1

�

�
_c

c
�
0: (5.3)

On the other hand, in the case of 
ow theory of plasticity,

_E(0) = _Ee
(0) +

_Ep
(0); (5.4)

_Ee
(0) =M(0) : _T(0); _Ep

(0) = _
0T
0

(0): (5.5)

The yield surface is de�ned by

1

2
T

0

(0) : T
0

(0) � k2(#) = 0; # =

Z t

0

�
2 _Ep

(0) :
_Ep
(0)

�1=2
dt; (5.6)

and the consistency condition gives (Lubarda, 1991,1994)

_
(0) =
1

4k2hpt
(� 0 :

�

�): (5.7)

Here, hpt = dk=d# designates the plastic tangent modulus. Since

T(0) = R
T � � �R and _E(0) = R

T �D �R, the plastic part of the rate

of deformation becomes

D
p =

1

4k2hpt

�
�
0

 �

0
�
:
�

�: (5.8)
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In view of Eq. (5.1), this simpli�es to

D
p = _
(0) �

0 =
1

2hpt

_c

c
�
0: (5.9)

Constitutive structures (5.3) and (5.9) are in accord since

1

hpt
=

1

ht
�

1

�
: (5.10)

The last expression holds because in shear test k = � , # = 
p, and


p = 
 � 
e = 
 �
1

�
�;

d
p

d�
=

d


d�
�

1

�
: (5.11)

Also note that by (4.25), (5.2) and (5.9) there is a connection

_
(0) � _'(0) = '(0)
_c

c
: (5.12)

5.1 Application of Deformation Theory Beyond Pro-

portional Loading

If plastic secant and tangent moduli are used, related to secant and

tangent moduli with respect to total strain by

1

ht
�

1

hpt
=

1

hs
�

1

hps
=

1

�
; (5.13)

the plastic part of the rate of deformation can be rewritten from Eq.

(4.29) as

D
p =

1

2hps

�

�
0 +

�
1

2hpt
�

1

2hps

�
(� 0 
 �

0) :
�

�

�
0 : � 0

: (5.14)

Deformation theory agrees with 
ow theory of plasticity only under

proportional loading, since then speci�cation of the �nal state of stress

also speci�es the stress history. For general (non-proportional) load-

ing, more accurate and physically appropriate is the 
ow theory of

plasticity, particularly with an accurate modeling of the yield surface
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and hardening behavior. Budiansky (1959), however, indicated that

deformation theory can be successfully used for certain nearly pro-

portional loading paths, as well. The rate
�

�
0 in Eq. (5.14) does not

then have to be codirectional with �
0. The �rst and third term (both

proportional to 1=2hps ) in Eq. (5.14) do not cancel each other in this

case (as they do for proportional loading) , and the plastic part of the

rate of deformation depends on both components of the stress rate
�

�
0, one in the direction of � 0 and the other normal to it. In contrast,

according to 
ow theory with the von Mises smooth yield surface, the

component of the stress rate
�

�
0 normal to � 0 does not a�ect the plastic

part of the rate of deformation. Physical theories of plasticity (e.g.,

Hill, 1967) indicate that yield surface of a polycrystalline aggregate

develops a vertex at its loading stress point, so that in�nitesimal in-

crements of stress in the direction normal to �
0 indeed cause further

plastic 
ow. Since the structure of the deformation theory of plas-

ticity under proportional loading does not use a notion of the yield

surface, Eq. (5.14) can be adopted for an approximate description

of the response in the case when the yield surface develops a vertex.

When Eq. (5.14) is rewritten in the form

D
p =

1

2hps

"
�

�
0
�
(� 0 
 �

0) :
�

�

�
0 : � 0

#
+

1

2hpt

(� 0 
 �
0) :

�

�

�
0 : � 0

; (5.15)

the �rst term on the right-hand side gives the response to component

of the stress increment normal to �
0. The associated plastic modulus

is hps . The plastic modulus associated with component of the stress

increment in the direction of � 0 is hpt . Therefore, for continued plastic


ow with small deviations from proportional loading (so that all yield

segments which intersect at the vertex are active { fully active load-

ing), Eq. (5.15) can be used to approximately account for the e�ects

of the yield vertex. The idea was used by Rudnicki and Rice (1975)

in modeling inelastic behavior of �ssured rocks, as will be discussed

in section 7.1. For the full range of directions of stress increment,

the relationship between the rates of stress and plastic deformation is
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not expected to be necessarily linear, although it should be homoge-

neous in these rates in the absence of time-dependent (creep) e�ects.

A corner theory that predicts continuous variation of the sti�ness

and allows increasingly non-proportional increments of stress is for-

mulated by Chisto�ersen and Hutchinson (1979). When applied to

the analysis of necking in thin sheets under biaxial stretching, the

results were in better agreement with experimental observations than

those obtained from the theory with smooth yield characterization.

Similar conclusions were long known in the �eld of elastoplastic buck-

ling. Deformation theory predicts the buckling loads better than the


ow theory with a smooth yield surface (Hutchinson, 1974).

6 PRESSURE-DEPENDENT DEFORMATION

THEORY OF PLASTICITY

To include pressure dependence and allow inelastic volume changes in

deformation theory of plasticity, assume that, in place of Eq. (4.4),

the plastic strain is related to stress by

E
p
(0) = '(0)

"
T

0

(0) +
2

3
�

�
1

2
T

0

(0) : T
0

(0)

�1=2
I
0

#
; (6.1)

where � is a material parameter. It follows that the deviatoric and

spherical parts of the plastic rate of deformation tensor are

D
p 0 = _'(0) �

0 + '(0)
�

�
0; (6.2)

trDp = 2� J
1=2
2

 
_'(0) + '(0)

�
0 :

�

�

2 J2

!
: (6.3)

The invariant J2 = (1=2) � 0 : � 0 is the second invariant of deviatoric

part of the Kirchho� stress.

Suppose that a nonlinear relationship � = � (
p) between the

Kirchho� stress and the plastic part of the logarithmic strain is avail-

able from the elastoplastic shear test (needed data for brittle rocks is



Deformation Theory of Plasticity Revisited 16

commonly deduced from con�ned compression tests; Lubarda, Mas-

tilovic and Knap, 1996a). Let the plastic secant and tangent moduli

be de�ned by

hps =
�


p
; hpt =

d�

d
p
; (6.4)

and let in three-dimensional problems of overall compressive states of

stress

� = J
1=2
2 +

1

3
� tr �; (6.5)


 p =
�
2EEEp(0)

0 : EEEp(0)
0

�1=2
= 2'(0) J

1=2
2 : (6.6)

The friction-type coe�cient is denoted by �. Note that from Eq.

(6.1), EEEp
0

(0) = '(0) �
0. By using the �rst of Eq. (6.4), therefore,

'(0) =
1

2hps

�

J
1=2
2

: (6.7)

In order to derive an expression for the rate _'(0), di�erentiate Eqs.

(6.5) and (6.6) to obtain

_� =
1

2
J
�1=2
2 (� 0 :

�

�) +
1

3
tr

�

�; (6.8)

_

p
= 2

�
_'(0) J

1=2
2 +

1

2
'(0) J

�1=2
2 (� 0 :

�

�)

�
: (6.9)

Combining this with the second of Eq. (6.4) gives

_'(0) =
1

2

 
1

hpt
�

1

hps

�

J
1=2
2

!
�
0 :

�

�

2 J2
+

1

2hpt

1

3
�

tr
�

�

J
1=2
2

: (6.10)

Substituting Eqs. (6.7) and (6.10) into Eqs. (6.2) and (6.3) yields

D
p 0 =

1

2hps

�

J
1=2
2

�

�
0 +

1

2

 
1

hpt
�

1

hps

�

J
1=2
2

!
(� 0 
 �

0) :
�

�

2 J2

+
1

2hpt

1

3
�

tr
�

�

J
1=2
2

�
0;

(6.11)
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trDp =
�

hpt

 
�
0 :

�

�

2 J
1=2
2

+
1

3
� tr

�

�

!
: (6.12)

If � = 0, i.e. � = J
1=2
2 , Eqs. (6.11) and (6.12) reduce to

D
p 0 =

1

2hps

"
�

�
0 +

�
hps
hpt

� 1

�
(� 0 
 �

0) :
�

�

2J2

#
; (6.13)

trDp =
�

2hpt

�
0 :

�

�

J
1=2
2

: (6.14)

6.1 Non-Coaxiality Factor

It is instructive to rewrite Eq. (6.11) in an alternative form as

D
p 0 =

1

2hpt

�
0

J
1=2
2

 
�
0 :

�

�

2 J
1=2
2

+
1

3
� tr

�

�

!
+

1

2hps

�

J
1=2
2

"
�

�
0
�

(� 0 
 �
0) :

�

�

2 J2

#

(6.15)

The �rst part of Dp 0 is coaxial with �
0. The second part is in the

direction of the component of the stress rate
�

�
0 that is normal to �

0.

There is no work done on this part of the plastic strain rate, i.e.

� : Dp 0 =
1

2hpt

�
�
0 :

�

�+
2

3
�J

1=2
2 tr

�

�

�
: (6.16)

Observe in passing that from Eqs. (6.12) and (6.16),

trDp = �
� : Dp 0

J
1=2
2

; (6.17)

which o�ers a simple physical interpretation of the parameter �.

The coe�cient

& =
1

2hps

�

J
1=2
2

=
1

2hps

 
1 +

1

3
�

tr �

J
1=2
2

!
(6.18)

in Eq. (6.15) can be interpreted as the stress-dependent non-coaxiality

factor. Other de�nitions of this factor appeared in the literature, e.g.,

Nemat-Nasser (1983).
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6.2 Inverse Constitutive Relations

The deviatoric and volumetric part of the total rate of deformation

are obtained by adding to (6.11) and (6.12) the elastic contributions,

D
0 =

 
1

2�
+

1

2hps

�

J
1=2
2

!
�

�
0 +

1

2

 
1

hpt
�

1

hps

�

J
1=2
2

!
(� 0 
 �

0) :
�

�

2 J2

+
1

2hpt

1

3
�

tr
�

�

J
1=2
2

�
0;

(6.19)

trD =
1

3

�
1

�
+
��

hpt

�
tr

�

�+
�

2hpt

�
0 :

�

�

J
1=2
2

: (6.20)

The inverse relations are found to be

�

�
0 = 2�

"
1

b
D

0
�
a

bc

(� 0 
 �
0) : D

2J2
�

1

c
�
�

2�

�
0

J
1=2
2

trD

#
; (6.21)

tr
�

� =
3�

c

"�
1 +

hpt
�

�
trD� �

�
0 : D

J
1=2
2

#
: (6.22)

The introduced parameters are

a = 1�
hpt
hps

�

J
1=2
2

�
1 + ��

�

hpt

�
; b = 1 +

�

hps

�

J
1=2
2

; (6.23)

and

c = 1 +
hpt
�

+ ��
�

�
: (6.24)

7 Relationship to Pressure-Dependent Flow

Theory of Plasticity

For geomaterials like soils and rocks, plastic deformation has its ori-

gin in pressure dependent microscopic processes and the yield condi-

tion depends on the hydrostatic component of stress. Drucker and
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Prager (1952) suggested that inelastic deformation commences when

the shear stress on octahedral planes overcomes cohesive and frictional

resistance to sliding. The resulting yield condition is

f = J
1=2
2 +

1

3
� I1 � k = 0; (7.1)

with � as the coe�cient of internal friction, and k as the yield shear

strength. The �rst invariant of the Kirchho� stress is I1 = tr �, and J2
is the second invariant of the deviatoric part of the Kirchho� stress.

Constitutive equations in which plastic part of the rate of deforma-

tion is normal to locally smooth yield surface in stress space are re-

ferred to as associative 
ow rules. A su�cient condition for this con-

stitutive structure is that material obeys the Ilyushin's work postu-

late (Ilyushin, 1961). However, pressure-dependent dilatant materials

with internal frictional e�ects are not well described by associative


ow rules. For example, they largely overestimate inelastic volume

changes in geomaterials, and in certain high-strength steels exhibiting

the strength-di�erential e�ect (by which the yield strength is higher in

compression than in tension). For such materials, plastic part of the

rate of strain is taken to be normal to the plastic potential surface,

which is distinct from the yield surface. The resulting constitutive

structure is known as a non-associative 
ow rule. For geomaterials

whose yield is governed by the Drucker-Prager yield condition, the

plastic potential can be taken as

� = J
1=2
2 +

1

3
� I1 � k = 0: (7.2)

The material parameter � is in general di�erent from � in Eq. (7.1).

Thus,

D
p = _


@�

@�
= _


�
1

2
J
�1=2
2 �

0 +
1

3
� I

�
: (7.3)

The loading index _
 is determined from the consistency condition.

Assuming known the relationship k = k(#) between the shear yield
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stress and the generalized plastic shear strain

# =

Z t

0

�
2Dp 0 : Dp0

�1=2
dt; (7.4)

the condition _f = 0 gives

_
 =
1

hpt

�
1

2
J
�1=2
2 �

0 +
1

3
� I

�
:
�

�: (7.5)

The plastic tangent modulus is hpt = dk=d#. Substituting Eq. (7.5)

into Eq. (7.3) results in

D
p =

1

hpt

��
1

2
J
�1=2
2 �

0 +
1

3
� I

�



�
1

2
J
�1=2
2 �

0 +
1

3
� I

��
:
�

�: (7.6)

A physical interpretation of the parameter � is obtained by observing

from Eq. (7.3) that

�
2Dp 0 : Dp 0

�1=2
=

� : Dp 0

J
1=2
2

= _
; trDp = � _
; (7.7)

i.e.,

� =
trDp

(2Dp 0 : Dp 0)1=2
: (7.8)

Thus, � is the ratio of the volumetric and shear part of the plastic

strain rate, which is often called the dilatancy factor (Rudnicki and

Rice, 1975). Representative values of the friction coe�cient and the

dilatancy factor for �ssured rocks indicate that � = 0:3 � �1 and

� = 0:1 � �0:5 (Lubarda, Mastilovic and Knap, 1996b). Frictional

parameter and inelastic dilatancy of material actually change with

progression of inelastic deformation, but are here treated as constants.

For more elaborate analysis, which accounts for their variation, the

paper by Nemat-Nasser and Shokooh (1980) can be consulted.

The deviatoric and spherical parts of the total rate of deformation

are

D
0 =

�

�
0

2�
+

1

2hpt

�
0

J
1=2
2

 
�
0 :

�

�

2J
1=2
2

+
1

3
� tr

�

�

!
; (7.9)
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trD =
1

3�
tr

�

�+
�

hpt

 
�
0 :

�

�

2 J
1=2
2

+
1

3
� tr

�

�

!
: (7.10)

These can be inverted to give the deviatoric and spherical parts of the

stress rate

�

�
0 = 2�

"
D

0
�

1

c

(� 0 
 �
0) : D

2J2
�
1

c
�
�

2�

�
0

J
1=2
2

trD

#
; (7.11)

tr
�

� =
3�

c

"�
1 +

hpt
�

�
trD� �

�
0 : D

J
1=2
2

#
: (7.12)

The parameter c is de�ned in Eq. (6.24). The last expression is

identical to (6.22), as expected since (6.20) and (7.10) are in concert.

If the friction coe�cient � is equal to zero, Eqs. (7.11) and (7.12)

reduce to

�

�
0 = 2�

�
D

0
�

1

1 + hpt =�

(� 0 
 �
0) : D

2 J2

�
; (7.13)

tr
�

� = 3�

 
trD�

�

1 + hpt =�

�
0 : D

J
1=2
2

!
: (7.14)

With vanishing dilatancy factor (� = 0), these coincide with the con-

stitutive equations of isotropic hardening pressure-independent metal

plasticity.

7.1 Relationship to Yield Vertex Model for Fissured

Rocks

In a brittle rock, modeled to contain a collection of randomly ori-

ented �ssures, inelastic deformation results from frictional sliding on

the �ssure surfaces. Individual yield surface may be associated with

each �ssure, so that the macroscopic yield surface is the envelope of

individual yield surfaces for �ssures of all orientations (Rudnicki and



Deformation Theory of Plasticity Revisited 22

Rice, 1975). Continued stressing in the same direction will cause con-

tinuing sliding on (already activated) favorably oriented �ssures, and

will initiate sliding for a progressively greater number of orientations.

After certain amount of inelastic deformation, the macroscopic yield

envelope develops a vertex at the loading point. The stress incre-

ment normal to the original stress direction will initiate or continue

sliding of �ssure surfaces for some �ssure orientations. In isotropic

hardening idealization with smooth yield surface, however, a stress

increment tangential to the yield surface will cause only elastic de-

formation, overestimating the sti�ness of the response. In order to

take into account the e�ect of the yield vertex in an approximate way,

Rudnicki and Rice, (op. cit.) introduced a second plastic modulus hp,

which governs the response to part of the stress increment directed

tangentially to what is taken to be the smooth yield surface through

the same stress point. Since no vertex formation is associated with

hydrostatic stress increments, tangential stress increments are taken

to be deviatoric, and thus

D
p 0 =

1

2hpt

�
0

J
1=2
2

 
�
0 :

�

�

2J
1=2
2

+
1

3
� tr

�

�

!
+

1

2hp

 
�

�
0
�

�
0 :

�

�

2 J2
�
0

!
:

(7.15)

The dilation induced by the small tangential stress increment is as-

sumed to be negligible, i.e.,

trDp =
�

hpt

 
�
0 :

�

�

2 J
1=2
2

+
1

3
� tr

�

�

!
: (7.16)

Comparing Eq. (7.15) with (6.15) of the pressure-dependent deforma-

tion theory of plasticity, it is clear that the two constitutive structures

are equivalent, provided that identi�cation is made

hp = hps
J
1=2
2

�
=

1

2&
: (7.17)

This derivation reconciles the di�erences left in the literature in a de-

bate between Rudnicki (1982) and Nemat-Nasser (1982). It should
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also be noted that the constitutive structure in Eq. (7.15) is intended

to model the response at a yield surface vertex for small deviations

from proportional loading
�

� � �
0. For increasingly non-proportional

stress increments, the relationship between the stress and plastic de-

formation rates is not expected to be necessarily linear.

The expressions for the rate of stress in terms of the rate of defor-

mation are obtained by inversion of the expressions based on (7.10)

and (7.15). The results are given by Eqs. (6.21) and (6.22), with the

parameters

a = 1�
hpt
hp

� ��
�

hp
; b = 1 +

�

hp
; (7.18)

and with c given by Eq. (6.24). In view of the connection (7.17), ex-

pressions in Eq. (7.18) are clearly in accord with (6.23). This demon-

strates a duality in the constitutive structures of deformation and 
ow

theory for the considered models of pressure-dependent plasticity.

8 DEFORMATION THEORY BASEDON STRESS

DECOMPOSITION

In the 
ow theory of plasticity the constitutive structure can be built

by either decomposing the rate of strain or the rate of stress into

elastic and plastic constituents (Hill, 1978; Lubarda, 1994,1999). It

is appealing to formulate the deformation theory of plasticity in a

similar manner. Thus, instead of decomposing the total strain, which

was done in section 4, decompose the stress tensor into its elastic and

plastic part,

T(0) = T
e
(0) +T

p
(0); (8.1)

and assume that for isotropic pressure-independent plasticity

T
e
(0) = 2�E(0) + � trE(0) I

0; (8.2)

T
p
(0) = � (0) E

0

(0); (8.3)
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where  (0) is an appropriate parameter. Note that Tp
(0) is a deviatoric

tensor, so that deviatoric part of the total stress is

T
0

(0) = (2��  (0))E
0

(0): (8.4)

Since
�

�
e0 = 2�D0, from (8.4) by di�erentiation,

�

�
p = � _ (0) EEE

0

(0) �  (0)D
0: (8.5)

Suppose that a nonlinear relationship 
 = 
 (�� p) between the

logarithmic strain and plastic part of the conjugate stress is available

from elastoplastic pure shear test. Let the corresponding secant and

tangent compliances be de�ned by

gps = �



� p
; gpt = �

d


d� p
; (8.6)

and let

� p = �

�
1

2
�
p : � p

�1=2

= �

�
1

2
T

p
(0) : T

p
(0)

�1=2

; (8.7)

while 
 is de�ned as in Eq. (4.23). It follows that

 (0) =
2

gps
; (8.8)

and

_ (0) = 2

�
1

gpt
�

1

gps

�
EEE
0

(0) : D

EEE
0

(0) : EEE
0

(0)

: (8.9)

Substituting Eq. (8.9) into Eq. (8.5), the plastic part of the Jaumann

rate of the Kirchho� stress becomes

�

�
p = �

2

gps

2
4D0 +

�
gps
gpt

� 1

� �EEE 0(0) 
EEE 0(0)� : D
EEE
0

(0) : EEE
0

(0)

3
5 : (8.10)
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By adding the elastic contribution, the deviatoric part of the Jaumann

rate of stress is

�

�
0 = 2

2
4��� 1

gps

�
D

0
�

�
1

gpt
�

1

gps

� �EEE 0(0) 
EEE 0(0)� : D
EEE
0

(0) : EEE
0

(0)

3
5 : (8.11)

This constitutive structure is in agreement with (4.30), because � =

�
 + � p, and

hs = ��
1

gps
; ht = ��

1

gpt
: (8.12)

It is also noted that the parameter  (0) is related to parameter '(0)

of section 4 by

2�'(0) =
 (0)

2��  (0)
: (8.13)

In the case of pressure-dependent plasticity, we can take the plastic

part of the stress to be related to strain according to

T
p
(0) = � (0)

�
E
0

(0) +
1

3
��
�
2E0

(0) : E
0

(0)

�1=2
I
0

�
; (8.14)

where �� is a new material parameter. Furthermore, de�ne


 =
�
2E0

(0) : E
0

(0)

�1=2
+

1

3
�� trE(0); (8.15)

�p 0 = �

�
1

2
T

p
(0)

0 : Tp
(0)

0

�1=2

; (8.16)

and assume known the relationship 
 = 
 (��p 0). The friction-type

coe�cient is denoted by ��. It is easily veri�ed that (6.5) and (8.15)

cannot lead to equivalent constitutive descriptions, if � and �� are

both required to be constant (although distinct) coe�cients. Having

this in mind, and with the plastic secant and tangent compliances

de�ned by

gps = �



�p 0
; gpt = �

d


d�p 0
; (8.17)
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it follows that

 (0) =
2

gps




4j
1=2
2

; (8.18)

and

_ (0) =

 
2

gpt
�

2

gps




4j
1=2
2

!
2EEE 0(0) : D

j2
+

2

gpt

1

3
��

trD

j
1=2
2

: (8.19)

The notation is used j2 = 2EEE 0(0) : EEE
0

(0). Consequently,

�

�
p 0 = �

2

gpt

EEE
0

(0)

j
1=2
2

 
2EEE 0(0) : D

j
1=2
2

+
1

3
�� trD

!

�
2

gps




4j
1=2
2

2
4D0

�

2
�
EEE
0

(0) 
EEE
0

(0)

�
: D

j2

3
5 :

(8.20)

tr
�

�
p = �

2��

gpt

 
2EEE 0(0) : D

j
1=2
2

+
1

3
�� trD

!
: (8.21)

These give rise to dual, but not equivalent constitutive structures to

those associated with Eqs. (6.12) and (6.15). Finally, it is noted that

tr
�

�
p = ��

2EEE 0(0) :
�

�
p 0

j
1=2
2

; (8.22)

which parallels Eq. (6.17).
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